1
|
Shi Z, Hu C, Li Q, Sun C. Cancer-Associated Fibroblasts as the "Architect" of the Lung Cancer Immune Microenvironment: Multidimensional Roles and Synergistic Regulation with Radiotherapy. Int J Mol Sci 2025; 26:3234. [PMID: 40244052 PMCID: PMC11989671 DOI: 10.3390/ijms26073234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs), as the "architect" of the immune microenvironment in lung cancer, play a multidimensional role in tumor progression and immune regulation. In this review, we summarize the heterogeneity of the origin and the molecular phenotype of CAFs in lung cancer, and explore the complex interactions between CAFs and multiple components of the tumor microenvironment, including the regulatory relationships with innate immune cells (e.g., tumor-associated macrophages, tumor-associated neutrophils), adaptive immune cells (e.g., T cells), and extracellular matrix (ECM). CAFs significantly influence tumor progression and immunomodulation through the secretion of cytokines, remodeling of the ECM, and the regulation of immune cell function significantly affects the immune escape and treatment resistance of tumors. In addition, this review also deeply explored the synergistic regulatory relationship between CAF and radiotherapy, revealing the key role of CAF in radiotherapy-induced remodeling of the immune microenvironment, which provides a new perspective for optimizing the comprehensive treatment strategy of lung cancer. By comprehensively analyzing the multidimensional roles of CAF and its interaction with radiotherapy, this review aims to provide a theoretical basis for the precise regulation of the immune microenvironment and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Zheng Shi
- School of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Cazzato G, Tamma R, Fanelli M, Colagrande A, Marzullo A, Cascardi E, Trilli I, Lorusso L, Lettini T, Ingravallo G, Ribatti D. Mast cell density in Merkel cell carcinoma and its correlation with prognostic features and MCPyV status: a pilot study. Clin Exp Med 2024; 24:151. [PMID: 38967728 PMCID: PMC11226501 DOI: 10.1007/s10238-024-01366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 07/06/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive, primitive neuroendocrine carcinoma of the skin, the origin of which is not yet fully understood. Numerous independent prognostic factors have been investigated in an attempt to understand which are the most important parameters to indicate in the histological diagnostic report of MCC. Of these, mast cells have only been studied in one paper before this one. We present a retrospective descriptive study of 13 cases of MCC, received at the Department of Pathology over a 20-year period (2003-2023 inclusive) on which we performed a study using whole-slide (WSI) morphometric analysis scanning platform Aperio Scanscope CS for the detection and spatial distribution of mast cells, using monoclonal anti-tryptase antibody and anti-CD34 monoclonal antibody to study the density of microvessels. In addition, we analyzed MCPyV status with the antibody for MCPyV large T-antigen (Clone CM2B4). We found statistically significant correlation between mast cell density and local recurrence/distant metastasis/death-of-disease (p = 0.008). To our knowledge, we firstly reported that MCPyV ( -) MCC shows higher mast cells density compared to MCPyV ( +) MCC, the latter well known to be less aggressive. Besides, the median vascular density did not show no significant correlation with recurrence/metastasis/death-of-disease, (p = 0.18). Despite the small sample size, this paper prompts future studies investigating the role of mast cell density in MCC.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Roberto Tamma
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Margherita Fanelli
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Anna Colagrande
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Andrea Marzullo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Eliano Cascardi
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Loredana Lorusso
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Teresa Lettini
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
3
|
Esser E, Grünewald I, Mihailovic N. [Periocular Merkel Cell Carcinoma - an overview of clinical aspects and current therapeutic options]. Laryngorhinootologie 2024; 103:404-412. [PMID: 38128577 DOI: 10.1055/a-2214-5209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare but highly aggressive and rapidly expanding malignant skin tumor. It affects the periocular region in approximately 10% of cases. The current treatment recommendation for resectable non-metastatic MCC comprises total surgical excision; however, lymph node or distant metastases are often already present by the time of the diagnosis. Since an immune checkpoint inhibitor therapy with avelumab was first approved for MCC in 2016, there has been considerable improvement in mean survival compared to cytostatic therapy; at the same time, there has been a reduction in serious treatment-associated adverse events. Other immune checkpoint inhibitors are currently still in clinical trials, with very promising initial results. Because of the complexity of the diagnosis, treatment, and prognosis, it is essential that MCC patients receive interdisciplinary care in a specialized center including consultation with a tumor review board.
Collapse
Affiliation(s)
- Eliane Esser
- Klinik für Augenheilkunde, Universitätsklinikum Münster, Munster, Germany
| | - Inga Grünewald
- Gerhard-Domagk-Institut für Pathologie, Universitätsklinikum Münster, Münster, Germany
| | - Natasa Mihailovic
- Klinik für Augenheilkunde, Universitätsklinikum Münster, Münster, Germany
- Klinik für Augenheilkunde, Klinikum Fulda gAG, Fulda, Germany
| |
Collapse
|
4
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
5
|
Hazrati A, Malekpour K, Mirsanei Z, Khosrojerdi A, Rahmani-Kukia N, Heidari N, Abbasi A, Soudi S. Cancer-associated mesenchymal stem/stromal cells: role in progression and potential targets for therapeutic approaches. Front Immunol 2023; 14:1280601. [PMID: 38022534 PMCID: PMC10655012 DOI: 10.3389/fimmu.2023.1280601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Malignancies contain a relatively small number of Mesenchymal stem/stromal cells (MSCs), constituting a crucial tumor microenvironment (TME) component. These cells comprise approximately 0.01-5% of the total TME cell population. MSC differentiation potential and their interaction with the tumor environment enable these cells to affect tumor cells' growth, immune evasion, metastasis, drug resistance, and angiogenesis. This type of MSC, known as cancer-associated mesenchymal stem/stromal cells (CA-MSCs (interacts with tumor/non-tumor cells in the TME and affects their function by producing cytokines, chemokines, and various growth factors to facilitate tumor cell migration, survival, proliferation, and tumor progression. Considering that the effect of different cells on each other in the TME is a multi-faceted relationship, it is essential to discover the role of these relationships for targeting in tumor therapy. Due to the immunomodulatory role and the tissue repair characteristic of MSCs, these cells can help tumor growth from different aspects. CA-MSCs indirectly suppress antitumor immune response through several mechanisms, including decreasing dendritic cells (DCs) antigen presentation potential, disrupting natural killer (NK) cell differentiation, inducing immunoinhibitory subsets like tumor-associated macrophages (TAMs) and Treg cells, and immune checkpoint expression to reduce effector T cell antitumor responses. Therefore, if these cells can be targeted for treatment so that their population decreases, we can hope for the treatment and improvement of the tumor conditions. Also, various studies show that CA-MSCs in the TME can affect other vital aspects of a tumor, including cell proliferation, drug resistance, angiogenesis, and tumor cell invasion and metastasis. In this review article, we will discuss in detail some of the mechanisms by which CA-MSCs suppress the innate and adaptive immune systems and other mechanisms related to tumor progression.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
DeCoste RC, Carter MD, Ly TY, Gruchy JR, Nicolela AP, Pasternak S. Merkel cell carcinoma: an update. Hum Pathol 2023; 140:39-52. [PMID: 36898590 DOI: 10.1016/j.humpath.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Merkel cell carcinoma (MCC) is an uncommon primary cutaneous neuroendocrine carcinoma associated with an adverse prognosis. In recent years, our understanding of MCC biology has markedly progressed. Since the discovery of the Merkel cell polyomavirus, it has become clear that MCC represents an ontogenetically dichotomous group of neoplasms with overlapping histopathology. Specifically, most MCCs arise secondary to viral oncogenesis, while a smaller subset is the direct result of UV-associated mutations. The distinction of these groups bears relevance in their immunohistochemical and molecular characterization, as well as in disease prognosis. Further recent developments relate to the landmark utilization of immunotherapeutics in MCC, providing optimistic options for the management of this aggressive disease. In this review, we discuss both fundamental and emerging concepts in MCC, with a particular focus on topics of practical relevance to the surgical or dermatopathologist.
Collapse
Affiliation(s)
- Ryan C DeCoste
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada.
| | - Michael D Carter
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| | - Thai Yen Ly
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| | - Jennette R Gruchy
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| | - Anna P Nicolela
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario, K7L 3N6, Canada
| | - Sylvia Pasternak
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| |
Collapse
|
7
|
Ding C, Yu Z, Li X, Zhu J, Dai M, He Q. Collagen type VII α1 chain: A promising prognostic and immune infiltration biomarker of pancreatic cancer. Oncol Lett 2023; 25:77. [PMID: 36742365 PMCID: PMC9853101 DOI: 10.3892/ol.2023.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 11/25/2022] [Indexed: 01/07/2023] Open
Abstract
Pancreatic cancer (PC) is a stubborn malignancy with high lethality and a low 5-year overall survival (OS) rate. Collagen type VII α1 chain (COL7A1), a major component of the extracellular matrix, serves important roles in numerous physiological processes and various illnesses. COL7A1 protein acts as an anchoring fibril between the external epithelial cells and the underlying stroma, and mutation of COL7A1 could cause recessive dystrophic epidermolysis bullosa. Raw data for PC were acquired from The Cancer Genome Atlas and the Gene Expression Omnibus database, and raw data for the normal pancreas were obtained from the Genotype-Tissue Expression database. COL7A1 mRNA expression in PC tissues was compared with that in either paired (GSE15471 dataset) or unpaired (all other data) normal pancreas tissues. The association between COL7A1 mRNA expression and clinicopathological factors was assessed using logistic regression analysis. Cox analysis and Kaplan-Meier analysis were used to evaluate the role of COL7A1 mRNA expression in prognosis and nomograms were constructed. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, Gene Set Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) were performed to evaluate the relevant functions of COL7A1 and correlation with immune cell infiltration. Furthermore, reverse transcription-quantitative PCR was used to assess the mRNA expression levels of COL7A1 in PC. The present study demonstrated that COL7A1 mRNA expression was higher in PC tissues compared with in normal pancreas tissues. The Kaplan-Meier survival analysis indicated that patients with PC with high COL7A1 mRNA expression had shorter overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI) times compared with patients with PC with low COL7A1 mRNA expression. Multivariate analysis demonstrated that COL7A1 mRNA expression was an independent risk factor for OS, DSS and PFI. Nomogram and calibration plots were constructed to predict the prognosis of patients with PC. GSEA demonstrated that high mRNA expression levels of COL7A1 were associated with multiple cancer-related pathways. ssGSEA analysis indicated that COL7A1 expression was positively associated with natural killer CD56bright cells and T helper (Th)2 cells, and negatively associated with Th17 cells and eosinophils. The results of the present study suggested that COL7A1 could be an independent biomarker and an influential moderator of immune infiltration in PC.
Collapse
Affiliation(s)
- Cheng Ding
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Zhangping Yu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xianliang Li
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Jiqiao Zhu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China,Dr Menghua Dai, Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifu Garden, Wangfujing Street, Beijing 100730, P.R. China, E-mail:
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China,Correspondence to: Dr Qiang He, Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, 8 Gongti South Road, Chaoyang, Beijing 100020, P.R. China, E-mail:
| |
Collapse
|
8
|
Esser E, Grünewald I, Mihailovic N. Periocular Merkel Cell Carcinoma - An Overview of Clinical Aspects and Current Treatment Options. Klin Monbl Augenheilkd 2023; 240:24-32. [PMID: 36368663 DOI: 10.1055/a-1925-7703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare but highly aggressive and rapidly expanding malignant skin tumor. It affects the periocular region in approximately 10% of cases. The current treatment recommendation for resectable non-metastatic MCC comprises total surgical excision; however, lymph node or distant metastases are often already present by the time of the diagnosis. Since an immune checkpoint inhibitor therapy with avelumab was first approved for MCC in 2016, there has been considerable improvement in mean survival compared to cytostatic therapy; at the same time, there has been a reduction in serious treatment-associated adverse events. Other immune checkpoint inhibitors are currently still in clinical trials, with very promising initial results. Because of the complexity of the diagnosis, treatment, and prognosis, it is essential that MCC patients receive interdisciplinary care in a specialized center including consultation with a tumor review board.
Collapse
Affiliation(s)
- Eliane Esser
- Klinik für Augenheilkunde, Universitätsklinikum Münster, Deutschland
| | - Inga Grünewald
- Gerhard-Domagk-Institut für Pathologie, Universitätsklinikum Münster, Deutschland
| | - Natasa Mihailovic
- Klinik für Augenheilkunde, Universitätsklinikum Münster, Deutschland.,Klinik für Augenheilkunde, Klinikum Fulda gAG, Deutschland
| |
Collapse
|
9
|
Ma C, Luo H. A more novel and robust gene signature predicts outcome in patients with esophageal squamous cell carcinoma. Clin Res Hepatol Gastroenterol 2022; 46:102033. [PMID: 36265781 DOI: 10.1016/j.clinre.2022.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a life-threatening thoracic tumor with a poor prognosis. The tumor microenvironment (TME) mainly comprises tumor cells and tumor-infiltrating immune cells mixed with stromal components. The latest research has displayed that tumor immune cell infiltration (ICI) is closely connected with the ESCC patients' clinical prognosis. This study was designed to construct a gene signature based on the ICI of ESCC to predict prognosis. METHODS Based on the selection criteria we set, the eligible ESCC cases from the GSE53625 and TCGA-ESCA datasets were chosen for the training cohort and the validation cohort, respectively. Unsupervised clustering detailed grouped ESCC cases of the training cohort based on the ICI profile. We determined the differential expression genes (DEGs) between the ICI clusters, and, subsequently, we adopted the univariate Cox analysis to recognize DEGs with prognostic potential. These screened DEGs underwent a Lasso regression, which then generated a gene signature. The harvested signature's predictive ability was further examined by the Kaplan-Meier analysis, Cox analysis, ROC, IAUC, and IBS. More importantly, we listed similar studies in the most recent year and compared theirs with ours. We performed the functional annotation, immune relevant signature correlation analysis, and immune infiltrating analysis to thoroughly understand the functional mechanism of the signature and the immune cells' roles in the gene signature's predicting capacity. RESULTS A sixteen-gene signature (ARSD, BCAT1, BIK, CLDN11, DLEU7-AS1, GGH, IGFBP2, LINC01037, LINC01446, LINC01497, M1AP, PCSK2, PCSK5, PPP2R2A, TIGD7, and TMSB4X) was generated from the Lasso model. We then confirmed the signature as having solid and stable prognostic capacity by several statistical methods. We revealed the superiority of our signature after comparing it to our predecessors, and the GSEA uncovered the specifically mechanism of action related to the gene signature. Two immune relevant signatures, including GZMA and LAG3 were identified associating with our signature. The immune-infiltrating analysis identified crucial roles of resting mast cells, which potentially support the sixteen-gene signature's prognosis ability. CONCLUSIONS We discovered a robust sixteen-gene signature that can accurately predict ESCC prognosis. The immune relevant signatures, GZMA and LAG3, and resting mast cells infiltrating were closely linked to the sixteen-gene signature's ability.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
10
|
Cao H, Gao S, Jogani R, Sugimura R. The Tumor Microenvironment Reprograms Immune Cells. Cell Reprogram 2022; 24:343-352. [PMID: 36301256 DOI: 10.1089/cell.2022.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tumor tissue comprises a highly complex network of diverse cell types. The tumor microenvironment (TME) can be mainly subdivided into cancer cells and stromal cell compartments, the latter include different types of immune cells, fibroblasts, endothelial cells, and pericytes. Tumor cells reprogram immune cells and other stromal cells in the TME to constrain their antitumor capacity by creating an immunosuppressive milieu and metabolism competition. Moreover, the reprogramming effect on immune cells is localized not only in the tumor but also at the systemic level. With wide application of single-cell sequencing technology, tumor-specific characteristics of immune cells and other stromal cells in the TME have been dissected. In this review, we mainly focus on how tumor cells reprogram immune cells both within the TME and peripheral blood. This information can further help us to improve the efficiency of current immunotherapy as well as bring up new ideas to combat cancer.
Collapse
Affiliation(s)
- Handi Cao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,Centre for Translational Stem Cell Biology, Science Park, Hong Kong
| | - Sanxing Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Ritika Jogani
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,Centre for Translational Stem Cell Biology, Science Park, Hong Kong
| |
Collapse
|
11
|
Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer 2022; 8:527-555. [PMID: 35331673 DOI: 10.1016/j.trecan.2022.03.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022]
Abstract
The view of cancer as a tumor cell-centric disease is now replaced by our understanding of the interconnection and dependency of tumor stroma. Cancer-associated fibroblasts (CAFs), the most abundant stromal cells in the tumor microenvironment (TME), are involved in anticancer therapeutic resistance. As we unearth more solid evidence on the link between CAFs and tumor progression, we gain insight into the role of CAFs in establishing resistance to cancer therapies. Herein, we review the origin, heterogeneity, and function of CAFs, with a focus on how CAF subsets can be used as biomarkers and can contribute to therapeutic resistance in cancer. We also depict current breakthroughs in targeting CAFs to overcome anticancer therapeutic resistance and discuss emerging CAF-targeting modalities.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
12
|
Hernandez LE, Mohsin N, Yaghi M, Frech F, Dreyfuss I, Nouri K. Merkel Cell Carcinoma: An updated review of pathogenesis, diagnosis, and treatment options. Dermatol Ther 2021; 35:e15292. [PMID: 34967084 DOI: 10.1111/dth.15292] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 11/28/2022]
Abstract
Merkel cell carcinoma is a rare neuroendocrine carcinoma that typically appears in sun-exposed areas of the elderly. It has a poor prognosis and with its incidence projected to increase, it is vital for dermatologists to remain up to date with recent updates in this malignancy's pathogenesis and treatment. In the past few decades Merkel cell carcinoma's pathogenesis, more specifically its relation to the Merkel cell polyomavirus, has sparked further interest in the study of this carcinoma. Most cases are attributed to malignant transformation secondary to the Merkel cell polyomavirus, with a minority derived from DNA damage resulting from ultraviolet radiation. Investigators have also determined that there are immunologic influences in the development and prognosis of Merkel cell carcinoma, as individuals with HIV, solid organ transplants, and lymphoproliferative malignancies are at a greater risk of developing this carcinoma. Also, this immunologic link carries treatment value, as immunologic therapies are currently being investigated. This article provides a comprehensive review of the epidemiology and pathogenesis of Merkel cell carcinoma as well as the current treatments available and clinical trials underway. We also touch upon the updated National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology in respect to its diagnosis and recommended treatment modalities.
Collapse
Affiliation(s)
- Loren E Hernandez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Noreen Mohsin
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marita Yaghi
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic Florida, USA
| | - Fabio Frech
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Isabella Dreyfuss
- Nova Southeastern University, Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, Florida, USA
| | - Keyvan Nouri
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
13
|
Merkel Cell Carcinoma: From Pathobiology to Clinical Management. BIOLOGY 2021; 10:biology10121293. [PMID: 34943208 PMCID: PMC8698953 DOI: 10.3390/biology10121293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Merkel cell carcinoma (MCC) is an uncommon type of skin cancer that carries a poor prognosis. It is seen predominantly in old age in sun-exposed body parts. Racial and geographical differences are seen in its occurrence. Viral infection and radiation exposure are the two leading factors implicated in its causation. Small, firm to hard nodule (usually in sun-exposed areas), red with a history of a rapid increase in size is a common personation of the disease. Other body parts such as upper limbs, trunk, and even lower limbs may be also involved. The disease is diagnosed by taking a tissue sample (biopsy) for examination, and other radiological investigations are needed to reach a proper diagnosis with the staging of the disease. There are various treatment options including surgery, radiotherapy, and chemotherapy. Surgery is the primary treatment option though some patients may not be the candidates for operation where other treatment options come into play. Abstract Merkel cell carcinoma (MCC) is an infrequent, rapidly growing skin neoplasm that carries a greater probability of regional lymph node involvement, and a grim prognosis in advanced cases. While it is seen predominantly in old age in sun-exposed body parts, the prevalence varies among different races and geographical regions. Merkel cell polyomavirus and UV radiation-induced mutations contribute to its etiopathogenesis. The clinical presentation of MCC lacks pathognomonic features and is rarely considered highly at the time of presentation. Histopathological examination frequently reveals hyperchromatic nuclei with high mitotic activity, but immunohistochemistry is required to confirm the diagnosis. Sentinel lymph node biopsy (SLNB) and imaging are advised for effective staging of the disease. Multimodal management including surgery, radiation therapy, and/or immunotherapy are deployed. Traditional cytotoxic chemotherapies may result in an initial response, but do not result in a significant survival benefit. Checkpoint inhibitors have dramatically improved the prognosis of patients with metastatic MCC, and are recommended first-line in advanced cases. There is a need for well-tolerated agents with good safety profiles in patients who have failed immunotherapies.
Collapse
|
14
|
Wu J, Sun Y, Li J, Ai M, You L, Shi J, Yu F. Analysis of Prognostic Alternative Splicing Reveals the Landscape of Immune Microenvironment in Thyroid Cancer. Front Oncol 2021; 11:763886. [PMID: 34733794 PMCID: PMC8558422 DOI: 10.3389/fonc.2021.763886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Background The incidence of thyroid cancer (THCA) continues to increase in recent decades. Accumulating evidence showed that the unbalanced alternative splicing (AS) promotes the occurrence of cancers and leads to poor prognosis of patients. However, the research on alternative splicing events in THCA is lacking, and its underlying mechanism is not fully understood. This study identifies a novel prognostic signature based on AS events to reveal the relationship of AS with tumor immune microenvironment. Methods Based on the AS data, transcriptional data, and clinical information, the differentially expressed alternative splicings (DEASs) were screened out. Least absolute shrinkage and selection operator (LASSO) regression and multi-Cox regression analyses were employed to identify prognostic results related to AS events and establish a prognostic signature. The predictive ability of the signature was assessed by Kaplan-Meier (K-M) survival curve, risk plots, and receiver operating characteristic (ROC) curves. Furthermore, correlations between tumor-infiltrating immune cells, immune checkpoints, immune score and prognostic signature were analyzed. Results According to the LASSO regression analysis, a total of five AS events were selected to construct the signature. K-M survival curve showed that the higher the risk score, the worse the OS of the patients. Risk plots further confirmed this result. ROC curves indicated the high predictive efficiency of the prognostic signature. As for tumor immune microenvironment, patients in the high-risk group had a higher proportion of immune cells, including plasma cell, CD8+ T cell, macrophages (M0 and M2), and activated dendritic cell. Immune checkpoint proteins, such as PDCD1LG2, HAVCR2, CD274, etc., were significantly higher in the high-risk group. We also found that the ESTIMATE score, stromal score, and immune score were lower in the high-risk group, while the result of tumor purity was the opposite. Conclusions Collectively, a prognostic signature consisting of five AS events in THCA was established. Furthermore, there was an inextricable correlation between immune cell infiltration, immune checkpoint proteins, and AS events. This study will provide a basis for THCA immunotherapy in the future.
Collapse
Affiliation(s)
- Jian Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yifang Sun
- Department of Ophthalmology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Junzheng Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Maomao Ai
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Lihua You
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jianbo Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.,Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Feng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Noto CN, Hoft SG, DiPaolo RJ. Mast Cells as Important Regulators in Autoimmunity and Cancer Development. Front Cell Dev Biol 2021; 9:752350. [PMID: 34712668 PMCID: PMC8546116 DOI: 10.3389/fcell.2021.752350] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023] Open
Abstract
Mast cells are an essential part of the immune system and are best known as important modulators of allergic and anaphylactic immune responses. Upon activation, mast cells release a multitude of inflammatory mediators with various effector functions that can be both protective and damage-inducing. Mast cells can have an anti-inflammatory or pro-inflammatory immunological effect and play important roles in regulating autoimmune diseases including rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. Importantly, chronic inflammation and autoimmunity are linked to the development of specific cancers including pancreatic cancer, prostate cancer, colorectal cancer, and gastric cancer. Inflammatory mediators released from activated mast cells regulate immune responses and promote vascular permeability and the recruitment of immune cells to the site of inflammation. Mast cells are present in increased numbers in tissues affected by autoimmune diseases as well as in tumor microenvironments where they co-localize with T regulatory cells and T effector cells. Mast cells can regulate immune responses by expressing immune checkpoint molecules on their surface, releasing anti-inflammatory cytokines, and promoting vascularization of solid tumor sites. As a result of these immune modulating activities, mast cells have disease-modifying roles in specific autoimmune diseases and cancers. Therefore, determining how to regulate the activities of mast cells in different inflammatory and tumor microenvironments may be critical to discovering potential therapeutic targets to treat autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
16
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20:131. [PMID: 34635121 PMCID: PMC8504100 DOI: 10.1186/s12943-021-01428-1] [Citation(s) in RCA: 1191] [Impact Index Per Article: 297.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.
Collapse
Affiliation(s)
- Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Elieh Ali Komi D, Jalili A. The emerging role of mast cells in skin cancers: involved cellular and molecular mechanisms. Int J Dermatol 2021; 61:792-803. [PMID: 34570900 DOI: 10.1111/ijd.15895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 02/04/2023]
Abstract
Skin cancers are the most common cancers worldwide. They can be divided into nonmelanoma skin cancers (NMSC) including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and less common lymphomas and merkel cell carcinoma, and melanomas. Melanomas comprise less than 5% of skin cancer rate but are responsible for more than 90% of skin cancer death. Mast cells (MCs) are multifunctional cells that play an important role in inflammatory and allergic reactions. They attract other key players of the immune system by releasing cytokines. Healthy human skin comprises MCs under physiological status, and the number can increase under certain conditions including skin malignancies postulating their possible role in pathogenesis of and immunity against skin cancers. MCs respond to cytokines released by tumor stromal cells, release mediators (including histamine and tryptase), and induce the neovascularization, degradation of extracellular matrix (ECM), and induce mitogenesis. However, MCs may use molecular mechanisms to exert immunosuppressive activity including releasing complement C3, lower expression of CD40L, and overexpression of enzymes with vitamin D3 metabolizing activity including CYP27A1 and CYP27B1. This review summarizes the current knowledge on the role of MCs in pathogenesis and immunity against skin cancers.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Jalili
- Department of Dermatology, Bürgenstock Medical Center, Obbürgen, Switzerland
| |
Collapse
|
18
|
Immune Microenvironment Features and Dynamics in Hodgkin Lymphoma. Cancers (Basel) 2021; 13:cancers13143634. [PMID: 34298847 PMCID: PMC8304929 DOI: 10.3390/cancers13143634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary As happens in all neoplasms, the many reciprocal interactions taking place between neoplastic cells and the other reactive cells impact the course of the disease. Hodgkin Lymphoma is an haematologic malignancy where most of the pathological tissue is indeed composed by reactive cells and few neoplastic cells. Consequently, it represents an interesting subject for the description of the neoplastic and non-neoplastic cells interaction. In this review we report and discuss the more recent findings of microenvironmental studies about this disease. Abstract Classical Hodgkin’s lymphoma (cHL) accounts for 10% of all lymphoma diagnosis. The peculiar feature of the disease is the presence of large multinucleated Reed–Sternberg and mononuclear Hodgkin cells interspersed with a reactive microenvironment (ME). Due to the production of a large number of cytokines, Hodgkin cells (HCs) and Hodgkin Reed–Sternberg cells (HRSCs) attract and favour the expansion of different immune cell populations, modifying their functional status in order to receive prosurvival stimuli and to turn off the antitumour immune response. To this purpose HRSCs shape a biological niche by organizing the spatial distribution of cells in the ME. This review will highlight the contribution of the ME in the pathogenesis and prognosis of cHL and its role as a possible therapeutic target.
Collapse
|
19
|
Abstract
Using in vivo models of pancreatic ductal adenocarcinoma (PDAC), we demonstrated that mast cells migrate to the tumor site and provide a microenvironment that allows for tumor progression. These results indicate that targeting mast cells may be a promising novel therapy for PDAC.
Collapse
|
20
|
Walsh NM, Cerroni L. Merkel cell carcinoma: A review. J Cutan Pathol 2020; 48:411-421. [PMID: 33128463 DOI: 10.1111/cup.13910] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022]
Abstract
Merkel cell carcinoma has been a focus of active scientific investigation in recent years and new information on the topic has emerged. Although uncommon, this primary cutaneous neuroendocrine carcinoma, usually involving the head/neck of elderly individuals, has a poor prognosis. Within the past two decades, an increase in the incidence of the tumor and the discovery of its link to the Merkel cell polyomavirus have focused medical attention on the lesion. The resulting studies have improved our understanding of the biology of the neoplasm and contributed to clinical care. Specifically, two pathogenic subsets of the tumor have come to light, the majority due to Merkel cell polyomavirus and the minority caused by ultraviolet radiation-induced genetic damage. This dichotomy carries prognostic implications favoring the former subset. In addition, having capitalized on the known susceptibility of the tumor to immune influences, investigators have recently discovered its responsiveness to immune checkpoint inhibition. This revelation has constituted a therapeutic milestone at the clinical level. Herein we provide an overview of the topic, outline updates in the field and place an emphasis on dermatopathologic aspects of Merkel cell carcinoma.
Collapse
Affiliation(s)
- Noreen M Walsh
- Department of Pathology, Queen Elizabeth II Health Sciences Center, Nova Scotia Health Authority (Central Zone), Halifax, Nova Scotia, Canada.,Departments of Pathology and Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lorenzo Cerroni
- Research Unit of Dermatopathology, Department of Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
21
|
Wang L, Bi J, Li X, Wei M, He M, Zhao L. Prognostic alternative splicing signature reveals the landscape of immune infiltration in Pancreatic Cancer. J Cancer 2020; 11:6530-6544. [PMID: 33046974 PMCID: PMC7545682 DOI: 10.7150/jca.47877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Pancreatic cancer (PC) is an aggressive cancer with worse survival in the world. Emerging evidence suggested that the imbalance of alternative splicing (AS) is a hallmark of cancer and indicated poor prognosis of patients. Genes-derived splicing events can produce neoepitopes for immunotherapy. However, the profound study of splicing profiling in PC is still elusive. We aimed to identification of novel prognostic signature across a comprehensive splicing landscape and reveal their relationship with tumor-infiltrating immune cells in pancreatic cancer microenvironment. Methods: Based on integrated analysis of splicing profiling and clinical data, differentially splicing events were filtered out. Then, stepwise Cox regression analysis was applied to identify survival-related splicing events and construct prognostic signature. Functional enrichment analysis was performed to explore biology function. Kaplan-Meier curves and receiver operating characteristic (ROC) curves were performed to validate the predictive effect of predictive signature. We also verified the clinical value of prognostic signature under the influence of different clinical parameters. For deeper analysis, we evaluated the correlation between prognostic signature and infiltrating immune cells by CIBERSORT. Results: According to systematic analyzing, a final six splicing events were identified and validated the good prognostic capability in entire TCGA dataset, validation set 1 and validation set 2 by Kaplan-Meier curves (P < 0.0001). The area under the curve (AUC) of ROC curves were also confirmed the high predictive efficiency of the prognostic signature in these three cohorts (AUC = 0.857, 0.895 and 0.788). In order to validate whether prognostic signature highlights a correlation between AS and immune contexture, CIBERSORT was performed to analyze the proportion of tumor-infiltrating immune cells in PC. Based on prognostic signature, we identified survival-related immune cells including CD8 T cells (P = 0.0111), activated CD4 memory T cells (P = 0.0329) and resting mast cells (P = 0.0352). Conclusion: In conclusion, our study contribute to provide a promising prognostic signature based on six splicing events and revealed prognosis-related immune cells which indeed represented novel tumor drivers and provide potential targets for personalized therapeutic.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
22
|
Yamanaka-Takaichi M, Sugawara K, Sumitomo R, Tsuruta D. The Mast Cell-SCF-CB1 Interaction Is a Key Player in Seborrheic Keratosis. J Histochem Cytochem 2020; 68:461-471. [PMID: 32578480 DOI: 10.1369/0022155420938031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mast cell (MC) is an important player in the development of skin diseases, including atopic dermatitis, psoriasis, and urticaria. It is reported that MC infiltration and activation are observed around various types of tumors and speculated that MCs play key roles in their pathogenesis. As MCs in human seborrheic keratosis (SK) have not been well investigated, here we focused on the MCs in SK. The number of c-Kit and tryptase-positive MCs was significantly increased around the SK compared with the marginal lesion. Degranulated MCs were also increased around the tumors. Furthermore, MC growth factor, stem cell factor (SCF), expression within the SK was significantly upregulated compared with the marginal lesion. Interestingly, one of the cognitive regulators of SCF expression, cannabinoid receptor type 1 (CB1) immunoreactivity was downregulated within the SK. Our results suggest that MCs play important roles in the pathogenesis of SK and that SCF can be also deeply involved in the development of SKs. Our current results highlight the CB1-SCF-MC interaction as a novel mechanism of SK development and this also will be utilized for developing a novel treatment.
Collapse
Affiliation(s)
- Mika Yamanaka-Takaichi
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| | - Koji Sugawara
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| | - Rieko Sumitomo
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| |
Collapse
|
23
|
Chen T, Guo J, Cai Z, Li B, Sun L, Shen Y, Wang S, Wang Z, Wang Z, Wang Y, Zhou H, Cai Z, Ye Z. Th9 Cell Differentiation and Its Dual Effects in Tumor Development. Front Immunol 2020; 11:1026. [PMID: 32508847 PMCID: PMC7251969 DOI: 10.3389/fimmu.2020.01026] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
With the improved understanding of the molecular pathogenesis and characteristics of cancers, the critical role of the immune system in preventing tumor development has been widely accepted. The understanding of the relationship between the immune system and cancer progression is constantly evolving, from the cancer immunosurveillance hypothesis to immunoediting theory and the delicate balance in the tumor microenvironment. Currently, immunotherapy is regarded as a promising strategy against cancers. Although adoptive cell therapy (ACT) has shown some exciting results regarding the rejection of tumors, the effect is not always satisfactory. Cellular therapy with CD4+ T cells remains to be further explored since the current ACT is mainly focused on CD8+ cytotoxic T lymphocytes (CTLs). Recently, Th9 cells, a subgroup of CD4+ T helper cells characterized by the secretion of IL-9 and IL-10, have been reported to be effective in the elimination of solid tumors and to exhibit superior antitumor properties to Th1 and Th17 cells. In this review, we summarize the most recent advances in the understanding of Th9 cell differentiation and the dual role, both anti-tumor and pro-tumor effects, of Th9 cells in tumor progression.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhai Cai
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Lingling Sun
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yingying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yucheng Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhijian Cai
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, de Paulis A, Marone G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol 2019; 179:247-261. [PMID: 31137021 DOI: 10.1159/000500088] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
Mast cells are immune cells which have a widespread distribution in nearly all tissues. These cells and their mediators are canonically viewed as primary effector cells in allergic disorders. However, in the last years, mast cells have gained recognition for their involvement in several physiological and pathological conditions. They are highly heterogeneous immune cells displaying a constellation of surface receptors and producing a wide spectrum of inflammatory and immunomodulatory mediators. These features enable the cells to act as sentinels in harmful situations as well as respond to metabolic and immune changes in their microenvironment. Moreover, they communicate with many immune and nonimmune cells implicated in several immunological responses. Although mast cells contribute to host responses in experimental infections, there is no satisfactory model to study how they contribute to infection outcome in humans. Mast cells modulate physiological and pathological angiogenesis and lymphangiogenesis, but their role in tumor initiation and development is still controversial. Cardiac mast cells store and release several mediators that can exert multiple effects in the homeostatic control of different cardiometabolic functions. Although mast cells and their mediators have been simplistically associated with detrimental roles in allergic disorders, there is increasing evidence that they can also have homeostatic or protective roles in several pathophysiological processes. These findings may reflect the functional heterogeneity of different subsets of mast cells.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy, .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy, .,World Allergy Organization (WAO) Center of Excellence, Naples, Italy, .,Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy,
| |
Collapse
|
25
|
Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, Luposella M, Maltese L, Currò G, Marone G, Ranieri G, Memeo R. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int J Mol Sci 2019; 20:2106. [PMID: 31035644 PMCID: PMC6540185 DOI: 10.3390/ijms20092106] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
| | - Valentina Ferraro
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, Aldo Moro University, 74124 Bari, Italy.
| | - Michele Ammendola
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Michele De Fazio
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| | | | - Maria Luposella
- Cardiovascular Disease Unit, San Giovanni di Dio Hospital, 88900 Crotone, Italy.
| | - Lorenza Maltese
- Pathology Unit, Pugliese-Ciaccio Hospital, 88100 Catanzaro, Italy.
| | - Giuseppe Currò
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
- Department of Human Pathology of Adult and Evolutive Age G. Barresi, University of Messina, 98122 Messina, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 74124 Bari, Italy.
| | - Riccardo Memeo
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| |
Collapse
|
26
|
Derakhshani A, Vahidian F, Alihasanzadeh M, Mokhtarzadeh A, Lotfi Nezhad P, Baradaran B. Mast cells: A double-edged sword in cancer. Immunol Lett 2019; 209:28-35. [PMID: 30905824 DOI: 10.1016/j.imlet.2019.03.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022]
Abstract
Mast cells (MCs), a type of innate immune cells, are derived from myeloid stem cells, sometimes known as mastocytes or labrocytes, and contain many granules rich in histamine and heparin. The mentioned cells are able to release various mediators such as cytokines, leukotrienes, and a large number of proteases into the environment. Many studies and experiments have established the infiltration of MCs into the tumor site. However, the findings are highly controversial to determine whether these immune cells contribute to the growth and development of the tumor or cause anti-tumor immune responses. Various studies have revealed that MCs have a pro-tumorigenic or anti-tumorigenic role depending on the type of cancer, the degree of tumor progression, and the location of these immune cells in the tumor bulk. Although these types of immune cells cause angiogenesis and tumor progression in some cancers, they have a significant anti-tumor role in some other types of cancers. In general, although a number of studies have specified the protective role of MCs in cancers, the increased number of MCs in the blood and microenvironment of tumors, as well as the increased level of angiogenesis and tumor progression, has been indicated in another array of studies. The function of MCs against or in favor of the cancers still requires further investigations to more accurately and specifically determine the role of MCs in the cancers. The function of MCs in tumors and their various roles in case of exposure to the cancer cells have been addressed in the present review. The concluding section of the present study recommends a number of methods for modification of MCs in cancer immunotherapy.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alihasanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Lotfi Nezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Xu W, Qian J, Zeng F, Li S, Guo W, Chen L, Li G, Zhang Z, Wang QJ, Deng F. Protein kinase Ds promote tumor angiogenesis through mast cell recruitment and expression of angiogenic factors in prostate cancer microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:114. [PMID: 30841931 PMCID: PMC6404326 DOI: 10.1186/s13046-019-1118-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 01/24/2023]
Abstract
Background Mast cells are being increasingly recognized as critical components in the tumor microenvironment. Protein Kinase D (PKD) is essential for the progression of prostate cancer, but its role in prostate cancer microenvironment remains poorly understood. Methods The expression of PKD, mast cells and microvessel density were examined by IHC. The clinical significance was determined by statistical analyses. The biological function of PKD and the underlying mechanisms were investigated using in vitro and in vivo models. Results PKD2/3 contributed to MCs recruitment and tumor angiogenesis in the prostate cancer microenvironment. Clinical data showed that increased activation of PKD at Ser744/748 in prostate cancer was correlated with mast cell infiltration and microvascular density. PKD2/3 silencing of prostate cancer cells markedly decreased MCs migration and tube formation of HUVEC cells. Moreover, PKD2/3 depletion not only reduced SCF, CCL5 and CCL11 expression in prostate cancer cells but also inhibited angiogenic factors in MCs. Conversely, exogenous SCF, CCL5 and CCL11 reversed the effect on MCs migration inhibited by PKD2/3 silencing. Mechanistically, PKD2/3 interacted with Erk1/2 and activated Erk1/2 or NF-κB signaling pathway, leading to AP-1 or NF-κB binding to the promoter of scf, ccl5 and ccl11. Finally, PKD-specific inhibitor significantly reduced tumor volume and tumor growth in mice bearing RM-1 prostate cancer cells, which was attributed to attenuation of mast cell recruitment and tumor angiogenesis. Conclusions These results demonstrate a novel PKDs function that contributes to tumor angiogenesis and progression through mast cells recruitment in prostate cancer microenvironment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1118-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanfu Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Present address: Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiabi Qian
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Present address: Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fangyin Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
| | - Songyu Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenjing Guo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liping Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhishuai Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Varricchi G, Raap U, Rivellese F, Marone G, Gibbs BF. Human mast cells and basophils-How are they similar how are they different? Immunol Rev 2019; 282:8-34. [PMID: 29431214 DOI: 10.1111/imr.12627] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells and basophils are key contributors to allergies and other inflammatory diseases since they are the most prominent source of histamine as well as numerous additional inflammatory mediators which drive inflammatory responses. However, a closer understanding of their precise roles in allergies and other pathological conditions has been marred by the considerable heterogeneity that these cells display, not only between mast cells and basophils themselves but also across different tissue locations and species. While both cell types share the ability to rapidly degranulate and release histamine following high-affinity IgE receptor cross-linking, they differ markedly in their ability to either react to other stimuli, generate inflammatory eicosanoids or release immunomodulating cytokines and chemokines. Furthermore, these cells display considerable pharmacological heterogeneity which has stifled attempts to develop more effective anti-allergic therapies. Mast cell- and basophil-specific transcriptional profiling, at rest and after activation by innate and adaptive stimuli, may help to unravel the degree to which these cells differ and facilitate a clearer understanding of their biological functions and how these could be targeted by new therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Ulrike Raap
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Bernhard F Gibbs
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
29
|
The dual role of mast cells in tumor fate. Cancer Lett 2018; 433:252-258. [PMID: 29981810 DOI: 10.1016/j.canlet.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
The exact role of mast cells in tumor growth is not clear and multifaceted. In some cases, mast cells stimulate while in others inhibit this process. This dual role may be explained to some extent by the huge number of bioactive molecules stored in mast cell granules, as well as differences between tumor microenvironment, tumor type, and tumor phase of development.
Collapse
|
30
|
Abstract
Merkel cell carcinoma (MCC) is an uncommon primary cutaneous neuroendocrine cancer. It most commonly presents as an indurated plaque or nodule on sun-damaged skin in elderly patients and is characterized by high rates of local recurrence and nodal metastasis. Survival at 5 years is 51% for local disease and as low as 14% for distant disease, which underscores the aggressive nature of this tumor and challenges in management. Advances in immunology and molecular genetics have broadened our understanding of the pathophysiology of MCC and expanded our therapeutic arsenal. With this comprehensive review, we provide an update of MCC epidemiology, pathogenesis, clinical presentation, diagnostic evaluation and prognostic markers. The second article in this continuing medical education series explores the evolving landscape in MCC management.
Collapse
|
31
|
Molderings GJ, Zienkiewicz T, Homann J, Menzen M, Afrin LB. Risk of solid cancer in patients with mast cell activation syndrome: Results from Germany and USA. F1000Res 2017; 6:1889. [PMID: 29225779 PMCID: PMC5710302 DOI: 10.12688/f1000research.12730.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 01/20/2023] Open
Abstract
Background: It has been shown repeatedly that mast cells can promote or prevent cancer development and growth. If development and/or progression of a solid cancer is substantially influenced by mast cell activity, the frequencies of occurrence of solid cancers in patients with primary mast cells disorders would be expected to differ from the corresponding prevalence data in the general population. In fact, a recent study demonstrated that patients with systemic mastocytosis (i.e., a rare neoplastic variant of the primary mast cell activation disease) have increased risk for solid cancers, in particular melanoma and non-melanoma skin cancers. The aim of the present study is to examine whether the risk of solid cancer is increased in systemic mast cell activation syndrome (MCAS), the common systemic variant of mast cell activation disease. Methods: In the present descriptive study, we have analysed a large (n=828) patient group with MCAS, consisting of cohorts from Germany and the USA, for occurrence of solid forms of cancer and compared the frequencies of the different cancers with corresponding prevalence data for German and U.S. general populations. Results: Sixty-eight of the 828 MCAS patients (46 female, 22 male) had developed a solid tumor before the diagnosis of MCAS was made. Comparison of the frequencies of the malignancies in the MCAS patients with their prevalence in the general population revealed a significantly increased prevalence for melanoma and cancers of the breast, cervix uteri, ovary, lung, and thyroid in MCAS patients. Conclusions: Our data support the view that mast cells may promote development of certain malignant tumors. These findings indicate a need for increased surveillance of certain types of cancer in MCAS patients irrespective of its individual clinical presentation.
Collapse
Affiliation(s)
| | | | - Jürgen Homann
- Division of Internal Medicine, Department of Gastroenterology and Diabetology, Gemeinschaftskrankenhaus Bonn, Bonn, D-53113, Germany
| | - Markus Menzen
- Division of Internal Medicine, Department of Gastroenterology and Diabetology, Gemeinschaftskrankenhaus Bonn, Bonn, D-53113, Germany
| | | |
Collapse
|
32
|
Galdiero MR, Varricchi G, Seaf M, Marone G, Levi-Schaffer F, Marone G. Bidirectional Mast Cell-Eosinophil Interactions in Inflammatory Disorders and Cancer. Front Med (Lausanne) 2017; 4:103. [PMID: 28791287 PMCID: PMC5523083 DOI: 10.3389/fmed.2017.00103] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Human mast cells (MCs) and eosinophils were first described and named by Paul Ehrlich. These cells have distinct myeloid progenitors and differ morphologically, ultrastructurally, immunologically, biochemically, and pharmacologically. However, MCs and eosinophils play a pivotal role in several allergic disorders. In addition, these cells are involved in autoimmune disorders, cardiovascular diseases, and cancer. MCs are distributed throughout all normal human tissues, whereas eosinophils are present only in gastrointestinal tract, secondary lymphoid tissues, and adipose tissue, thymus, mammary gland, and uterus. However, in allergic disorders, MCs and eosinophils can form the "allergic effector unit." Moreover, in several tumors, MCs and eosinophils can be found in close proximity. Therefore, it is likely that MCs have the capacity to modulate eosinophil functions and vice versa. For example, interleukin 5, stem cell factor, histamine, platelet-activating factor (PAF), prostaglandin D2 (PGD2), cysteinyl leukotrienes, and vascular endothelial growth factors (VEGFs), produced by activated MCs, can modulate eosinophil functions through the engagement of specific receptors. In contrast, eosinophil cationic proteins such as eosinophil cationic protein and major basic protein (MBP), nerve growth factor, and VEGFs released by activated eosinophils can modulate MC functions. These bidirectional interactions between MCs and eosinophils might be relevant not only in allergic diseases but also in several inflammatory and neoplastic disorders.
Collapse
Affiliation(s)
- Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Mansour Seaf
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Monaldi Hospital Pharmacy, Naples, Italy
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
33
|
Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F. Are Mast Cells MASTers in Cancer? Front Immunol 2017; 8:424. [PMID: 28446910 PMCID: PMC5388770 DOI: 10.3389/fimmu.2017.00424] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Monaldi Hospital Pharmacy, Naples, Italy
| | - Raffaella Iannone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
34
|
Fu H, Zhu Y, Wang Y, Liu Z, Zhang J, Wang Z, Xie H, Dai B, Xu J, Ye D. Tumor Infiltrating Mast Cells (TIMs) Confers a Marked Survival Advantage in Nonmetastatic Clear-Cell Renal Cell Carcinoma. Ann Surg Oncol 2016; 24:1435-1442. [PMID: 27896514 DOI: 10.1245/s10434-016-5702-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Indexed: 11/18/2022]
Abstract
PURPOSE The role played by the innate immune system in determining the clinical outcome of clear-cell renal cell carcinoma (ccRCC) was still blurred. This study was designed to investigate the prognostic significance of tumor infiltrating mast cells (TIMs) in ccRCC. METHODS The study retrospectively enrolled a training set (474 patients) and a validation set (188 patients) with nonmetastasis (pT1-4N0M0) ccRCC from two institutional medical centers of China. TIMs was evaluated by immunohistochemical staining of tryptase and its association with clinicopathologic features and prognosis were evaluated. RESULTS In ccRCC tissues, TIMs ranged from 0 to 103 cells/mm2 and 0 to 113 cells/mm2 in the training set and validation set, respectively. TIMs was negatively correlated with tumor size (P < 0.001 and P < 0.001, respectively), pathological T stage (P = 0.005 and P = 0.007, respectively) and Fuhrman grade (P < 0.001 and P < 0.001, respectively). Patients with abundant TIMs infiltration showed significantly longer cancer-specific survival in the training cohort and the validation cohort (P < 0.001 and P < 0.001). Patients with abundant mast cell infiltration showed significantly longer overall survival in the TCGA cohort (P < 0.001). Moreover, multivariate analysis identified TIMs as an independent prognostic factor for cancer-specific survival (CSS) and relapse-free survival (RFS). Also, TIMs was significantly correlated with CSS and RFS of the mediate and high-risk patients in the training cohort and the validation cohort. CONCLUSIONS TIMs density is a powerful independent prognostic factor for CSS and RFS in patients with nonmetastasis (pT1-4N0M0) ccRCC.
Collapse
Affiliation(s)
- Hangcheng Fu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyu Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huyang Xie
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Varricchi G, Galdiero MR, Marone G, Granata F, Borriello F, Marone G. Controversial role of mast cells in skin cancers. Exp Dermatol 2016; 26:11-17. [PMID: 27305467 DOI: 10.1111/exd.13107] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria R Galdiero
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
36
|
Low numbers of tryptase+ and chymase+ mast cells associated with reduced survival and advanced tumor stage in melanoma. Melanoma Res 2015; 25:479-85. [DOI: 10.1097/cmr.0000000000000192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Marichal T, Tsai M, Galli SJ. Mast cells: potential positive and negative roles in tumor biology. Cancer Immunol Res 2015; 1:269-79. [PMID: 24777963 DOI: 10.1158/2326-6066.cir-13-0119] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors.
Collapse
Affiliation(s)
- Thomas Marichal
- Authors' Affiliations: Departments of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
38
|
Merkel cell Polyomavirus and p63 status in Merkel cell carcinoma by immunohistocnemistry: Merkel cell Polyomavirus positivity is inversely correlated with sun damage, but neither is correlated with outcome. Pathology 2014; 46:205-10. [DOI: 10.1097/pat.0000000000000069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Merkel Cell Carcinoma (Primary Neuroendocrine Carcinoma of Skin) Mimicking Basal Cell Carcinoma With Review of Different Histopathologic Features. Am J Dermatopathol 2014; 36:160-6. [DOI: 10.1097/dad.0b013e3182a67f6f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Fritsch VA, Camp ER, Lentsch EJ. Sentinel lymph node status in Merkel cell carcinoma of the head and neck: Not a predictor of survival. Head Neck 2014; 36:571-9. [DOI: 10.1002/hed.23334] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 03/01/2013] [Indexed: 01/21/2023] Open
Affiliation(s)
- Valerie A. Fritsch
- Department of Otolaryngology - Head and Neck Surgery; Medical University of South Carolina; Charleston South Carolina
| | - E. Ramsay Camp
- Department of Surgery; Medical University of South Carolina; Charleston South Carolina
| | - Eric J. Lentsch
- Department of Otolaryngology - Head and Neck Surgery; Medical University of South Carolina; Charleston South Carolina
| |
Collapse
|
41
|
|
42
|
Ward LS. Immune response in thyroid cancer: widening the boundaries. SCIENTIFICA 2014; 2014:125450. [PMID: 25328756 PMCID: PMC4190695 DOI: 10.1155/2014/125450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/19/2014] [Indexed: 05/10/2023]
Abstract
The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy.
Collapse
Affiliation(s)
- Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessália Vieira de Camargo 126, Barão Geraldo,
13083-970 Campinas, SP, Brazil
- *Laura Sterian Ward:
| |
Collapse
|
43
|
Pharmacologically antagonizing the CXCR4-CXCL12 chemokine pathway with AMD3100 inhibits sunlight-induced skin cancer. J Invest Dermatol 2013; 134:1091-1100. [PMID: 24226205 DOI: 10.1038/jid.2013.424] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/28/2013] [Accepted: 09/06/2013] [Indexed: 11/08/2022]
Abstract
One way sunlight causes skin cancer is by suppressing anti-tumor immunity. A major mechanism involves altering mast cell migration via the C-X-C motif chemokine receptor 4-C-X-C motif chemokine ligand 12 (CXCR4-CXCL12) chemokine pathway. We have discovered that pharmacologically blocking this pathway with the CXCR4 antagonist AMD3100 prevents both UV radiation-induced immune suppression and skin cancer. The majority of control mice receiving UV-only developed histopathologically confirmed squamous cell carcinomas. In contrast, skin tumor incidence and burden was significantly lower in AMD3100-treated mice. Perhaps most striking was that AMD3100 completely prevented the outgrowth of latent tumors that occurred once UV irradiation ceased. AMD3100 protection from UV immunosuppression and skin cancer was associated with reduced mast cell infiltration into the skin, draining lymph nodes, and the tumor itself. Thus a major target of CXCR4 antagonism was the mast cell. Our results indicate that interfering with UV-induced CXCL12 by antagonizing CXCR4 significantly inhibits skin tumor development by blocking UV-induced effects on mast cells. Hence, the CXCR4-CXCL12 chemokine pathway is a novel therapeutic target in the prevention of UV-induced skin cancer.
Collapse
|
44
|
Biswas A, Richards JE, Massaro J, Mahalingam M. Mast cells in cutaneous tumors: innocent bystander or maestro conductor? Int J Dermatol 2013; 53:806-11. [DOI: 10.1111/j.1365-4632.2012.05745.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Asok Biswas
- Department of Pathology; Western General Hospital; Edinburgh UK
| | - Joanna E. Richards
- Dermatopathology Section; Department of Dermatology; Boston University School of Medicine; Boston MA USA
| | - Joseph Massaro
- Department of Biostatistics; Boston University School of Medicine; Boston MA USA
| | - Meera Mahalingam
- Dermatopathology Section; Department of Dermatology; Boston University School of Medicine; Boston MA USA
| |
Collapse
|
45
|
Arumugam T, Ramachandran V, Sun D, Peng Z, Pal A, Maxwell DS, Bornmann WG, Logsdon CD. Designing and developing S100P inhibitor 5-methyl cromolyn for pancreatic cancer therapy. Mol Cancer Ther 2013; 12:654-62. [PMID: 23303403 DOI: 10.1158/1535-7163.mct-12-0771] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have previously shown that the antiallergic drug cromolyn blocks S100P interaction with its receptor receptor for advanced glycation end product (RAGE) and improves gemcitabine effectiveness in pancreatic ductal adenocarcinoma (PDAC). However, the concentration required to achieve its effectiveness was high (100 μmol/L). In this study, we designed and synthesized analogs of cromolyn and analyzed their effectiveness compared with the parent molecule. An ELISA was used to confirm the binding of S100P with RAGE and to test the effectiveness of the different analogs. Analog 5-methyl cromolyn (C5OH) blocked S100P binding as well as the increases in NF-κB activity, cell growth, and apoptosis normally caused by S100P. In vivo C5OH systemic delivery reduced NF-κB activity to a greater extent than cromolyn and at 10 times lesser dose (50 mg vs. 5 mg). Treatment of mice-bearing syngeneic PDAC tumors showed that C5OH treatment reduced both tumor growth and metastasis. C5OH treatment of nude mice bearing orthotopic highly aggressive pancreatic Mpanc96 cells increased the overall animal survival. Therefore, the cromolyn analog, C5OH, was found to be more efficient and potent than cromolyn as a therapeutic for PDAC.
Collapse
|
46
|
Bechert CJ, Schnadig V, Nawgiri R. The Merkel cell carcinoma challenge: a review from the fine needle aspiration service. Cancer Cytopathol 2012; 121:179-88. [PMID: 23225406 DOI: 10.1002/cncy.21237] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 06/09/2012] [Accepted: 06/29/2012] [Indexed: 11/10/2022]
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine carcinoma of the skin that occurs primarily in elderly or immunocompromised patients. For this report, the authors reviewed the diagnostic challenges associated with MCC encountered on their fine-needle aspiration (FNA) service and also conducted an in-depth review of the literature on MCC. A computer search for patients who were diagnosed with MCC by FNA at the authors' institution from 2006 to 2010 was conducted, and 5 patients were selected for cytologic and immunochemical analyses based on their varied and diagnostically challenging clinical presentations. The 5 selected patients had clinical findings commonly associated with MCC, including advanced age (4 of the 5 patients were ages 75-85 years) and a history of previous malignancies (3 of the 5 patients had a history of previous malignancy), and 1 patient was diagnosed with a concomitant low-grade lymphoma. The patients and their disease illustrated the protean clinical presentation of MCC and the clinical and cytologic challenges associated with this neoplasm. The current findings indicate the need for cytopathologists to be aware of the deceptive presentation of this neoplasm and its cytologic and immunochemical features to correctly diagnose this insidious neoplasm.
Collapse
Affiliation(s)
- Charles J Bechert
- Division of Cytopathology, University of Texas Medical Branch, Galveston, Texas 77555-0548, USA
| | | | | |
Collapse
|
47
|
Dalton DK, Noelle RJ. The roles of mast cells in anticancer immunity. Cancer Immunol Immunother 2012; 61:1511-20. [PMID: 22527244 PMCID: PMC3808963 DOI: 10.1007/s00262-012-1246-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/09/2012] [Indexed: 01/05/2023]
Abstract
The tumor microenvironment (TME), which is composed of stromal cells such as endothelial cells, fibroblasts, and immune cells, provides a supportive niche promoting the growth and invasion of tumors. The TME also raises an immunosuppressive barrier to effective antitumor immune responses and is therefore emerging as a target for cancer immunotherapies. Mast cells (MCs) accumulate in the TME at early stages, and their presence in the TME is associated with poor prognosis in many aggressive human cancers. Some well-established roles of MCs in cancer are promoting angiogenesis and tumor invasion into surrounding tissues. Several mouse models of inducible and spontaneous cancer show that MCs are among the first immune cells to accumulate within and shape the TME. Although MCs and other suppressive myeloid cells are associated with poor prognosis in human cancers, high densities of intratumoral T effector (T(eff)) cells are associated with a favorable prognosis. The latter finding has stimulated interest in developing therapies to increase intratumoral T cell density. However, cellular and molecular mechanisms promoting high densities of intratumoral T(eff) cells within the TME are poorly understood. New evidence suggests that MCs are essential for shaping the immune-suppressive TME and impairing both antitumor T(eff) cell responses and intratumoral T cell accumulation. These roles for MCs warrant further elucidation in order to improve antitumor immunity. Here, we will summarize clinical studies of the prognostic significance of MCs within the TME in human cancers, as well as studies in mouse models of cancer that reveal how MCs are recruited to the TME and how MCs facilitate tumor growth. Also, we will summarize our recent studies indicating that MCs impair generation of protective antitumor T cell responses and accumulation of intratumoral T(eff) cells. We will also highlight some approaches to target MCs in the TME in order to unleash antitumor cytotoxicity.
Collapse
Affiliation(s)
- Dyana K Dalton
- Department of Microbiology and Immunology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | | |
Collapse
|
48
|
Hall BJ, Pincus LB, Yu SS, Oh DH, Wilson AR, McCalmont TH. Immunohistochemical prognostication of Merkel cell carcinoma: p63 expression but not polyomavirus status correlates with outcome. J Cutan Pathol 2012; 39:911-7. [PMID: 22882157 DOI: 10.1111/j.1600-0560.2012.01964.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/06/2012] [Accepted: 06/20/2012] [Indexed: 01/26/2023]
Abstract
Merkel cell carcinoma (MCC) represents a cutaneous malignancy with high associated mortality. Numerous studies have attempted to define characteristics to more accurately predict outcome. Two recent studies have demonstrated that Merkel cell polyomavirus (MCPyV) seropositivity correlated with a better prognosis, while a third study revealed no difference. Expression of p63 by tumor cell nuclei has been shown to be associated with a worse prognosis in a European cohort. To better understand the relationship between prognosis and MCPyV or p63 status, we used immunohistochemistry to evaluate both attributes in 36 US patients with MCC. Our results show that when considered as a binary variable, p63 expression represents a strong risk factor (p < 0.0001, hazards ratio (HR) = ∞) for shortened survival. In addition, our results show that MCPyV status does not correlate with survival (p = 0.6067, HR = 1.27). Our study corroborates the European observation that p63 immunoexpression is useful as a prognostic tool. Larger studies will need to be performed in order to determine whether p63 status should be included in MCC staging, since our study is limited by its relative small size.
Collapse
Affiliation(s)
- Brian J Hall
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | |
Collapse
|
49
|
Lim CS, Whalley D, Haydu LE, Murali R, Tippett J, Thompson JF, Hruby G, Scolyer RA. Increasing tumor thickness is associated with recurrence and poorer survival in patients with Merkel cell carcinoma. Ann Surg Oncol 2012; 19:3325-34. [PMID: 22820936 DOI: 10.1245/s10434-012-2509-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous neuroendocrine tumor usually occurring on sun-exposed skin in elderly patients. Clinical and pathologic factors associated with disease progression and mortality in patients with MCC are poorly defined. Recently, it has been reported that p63 expression in primary MCC is strongly associated with clinical outcome. METHODS MCC patients diagnosed between July 1, 1993 and July 31, 2009 were identified from the surgical pathology records of the Sydney South West Area Health Service. Clinical, pathologic, treatment, and survival data were obtained and immunohistochemical analyses for p53, p63, and Ki-67 were performed. The associations of clinical and pathologic features with disease-free and disease-specific survival were analyzed. RESULTS Ninety-five patients were identified (67 males, 28 females; median age at diagnosis of primary MCC 76 [range, 42-93] years). Increasing primary tumor thickness was significantly associated with poorer disease-free survival (5-year survival 18 % in tumors >10 mm thick compared with 69 % for patients with tumors ≤10 mm thick, p = 0.002) and disease-specific survival (5-year survival 74 % in tumors >10 mm thick compared with 97 % for patients with tumors ≤10 mm thick, p = 0.006). There was a strong positive correlation between the Ki-67 index (proportion of Ki-67-positive tumor nuclei) and tumor thickness (r = 0.39, n = 45, p = 0.008). Positive staining for p63 in MCC was infrequent (9 % of primary MCC) and showed no significant association with disease outcome. CONCLUSIONS Tumor thickness is significantly associated with disease-free survival in MCC. We recommend that primary tumor thickness be routinely recorded in the pathology reports of patients with primary MCC.
Collapse
Affiliation(s)
- Cathy S Lim
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Krishnan S, Mali RS, Koehler KR, Vemula S, Chatterjee A, Ghosh J, Ramdas B, Ma P, Hashino E, Kapur R. Class I(A) PI3Kinase regulatory subunit, p85α, mediates mast cell development through regulation of growth and survival related genes. PLoS One 2012; 7:e28979. [PMID: 22238586 PMCID: PMC3251560 DOI: 10.1371/journal.pone.0028979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/18/2011] [Indexed: 12/04/2022] Open
Abstract
Stem cell factor (SCF) mediated KIT receptor activation plays a pivotal role in mast cell growth, maturation and survival. However, the signaling events downstream from KIT are poorly understood. Mast cells express multiple regulatory subunits of class 1A PI3Kinase (PI3K) including p85α, p85β, p50α, and p55α. While it is known that PI3K plays an essential role in mast cells; the precise mechanism by which these regulatory subunits impact specific mast cell functions including growth, survival and cycling are not known. We show that loss of p85α impairs the growth, survival and cycling of mast cell progenitors (MCp). To delineate the molecular mechanism (s) by which p85α regulates mast cell growth, survival and cycling, we performed microarray analyses to compare the gene expression profile of MCps derived from WT and p85α-deficient mice in response to SCF stimulation. We identified 151 unique genes exhibiting altered expression in p85α-deficient cells in response to SCF stimulation compared to WT cells. Functional categorization based on DAVID bioinformatics tool and Ingenuity Pathway Analysis (IPA) software relates the altered genes due to lack of p85α to transcription, cell cycle, cell survival, cell adhesion, cell differentiation, and signal transduction. Our results suggest that p85α is involved in mast cell development through regulation of expression of growth, survival and cell cycle related genes.
Collapse
Affiliation(s)
- Subha Krishnan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Raghuveer Singh Mali
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Karl R. Koehler
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sasidhar Vemula
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Anindya Chatterjee
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joydeep Ghosh
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Baskar Ramdas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Peilin Ma
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Eri Hashino
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|