1
|
Castillo F, Taboun O, Farag Alla J, Yankova K, Hanneman K. Imaging Climate-Related Environmental Exposures: Impact and Opportunity. Can Assoc Radiol J 2025:8465371251322762. [PMID: 40019143 DOI: 10.1177/08465371251322762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Climate change is the most important challenge of this century. Global surface temperature is continuously rising to new record highs, adversely affecting the health of the planet and humans. The purpose of this article is to review the impact of climate related environmental exposures on human health, healthcare delivery, and medical imaging and explore the potential to leverage medical imaging as a non-invasive tool to advance our understanding of climate related health effects. Radiology departments and healthcare systems must focus on building resilience to the effects of climate change while ensuring that the delivery of care is environmentally sustainable. Further research is needed to refine our understanding of the effects of climate change on human health and to forecast the expected changes in the demand for healthcare and radiology services.
Collapse
Affiliation(s)
- Felipe Castillo
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, Joint Department of Medical Imaging, Toronto, ON, Canada
| | - Omar Taboun
- Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - John Farag Alla
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Kate Hanneman
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, Joint Department of Medical Imaging, Toronto, ON, Canada
| |
Collapse
|
2
|
Raju S, Sierra P, Tejwani V, Staggers KA, McCormack M, Villareal DT, Rosas IO, Hanania NA, Wu TD. Association of Insulin Resistance With Radiographic Lung Abnormalities and Incident Lung Disease: The Framingham Offspring Study. Diabetes Care 2025; 48:143-148. [PMID: 39571139 PMCID: PMC11664196 DOI: 10.2337/dc24-1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/28/2024] [Indexed: 12/22/2024]
Abstract
OBJECTIVE Insulin resistance (IR) may be a risk factor for lung disease, but objective evidence is limited. We sought to define the relationship of longitudinal IR with radiographic imaging outcomes and examiner-identified incident lung disease in the Framingham Offspring Study. RESEARCH DESIGN AND METHODS Participants without baseline lung disease underwent repeated measurements of fasting insulin and glucose levels over an average period of 13.6 years, from which time-weighted average HOMA-IR was calculated. Each participant then underwent a cardiac gated whole-lung computed tomography scan, which was analyzed for the presence of emphysema, interstitial lung abnormalities (ILAs), and quantitative airway features. Incident lung disease was determined by a study examiner. The relationship of HOMA-IR to these outcomes was estimated in models adjusted for demographics, BMI, and lifetime smoking. RESULTS A total of 875 participants with longitudinal IR data and outcomes were identified. Their mean age was 51.5 years, and BMI was 26.7 kg/m2. HOMA-IR was temporally unstable, with a within-person SD approximately two-thirds of the between-person SD. In adjusted models, a 1 SD increase in log(HOMA-IR) z score was associated with higher odds of qualitative emphysema (odds ratio [OR] 1.33; 95% CI 1.04-1.70), ILAs (OR 1.35; 95% CI 1.05-1.74), and modest increases in airway wall thickness and wall area percentage. These radiographic findings were corroborated by a positive association of HOMA-IR with incident lung disease. CONCLUSIONS IR is associated with radiographic lung abnormalities and incident lung disease. Deeper phenotyping is necessary to define mechanisms of IR-associated lung injury.
Collapse
Affiliation(s)
- Sarath Raju
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Paula Sierra
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX
| | - Vickram Tejwani
- Department of Pulmonary Medicine, Integrated Hospital Care Institute, Cleveland Clinic, Cleveland, OH
- Department of Systems Biology and Genome Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Kristen A. Staggers
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
- Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Meredith McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Dennis T. Villareal
- Section of Endocrine, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Ivan O. Rosas
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX
| | - Tianshi David Wu
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX
- Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey VA Medical Center, Houston, TX
| |
Collapse
|
3
|
Abdalla M, Elalami R, Cho MH, O’Connor GT, Rice M, Horowitz M, Akhoundi N, Yen A, Kalhan R, Diaz AA. Airway Mucus Plugs in Community-Living Adults: A Study Protocol. JOURNAL OF CLINICAL & EXPERIMENTAL PATHOLOGY 2024; 14:492. [PMID: 39360267 PMCID: PMC11446186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Introduction Mucus pathology plays a critical role in airway diseases like Chronic Bronchitis (CB) and Chronic Obstructive Pulmonary Disease (COPD). Up to 32% of community-living persons report clinical manifestations of mucus pathology (e.g., cough and sputum production). However, airway mucus pathology has not been systematically studied in community-living individuals. In this study, we will use an objective, reproducible assessment of mucus pathology on chest Computed Tomography (CT) scans from community-living individuals participating in the Coronary Artery Risk Development in Young Adults (CARDIA) and Framingham Heart Study (FHS) cohorts. Methods and analysis We will determine the clinical relevance of CT-based mucus plugs and modifiable and genetic risk and protective factors associated with this process. We will evaluate the associations of mucus plugs with lung function, respiratory symptoms, and chronic bronchitis and examine whether 5-yr. persistent CT-based mucus plugs are associated with the decline in FEV1 and future COPD. Also, we will assess whether modifiable factors, including air pollution and marijuana smoking are associated with increased odds of CT-based mucus plugs and whether cardiorespiratory fitness is related in an opposing manner. Finally, we will determine genetic resilience/susceptibility to mucus pathology. We will use CT data from the FHS and CARDIA cohorts and genome-wide sequencing data from the TOPMed initiative to identify common and rare variants associated with CT-based mucus plugging. Ethics and dissemination The Mass General Brigham Institutional Review Board approved the study. Findings will be disseminated through peer-reviewed journals and at professional conferences. Conclusion Determine whether the presence of CT-based mucus plugs is associated with lung health impairment, including reduced FEV1, more respiratory symptoms, and asthma. Identify modifiable risk and protective factors, such as pollution, exercise, smoking, and fitness that are associated with mucus plugs.
Collapse
Affiliation(s)
- Maya Abdalla
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rim Elalami
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Michael H Cho
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - George T O’Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - Mary Rice
- Division of Pulmonary, Sleep and Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Michael Horowitz
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Neda Akhoundi
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Andrew Yen
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Ravi Kalhan
- Northwestern University Feinberg School of Medicine, 1700 W. Van Buren St, Ste. 470, 60612, Chicago, IL, USA
| | - Alejandro A. Diaz
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care, Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Abdalla M, Elalami R, Cho MH, O'Connor GT, Rice M, Horowitz M, Akhoundi N, Yen A, Kalhan R, Diaz AA. Airway Mucus Plugs in Community-Living Adults: A Study Protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307439. [PMID: 38798504 PMCID: PMC11118634 DOI: 10.1101/2024.05.15.24307439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Introduction Mucus pathology plays a critical role in airway diseases like chronic bronchitis (CB) and chronic obstructive pulmonary disease (COPD). Up to 32% of community-living persons report clinical manifestations of mucus pathology (e.g., cough and sputum production). However, airway mucus pathology has not been systematically studied in community-living individuals. In this study, we will use an objective, reproducible assessment of mucus pathology on chest computed tomography (CT) scans from community-living individuals participating in the Coronary Artery Risk Development in Young Adults (CARDIA) and Framingham Heart Study (FHS) cohorts. Methods and analysis We will determine the clinical relevance of CT-based mucus plugs and modifiable and genetic risk and protective factors associated with this process. We will evaluate the associations of mucus plugs with lung function, respiratory symptoms, and chronic bronchitis and examine whether 5-yr. persistent CT-based mucus plugs are associated with the decline in FEV1 and future COPD. Also, we will assess whether modifiable factors, including air pollution and marijuana smoking are associated with increased odds of CT-based mucus plugs and whether cardiorespiratory fitness is related in an opposing manner. Finally, we will determine genetic resilience/susceptibility to mucus pathology. We will use CT data from the FHS and CARDIA cohorts and genome-wide sequencing data from the TOPMed initiative to identify common and rare variants associated with CT-based mucus plugging. Ethics and Dissemination The Mass General Brigham Institutional Review Board approved the study. Findings will be disseminated through peer-reviewed journals and at professional conferences.
Collapse
Affiliation(s)
- Maya Abdalla
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Rim Elalami
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Michael H Cho
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - George T O'Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Mary Rice
- Division of Pulmonary, Sleep and Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael Horowitz
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Neda Akhoundi
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Andrew Yen
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Ravi Kalhan
- Northwestern University Feinberg School of Medicine, 1700 W. Van Buren St, Ste. 470, 60612, Chicago, IL, USA
| | - Alejandro A Diaz
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Liu T, Zhao C, Chen Q, Li L, Si G, Li L, Guo B. Characteristics and health risk assessment of heavy metal pollution in atmospheric particulate matter in different regions of the Yellow River Delta in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2013-2030. [PMID: 35764757 DOI: 10.1007/s10653-022-01318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
To understand the characteristics, temporal and spatial variation, and health risks of atmospheric heavy metal pollution in different areas of the YRD (Yellow River Delta), atmospheric particles samples were collected in the YRD in China during 2016-2017. A total of 10 monitoring points were chosen in different areas (industrial parks, main urban areas, and rural areas) in the YRD, heavy metals were monitored using atomic fluorescence spectrometry and graphite furnace atomic absorption spectrometry. The results showed that TSP (total suspended particulate), PM10 (particulate matter with an aerodynamic diameter less than 10 μm), and PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) contents were higher in the Kenli EDZ (economic development zone) and Kenli urban areas than those in other points. The concentration range of heavy metals in atmospheric samples at 10 points was different, with a difference of five orders of magnitude, of which the content of copper (Cu) was the highest, with the highest concentration of 4.375 μg/m3, and the content of particulate mercury (Hg) was the lowest, with the minimum concentration of 0.00001 μg/m3. Among the nine heavy metals, the contents of cadmium (Cd), lead (Pb), and Hg were higher in winter than in summer, and chromium (Cr), nickel (Ni), Cu, and manganese (Mn) were higher in summer than in winter. In addition to Hg, the contents of the other eight heavy metals in particulate matter showed a trend that urban areas and EDZs had higher concentrations than cities and towns and nature reserves, which can be attributed to industrial activities and coal-fired fuel emissions. Health risk assessment was carried out for adults and children, respectively, and the results showed that carcinogens have no obvious carcinogenic risk, but As and Cr have major potential carcinogenic risk. Among the noncarcinogenic substances, Mn has the greatest noncarcinogenic risk, and urban areas and economic development zones have the greatest risk. This study investigated the characteristics and health risk assessment of atmospheric heavy metal pollution in different areas in the YRD to supplement the research contents of atmospheric particulate heavy metals in the YRD in domestics and overseas. It is also critical to study the pollution and migration of heavy metals in China.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Changsheng Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China.
| | - Qingfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China.
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Luzhen Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Guorui Si
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Lei Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Beibei Guo
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| |
Collapse
|
6
|
Mu G, Wang B, Cheng M, Nie X, Ye Z, Zhou M, Zhou Y, Chen W. Long-term personal PM 2.5 exposure and lung function alternation: A longitudinal study in Wuhan urban adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157327. [PMID: 35839886 DOI: 10.1016/j.scitotenv.2022.157327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The effect of long-term PM2.5 exposure on lung function has not been well established. OBJECTIVES To investigate the effects of long-term personal PM2.5 exposure on lung function decline, obstructive, and restrictive ventilatory disorders. METHOD Personal PM2.5 concentrations were evaluated using an estimation model. Lung function parameters including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and peak expiratory flow (PEF) were measured in 3053 Wuhan participants from the Wuhan-Zhuhai cohort and were repeated every 3 years. Participants were classified into persistently high exposure group, persistently low exposure group and inconsistent exposure group according to the median of PM2.5 concentration of each visit. Mixed linear models with subject-specific random intercept were used to assess the association of 3-year change of lung function with personal PM2.5 exposure, and generalized linear models were used to assess the association of 6-year change of lung function with personal PM2.5 exposure. Cox regression models were applied to assess the associations of PM2.5 with obstructive and restrictive ventilatory disorders. RESULTS The medians of personal PM2.5 concentrations at baseline and two follow-ups were 153.18, 209.57 and 83.78 μg/m3, respectively. Compared with participants in the persistently low exposure group, participants in the persistently high exposure group showed a 2.99 % (95 % CI: 0.91, 5.08), a 380.15 mL/s (95 % CI: 32.82, 727.48) and a 5.98 % (95 % CI: 0.84, 11.11) additional decline in FEV1/FVC, PEF and PEFpred after 6 years, respectively. Stratified analyses showed that age, gender, body mass index, smoking status and drinking status had no significant modification effect on the associations. The associations of PM2.5 exposure with obstructive and restrictive ventilatory disorders were not significant, except for a positive association between persistently high PM2.5 exposure and restrictive ventilatory disorder among ever drinkers. CONCLUSION Long-term high PM2.5 exposure was associated with FEV1/FVC, PEF and PEFpred declines.
Collapse
Affiliation(s)
- Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Data Center, Medical Affairs Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Montresor-López JA, Reading SR, Yanosky JD, Mittleman MA, Bell RA, Crume TL, Dabelea D, Dolan L, D'Agostino RB, Marcovina SM, Pihoker C, Reynolds K, Urbina E, Liese AD, Quirós-Alcalá L, Smith JC, Bueno de Mesquita PJ, Puett RC. The relationship between traffic-related air pollution exposures and allostatic load score among youth with type 1 diabetes in the SEARCH cohort. ENVIRONMENTAL RESEARCH 2021; 197:111075. [PMID: 33798519 PMCID: PMC8187288 DOI: 10.1016/j.envres.2021.111075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE We investigated the effects of chronic exposures to particulate and traffic-related air pollution on allostatic load (AL) score, a marker of cumulative biological risk, among youth with type 1 diabetes. RESEARCH DESIGN AND METHODS Participants were drawn from five clinical sites of the SEARCH for Diabetes in Youth (SEARCH) study (n = 2338). Baseline questionnaires, anthropometric measures, and a fasting blood test were taken at a clinic visit between 2001 and 2005. AL was operationalized using 10 biomarkers reflecting cardiovascular, metabolic, and inflammatory risk. Annual residential exposures to PM2.5 and proximity to heavily-trafficked major roadways were estimated for each participant. Poisson regression models adjusted for sociodemographic and lifestyle factors were conducted for each exposure. RESULTS No significant associations were observed between exposures to PM2.5 or proximity to traffic and AL score, however analyses were suggestive of effect modification by race for residential distance to heavily-trafficked major roadways (p = 0.02). In stratified analyses, residing <100, 100-<200 and 200-<400 m compared to 400 m or more from heavily-trafficked major roadways was associated with 11%, 26% and 14% increases in AL score, respectively (95% CIs: -4, 29; 9, 45; -1, 30) for non-white participants compared to 6%, -2%, and -2% changes (95% CIs: -2, 15; -10, 7; -8, 6) for white participants. CONCLUSIONS Among this population of youth with type 1 diabetes, we did not observe consistent relationships between chronic exposures to particulate and traffic-related air pollution and changes in AL score, however associations for traffic-related pollution exposures may differ by race/ethnicity and warrant further examination.
Collapse
Affiliation(s)
- Jessica A Montresor-López
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, 255 Valley Dr., Suite 2234, College Park, MD, 20742, USA
| | - Stephanie R Reading
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S Los Robles Ave #2, Pasadena, CA, 91101, USA
| | - Jeffrey D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, 700 HMC Crescent Road, Hershey, PA, 17033, USA
| | - Murray A Mittleman
- Department of Epidemiology, TH Chan Harvard School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| | - Ronny A Bell
- Department of Public Health, Brody School of Medicine, East Carolina University, 115 Heart Dr., Greenville, NC, 27834, USA
| | - Tessa L Crume
- Department of Epidemiology, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Center, 13001 E. 17th Place, Mail Stop B119, Fitzsimons Building, Room W3110, Aurora, CO, 80045, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Center, 13001 E. 17th Place, Mail Stop B119, Fitzsimons Building, Room W3110, Aurora, CO, 80045, USA
| | - Lawrence Dolan
- Division of Pediatric Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, 27101, USA
| | - Santica M Marcovina
- Division of Metabolism, Endocrinology and Nutrition, Northwest Lipid Metabolism and Diabetes Research Laboratories, 401 Queen Anne Avenue North UW, Mailbox 359119, Seattle, WA, 98109, USA
| | - Catherine Pihoker
- Department of Pediatrics, University of Washington, 4245 Roosevelt Way NE 4th Floor, Seattle, WA, 98105, USA
| | - Kristi Reynolds
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S Los Robles Ave #2, Pasadena, CA, 91101, USA
| | - Elaine Urbina
- Heart Institute, Cincinnati Children's Hospital Medical Center, C4 Clinic, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Angela D Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1 461, 915 Greene St, Columbia, SC, 29208, USA
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Room E6616, Baltimore, MD, 21205, USA
| | - J Carson Smith
- Department of Kinesiology, School of Public Health, University of Maryland, 255 Valley Dr., Suite 2234, College Park, MD, 20742, USA
| | - P Jacob Bueno de Mesquita
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, 255 Valley Dr., Suite 2234, College Park, MD, 20742, USA
| | - Robin C Puett
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, 255 Valley Dr., Suite 2234, College Park, MD, 20742, USA.
| |
Collapse
|
8
|
Ambient air pollution exposure and radiographic pulmonary vascular volumes. Environ Epidemiol 2021; 5:e143. [PMID: 33870015 PMCID: PMC8043731 DOI: 10.1097/ee9.0000000000000143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Supplemental Digital Content is available in the text. Exposure to higher levels of ambient air pollution is a known risk factor for cardiovascular disease but long-term effects of pollution exposure on the pulmonary vessels are unknown.
Collapse
|
9
|
Synn AJ, Li W, Hunninghake GM, Washko GR, San José Estépar R, O'Connor GT, Kholdani CA, Hallowell RW, Bankier AA, Mittleman MA, Rice MB. Vascular Pruning on CT and Interstitial Lung Abnormalities in the Framingham Heart Study. Chest 2021; 159:663-672. [PMID: 32798523 PMCID: PMC7856535 DOI: 10.1016/j.chest.2020.07.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/17/2020] [Accepted: 07/31/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Pulmonary vascular disease is associated with poor outcomes in individuals affected by interstitial lung disease. The pulmonary vessels can be quantified with noninvasive imaging, but whether radiographic indicators of vasculopathy are associated with early interstitial changes is not known. RESEARCH QUESTION Are pulmonary vascular volumes, quantified from CT scans, associated with interstitial lung abnormalities (ILA) in a community-based sample with a low burden of lung disease? STUDY DESIGN AND METHODS In 2,386 participants of the Framingham Heart Study, we used CT imaging to calculate pulmonary vascular volumes, including the small vessel fraction (a surrogate of vascular pruning). We constructed multivariable logistic regression models to investigate associations of vascular volumes with ILA, progression of ILA, and restrictive pattern on spirometry. In secondary analyses, we additionally adjusted for diffusing capacity and emphysema, and performed a sensitivity analysis restricted to participants with normal FVC and diffusing capacity. RESULTS In adjusted models, we found that lower pulmonary vascular volumes on CT were associated with greater odds of ILA, antecedent ILA progression, and restrictive pattern on spirometry. For example, each SD lower small vessel fraction was associated with 1.81-fold greater odds of ILA (95% CI, 1.41-2.31; P < .0001), and 1.63-fold greater odds of restriction on spirometry (95% CI, 1.18-2.24; P = .003). Similar patterns were seen after adjustment for diffusing capacity for carbon monoxide, emphysema, and among participants with normal lung function. INTERPRETATION In this cohort of community-dwelling adults not selected on the basis of lung disease, more severe vascular pruning on CT was associated with greater odds of ILA, ILA progression, and restrictive pattern on spirometry. Pruning on CT may be an indicator of early pulmonary vasculopathy associated with interstitial lung disease.
Collapse
Affiliation(s)
- Andrew J Synn
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Wenyuan Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Gary M Hunninghake
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - George R Washko
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; The NHLBI's Framingham Heart Study, Framingham, MA
| | - Raúl San José Estépar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - George T O'Connor
- The NHLBI's Framingham Heart Study, Framingham, MA; Pulmonary Center, Boston University School of Medicine, Boston, MA
| | - Cyrus A Kholdani
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Robert W Hallowell
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Alexander A Bankier
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Murray A Mittleman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Mary B Rice
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Kwon SO, Hong SH, Han YJ, Bak SH, Kim J, Lee MK, London SJ, Kim WJ, Kim SY. Long-term exposure to PM 10 and NO 2 in relation to lung function and imaging phenotypes in a COPD cohort. Respir Res 2020; 21:247. [PMID: 32967681 PMCID: PMC7513297 DOI: 10.1186/s12931-020-01514-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Ambient air pollution can contribute to the development and exacerbation of COPD. However, the influence of air pollution on objective COPD phenotypes, especially from imaging, is not well studied. We investigated the influence of long-term exposure to air pollution on lung function and quantitative imaging measurements in a Korean cohort of participants with and without COPD diagnosis. METHODS Study participants (N = 457 including 296 COPD cases) were obtained from the COPD in Dusty Areas (CODA) cohort. Annual average concentrations of particulate matter less than or equal to 10 μm in diameter (PM10) and nitrogen dioxide (NO2) were estimated at the participants' residential addresses using a spatial air pollution prediction model. All the participants underwent volumetric computerized tomography (CT) and spirometry measurements and completed survey questionnaires. We examined the associations of PM10 and NO2 with FVC, FEV1, emphysema index, and wall area percent, using linear regression models adjusting for age, gender, education, smoking, height, weight, and COPD medication. RESULTS The age of study participants averaged 71.7 years. An interquartile range difference in annual PM10 exposure of 4.4 μg/m3 was associated with 0.13 L lower FVC (95% confidence interval (CI), - 0.22- -0.05, p = 0.003). Emphysema index (mean = 6.36) was higher by 1.13 (95% CI, 0.25-2.02, p = 0.012) and wall area percent (mean = 68.8) was higher by 1.04 (95% CI, 0.27-1.80, p = 0.008). Associations with imaging phenotypes were not observed with NO2. CONCLUSIONS Long-term exposure to PM10 correlated with both lung function and COPD-relevant imaging phenotypes in a Korean cohort.
Collapse
Affiliation(s)
- Sung Ok Kwon
- Biomedical Research Institutue, Kangwon National University Hospital, Chuncheon, South Korea
| | - Seok Ho Hong
- Department of Internal Medicine and Environemntal Health Center, Kangwon National University, Chuncheon, South Korea
| | - Young-Ji Han
- Department of Environmental Science, Kangwon National University, Chuncheon, South Korea
| | - So Hyeon Bak
- Department of Radiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Junghyun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Medical Center, Seoul, South Korea
| | - Mi Kyeong Lee
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC USA
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC USA
| | - Woo Jin Kim
- Department of Internal Medicine and Environemntal Health Center, Kangwon National University, Chuncheon, South Korea
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do South Korea
| |
Collapse
|
11
|
Araki T, Washko GR, Schiebler ML, O'Connor GT, Hatabu H. The Framingham Heart Study: Populational CT-based phenotyping in the lungs and mediastinum. Eur J Radiol Open 2020; 7:100260. [PMID: 32984450 PMCID: PMC7495061 DOI: 10.1016/j.ejro.2020.100260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 01/22/2023] Open
Abstract
The Framingham Heart Study (FHS) is one of the largest and established longitudinal populational cohorts. CT cohorts of the FHS since 2002 provided a unique opportunity to assess non-cardiac thoracic imaging findings. This review deals with image-based phenotyping studies from recent major publications regarding interstitial lung abnormalities (ILAs), pulmonary cysts, emphysema, pulmonary nodules, pleural plaques, normal spectrum of the thymus, and anterior mediastinal masses, concluding with the discussion of future directions of FHS CT cohorts studies in the era of radiomics and artificial intelligence.
Collapse
Affiliation(s)
- Tetsuro Araki
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George R Washko
- Department of Pulmonology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark L Schiebler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Hiroto Hatabu
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Cigarette Smoke Exposure and Radiographic Pulmonary Vascular Morphology in the Framingham Heart Study. Ann Am Thorac Soc 2020; 16:698-706. [PMID: 30714821 DOI: 10.1513/annalsats.201811-795oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rationale: Cigarette smoke exposure is a risk factor for many lung diseases, and histologic studies suggest that tobacco-related vasoconstriction and vessel loss plays a role in the development of emphysema. However, it remains unclear how tobacco affects the pulmonary vasculature in general populations with a typical range of tobacco exposure, and whether these changes are detectable by radiographic methods. Objectives: To determine whether tobacco exposure in a generally healthy population manifests as lower pulmonary blood vessel volumes and vascular pruning on imaging. Methods: A total of 2,410 Framingham Heart Study participants with demographic data and smoking history underwent volumetric whole-lung computed tomography from 2008 to 2011. Automated algorithms calculated the total blood volume of all intrapulmonary vessels (TBV), smaller peripheral vessels (defined as cross-sectional area <5 mm2 [BV5]), and the relative fraction of small vessels (BV5/TBV). Tobacco exposure was assessed as smoking status, cumulative pack-years, and second-hand exposure. We constructed multivariable linear regression models to evaluate associations of cigarette exposure and pulmonary blood vessel volume measures, adjusting for demographic covariates, including age, sex, height, weight, education, occupation, and median neighborhood income. Results: All metrics of tobacco exposure (including smoking status, pack-years, and second-hand exposure) were consistently associated with higher absolute pulmonary blood vessel volume, higher small vessel volume, and/or higher small vessel fraction. For example, ever-smokers had a 4.6 ml higher TBV (95% confidence interval [CI] = 2.9-6.3, P < 0.001), 2.1 ml higher BV5 (95% CI = 1.3-2.9, P < 0.001), and 0.28 percentage-point-higher BV5/TBV (95% CI = 0.03-0.52, P = 0.03) compared with never-smokers. These associations remained significant after adjustment for percent predicted forced expiratory volume in 1 second, cardiovascular comorbidities, and did not differ based on presence or absence of airflow obstruction. Conclusions: Using computed tomographic imaging, we found that cigarette exposure was associated with higher pulmonary blood vessel volumes, especially in the smaller peripheral vessels. Although, histologically, tobacco-related vasculopathy is characterized by vessel narrowing and loss, our results suggest that radiographic vascular pruning may not be a surrogate of these pathologic changes.
Collapse
|
13
|
Alghamdi SA. Effect of Nigella sativa and Foeniculum vulgare seeds extracts on male mice exposed to carbendazim. Saudi J Biol Sci 2020; 27:2521-2530. [PMID: 32994708 PMCID: PMC7499112 DOI: 10.1016/j.sjbs.2020.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/06/2023] Open
Abstract
The increasing prevalence of environmental pollutants such as pesticides is a major global problem that affects living organisms. Exposure to environmental pollutants remains a major source of health risk throughout the world. The potential health benefits of various medicinal plants and natural products in relation to protect various diseases are currently receiving considerable attention. A current approach is to develop a new biological compound from natural products that inhibits pain. Ethnopharmacological surveys have been found to be one of the most reliable tools for the discovery of the natural and semi-synthetic drug. The present study was performed to investigate the hematological and biochemical changes induced by carbendazim (CBZ) and the potential protective effect of seeds extracts of Nigella sativa (NSSE) and Foeniculum vulgare (FVSE) against CBZ toxicity in male mice. Mice were distributed into 6 groups. Mice of group 1 were served as control. Group 2 was exposed to CBZ. Group 3 was supplemented with NSSE and exposed to CBZ. Group 4 was treated with FVSE and CBZ. Normal mice of group 5 and 6 were subjected to NSSE and FVSE respectively. Body weight gain was significantly decreased in mice of group 2. In mice of group 2, significant declines of RBC, HB, Hct, WBC, total protein, FSH, LH, testosterone, T4, T3, CAT and SOD were observed. Moreover, the levels of ALT, AST, ALP, total bilirubin, creatinine, BUN, uric acid, glucose, cholesterol, CK, LDH, MDA and GSH were significantly enhanced. Treatment with NSSE and FVSE showed attenuation effects against CBZ induced hematological and biochemical changes. The results suggest that the attenuation effects of NSSE and FVSE attributed to their antioxidant properties.
Collapse
Affiliation(s)
- Sameera A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Cedillo-Pozos A, Ternovoy SK, Roldan-Valadez E. Imaging methods used in the assessment of environmental disease networks: a brief review for clinicians. Insights Imaging 2020; 11:18. [PMID: 32034587 PMCID: PMC7007482 DOI: 10.1186/s13244-019-0814-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Across the globe, diseases secondary to environmental exposures have been described, and it was also found that existing diseases have been modified by exposure to environmental chemicals or an environmental factor that has been found in their pathogenesis. The Institute of Medicine has shared a permanent concern related to the nations environmental health capacity since 1988. MAIN BODY Contemporary imaging methods in the last 15 years started reporting alterations in different human systems such as the central nervous system, cardiovascular system and pulmonary system among others; evidence suggests the existence of a human environmental disease network. The primary anatomic regions, affected by environmental diseases, recently assessed with imaging methods include Brain (lead exposure, cerebral stroke, pesticide neurotoxicity), uses MRI, DTI, carotid ultrasonography and MRS; Lungs (smoke inhalation, organophosphates poisoning) are mainly assessed with radiography; Gastrointestinal system (chronic inflammatory bowel disease), recent studies have reported the use of aortic ultrasound; Heart (myocardial infarction), its link to environmental diseased has been proved with carotid ultrasound; and Arteries (artery hypertension), the impairment of aortic mechanical properties has been revealed with the use of aortic and brachial ultrasound. CONCLUSIONS Environmental epidemiology has revealed that several organs and systems in the human body are targets of air pollutants. Current imaging methods that can assess the deleterious effects of pollutants includes a whole spectrum: radiography, US, CT and MRI. Future studies will help to reveal additional links among environmental disease networks.
Collapse
Affiliation(s)
- Aime Cedillo-Pozos
- Directorate of Research, Hospital General de Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Sergey K Ternovoy
- Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- A.L. Myasnikov Research Institute of Clinical Cardiology of National Medical Research Center of Cardiology of the Ministry of Health of Russia, Moscow, Russia
| | - Ernesto Roldan-Valadez
- Directorate of Research, Hospital General de Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico.
- Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
15
|
Synn AJ, Li W, San José Estépar R, Zhang C, Washko GR, O'Connor GT, Araki T, Hatabu H, Bankier AA, Mittleman MA, Rice MB. Radiographic pulmonary vessel volume, lung function and airways disease in the Framingham Heart Study. Eur Respir J 2019; 54:13993003.00408-2019. [PMID: 31248956 DOI: 10.1183/13993003.00408-2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/24/2019] [Indexed: 01/24/2023]
Abstract
Radiographic abnormalities of the pulmonary vessels, such as vascular pruning, are common in advanced airways disease, but it is unknown if pulmonary vascular volumes are related to measures of lung health and airways disease in healthier populations.In 2388 participants of the Framingham Heart Study computed tomography (CT) sub-study, we calculated total vessel volumes and the small vessel fraction using automated CT image analysis. We evaluated associations with measures of lung function, airflow obstruction on spirometry and emphysema on CT. We further tested if associations of vascular volumes with lung function were present among those with normal forced expiratory volume in 1 s and forced vital capacity.In fully adjusted linear and logistic models, we found that lower total and small vessel volumes were consistently associated with worse measures of lung health, including lower spirometric volumes, lower diffusing capacity and/or higher odds of airflow obstruction. For example, each standard deviation lower small vessel fraction (indicating more severe pruning) was associated with a 37% greater odds of obstruction (OR 1.37, 95% CI 1.11-1.71, p=0.004). A similar pattern was observed in the subset of participants with normal spirometry.Lower total and small vessel pulmonary vascular volumes were associated with poorer measures of lung health and/or greater odds of airflow obstruction in this cohort of generally healthy adults without high burdens of smoking or airways disease. Our findings suggest that quantitative CT assessment may detect subtle pulmonary vasculopathy that occurs in the setting of subclinical and early pulmonary and airways pathology.
Collapse
Affiliation(s)
- Andrew J Synn
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA .,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenyuan Li
- Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Raúl San José Estépar
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chunyi Zhang
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,The NHLBI's Framingham Heart Study, Framingham, MA, USA
| | - George T O'Connor
- The NHLBI's Framingham Heart Study, Framingham, MA, USA.,Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Tetsuro Araki
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroto Hatabu
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,The NHLBI's Framingham Heart Study, Framingham, MA, USA
| | - Alexander A Bankier
- Dept of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Murray A Mittleman
- Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mary B Rice
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Rice MB, Li W, Schwartz J, Di Q, Kloog I, Koutrakis P, Gold DR, Hallowell RW, Zhang C, O'Connor G, Washko GR, Hunninghake GM, Mittleman MA. Ambient air pollution exposure and risk and progression of interstitial lung abnormalities: the Framingham Heart Study. Thorax 2019; 74:1063-1069. [PMID: 31391318 DOI: 10.1136/thoraxjnl-2018-212877] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/10/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ambient air pollution accelerates lung function decline among adults, however, there are limited data about its role in the development and progression of early stages of interstitial lung disease. AIMS To evaluate associations of long-term exposure to traffic and ambient pollutants with odds of interstitial lung abnormalities (ILA) and progression of ILA on repeated imaging. METHODS We ascertained ILA on chest CT obtained from 2618 Framingham participants from 2008 to 2011. Among 1846 participants who also completed a cardiac CT from 2002 to 2005, we determined interval ILA progression. We assigned distance from home address to major roadway, and the 5-year average of fine particulate matter (PM2.5), elemental carbon (EC, a traffic-related PM2.5 constituent) and ozone using spatio-temporal prediction models. Logistic regression models were adjusted for age, sex, body mass index, smoking status, packyears of smoking, household tobacco exposure, neighbourhood household value, primary occupation, cohort and date. RESULTS Among 2618 participants with a chest CT, 176 (6.7%) had ILA, 1361 (52.0%) had no ILA, and the remainder were indeterminate. Among 1846 with a preceding cardiac CT, 118 (6.4%) had ILA with interval progression. In adjusted logistic regression models, an IQR difference in 5-year EC exposure of 0.14 µg/m3 was associated with a 1.27 (95% CI 1.04 to 1.55) times greater odds of ILA, and a 1.33 (95% CI 1.00 to 1.76) times greater odds of ILA progression. PM2.5 and O3 were not associated with ILA or ILA progression. CONCLUSIONS Exposure to EC may increase risk of progressive ILA, however, associations with other measures of ambient pollution were inconclusive.
Collapse
Affiliation(s)
- Mary B Rice
- Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenyuan Li
- Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Joel Schwartz
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Qian Di
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Itai Kloog
- Geography and Environmental Development, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Petros Koutrakis
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Diane R Gold
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Robert W Hallowell
- Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Chunyi Zhang
- Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - George O'Connor
- Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Framingham Heart Study, Framingham, Massachusetts, USA
| | - George R Washko
- Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gary M Hunninghake
- Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Murray A Mittleman
- Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Aaron CP, Hoffman EA, Kawut SM, Austin JH, Budoff M, Michos ED, Stukovsky KH, Sack C, Szpiro AA, Watson KD, Kaufman JD, Barr RG. Ambient air pollution and pulmonary vascular volume on computed tomography: the MESA Air Pollution and Lung cohort studies. Eur Respir J 2019; 53:1802116. [PMID: 31167881 PMCID: PMC6910868 DOI: 10.1183/13993003.02116-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Air pollution alters small pulmonary vessels in animal models. We hypothesised that long-term ambient air pollution exposure would be associated with differences in pulmonary vascular volumes in a population-based study. METHODS The Multi-Ethnic Study of Atherosclerosis recruited adults in six US cities. Personalised long-term exposures to ambient black carbon, nitrogen dioxide (NO2), oxides of nitrogen (NO x ), particulate matter with a 50% cut-off aerodynamic diameter of <2.5 μm (PM2.5) and ozone were estimated using spatiotemporal models. In 2010-2012, total pulmonary vascular volume was measured as the volume of detectable pulmonary arteries and veins, including vessel walls and luminal blood volume, on noncontrast chest computed tomography (TPVVCT). Peripheral TPVVCT was limited to the peripheral 2 cm to isolate smaller vessels. Linear regression adjusted for demographics, anthropometrics, smoking, second-hand smoke, renal function and scanner manufacturer. RESULTS The mean±sd age of the 3023 participants was 69.3±9.3 years; 46% were never-smokers. Mean exposures were 0.80 μg·m-3 black carbon, 14.6 ppb NO2 and 11.0 μg·m-3 ambient PM2.5. Mean±sd peripheral TPVVCT was 79.2±18.2 cm3 and TPVVCT was 129.3±35.1 cm3. Greater black carbon exposure was associated with a larger peripheral TPVVCT, including after adjustment for city (mean difference 0.41 (95% CI 0.03-0.79) cm3 per interquartile range; p=0.036). Associations for peripheral TPVVCT with NO2 were similar but nonsignificant after city adjustment, while those for PM2.5 were of similar magnitude but nonsignificant after full adjustment. There were no associations for NO x or ozone, or between any pollutant and TPVVCT. CONCLUSIONS Long-term black carbon exposure was associated with a larger peripheral TPVVCT, suggesting diesel exhaust may contribute to remodelling of small pulmonary vessels in the general population.
Collapse
Affiliation(s)
- Carrie P. Aaron
- Dept of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Steven M. Kawut
- Depts of Medicine and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John H.M. Austin
- Dept of Radiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Matthew Budoff
- Dept of Medicine, University of California, Los Angeles, CA, USA
| | - Erin D. Michos
- Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Coralynn Sack
- Dept of Medicine, University of Washington, Seattle, WA, USA
| | - Adam A. Szpiro
- Dept of Biostatistics, University of Washington, Seattle, WA, USA
| | - Karol D. Watson
- Dept of Medicine, University of California, Los Angeles, CA, USA
| | - Joel D. Kaufman
- Dept of Medicine, University of Washington, Seattle, WA, USA
- Dept of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Dept of Epidemiology, University of Washington, Seattle, WA, USA
| | - R. Graham Barr
- Dept of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Dept of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
18
|
Paulin LM, Smith BM, Koch A, Han M, Hoffman EA, Martinez C, Ejike C, Blanc PD, Rous J, Barr RG, Peters SP, Paine R, Pirozzi C, Cooper CB, Dransfield MT, Comellas AP, Kanner RE, Drummond MB, Putcha N, Hansel NN. Occupational Exposures and Computed Tomographic Imaging Characteristics in the SPIROMICS Cohort. Ann Am Thorac Soc 2018; 15:1411-1419. [PMID: 30339479 PMCID: PMC6322018 DOI: 10.1513/annalsats.201802-150oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Quantitative computed tomographic (CT) imaging can aid in chronic obstructive pulmonary disease (COPD) phenotyping. Few studies have identified whether occupational exposures are associated with distinct CT imaging characteristics. OBJECTIVES To examine the association between occupational exposures and CT-measured patterns of disease in the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study). METHODS Participants underwent whole-lung multidetector helical CT at full inspiration and expiration. The association between occupational exposures (self-report of exposure to vapors, gas, dust, or fumes [VGDF] at the longest job) and CT metrics of emphysema (percentage of total voxels < -950 Hounsfield units at total lung capacity), large airways (wall area percent [WAP] and square-root wall area of a single hypothetical airway with an internal perimeter of 10 mm [Pi10]), and small airways (percent air trapping [percent total voxels < -856 Hounsfield units at residual volume] and parametric response mapping of functional small-airway abnormality [PRM fSAD]) were explored by multivariate linear regression, and for central airway measures by generalized estimating equations to account for multiple measurements per individual. Models were adjusted for age, sex, race, current smoking status, pack-years of smoking, body mass index, and site. Airway measurements were additionally adjusted for total lung volume. RESULTS A total of 2,736 participants with available occupational exposure data (n = 927 without airflow obstruction and 1,809 with COPD) were included. The mean age was 64 years, 78% were white, and 54% were male. Forty percent reported current smoking, and mean (SD) pack-years was 49.3 (26.9). Mean (SD) post-bronchodilator forced expiratory volume in 1 second (FEV1) was 73 (27) % predicted. Forty-nine percent reported VGDF exposure. VGDF exposure was associated with higher emphysema (β = 1.17; 95% confidence interval [CI], 0.44-1.89), greater large-airway disease as measured by WAP (segmental β = 0.487 [95% CI, 0.320-0.654]; subsegmental β = 0.400 [95% CI, 0.275-0.527]) and Pi10 (β = 0.008; 95% CI, 0.002-0.014), and greater small-airway disease was measured by air trapping (β = 2.60; 95% CI, 1.11-4.09) and was nominally associated with an increase in PRM fSAD (β = 1.45; 95% CI, 0.31-2.60). These findings correspond to higher odds of percent emphysema, WAP, and air trapping above the 95th percentile of measurements in nonsmoking control subjects in individuals reporting VGDF exposure. CONCLUSIONS In an analysis of SPIROMICS participants, we found that VGDF exposure in the longest job was associated with an increase in emphysema, and in large- and small-airway disease, as measured by quantitative CT imaging.
Collapse
Affiliation(s)
- Laura M. Paulin
- Department of Medicine, Dartmouth-Hitchcock Medical Center/Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Benjamin M. Smith
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
- Translational Research in Respiratory Diseases Program, Department of Medicine, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Abby Koch
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - MeiLan Han
- Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Carlos Martinez
- Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Chinedu Ejike
- Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Paul D. Blanc
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Jennifer Rous
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Stephen P. Peters
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Robert Paine
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Cheryl Pirozzi
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Christopher B. Cooper
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | | | | | | | - M. Brad Drummond
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nirupama Putcha
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Nadia N. Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
19
|
Landrigan PJ, Fuller R, Hu H, Caravanos J, Cropper ML, Hanrahan D, Sandilya K, Chiles TC, Kumar P, Suk WA. Pollution and Global Health – An Agenda for Prevention. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:084501. [PMID: 30118434 PMCID: PMC6108842 DOI: 10.1289/ehp3141] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/22/2018] [Accepted: 06/08/2018] [Indexed: 05/25/2023]
Abstract
Pollution is a major, overlooked, global health threat that was responsible in 2015 for an estimated 9 million deaths and great economic losses. To end neglect of pollution and advance prevention of pollution-related disease, we formed the Lancet Commission on Pollution and Health. Despite recent gains in understanding of pollution and its health effects, this Commission noted that large gaps in knowledge remain. To close these gaps and guide prevention, the Commission made research recommendations and proposed creation of a Global Observatory on Pollution and Health. We posit that successful pollution research will be translational and based on transdisciplinary collaborations among exposure science, epidemiology, data science, engineering, health policy, and economics. We envision that the Global Observatory on Pollution and Health will be a multinational consortium based at Boston College and the Harvard T.H. Chan School of Public Health that will aggregate, geocode, and archive data on pollution and pollution-related disease; analyze these data to discern trends, geographic patterns, and opportunities for intervention; and make its findings available to policymakers, the media, and the global public to catalyze research, inform policy, and assist cities and countries to target pollution, track progress, and save lives. https://doi.org/10.1289/EHP3141.
Collapse
Affiliation(s)
- Philip J Landrigan
- Arnhold Institute for Global Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Howard Hu
- Department of Occupational & Environmental Health University of Washington School of Public Health, Seattle, WA, USA
| | - Jack Caravanos
- Department of Environmental Public Health Sciences, College of Global Public Health, New York University, New York, USA
| | - Maureen L Cropper
- Department of Economics, University of Maryland, College Park, Maryland, USA
| | | | | | - Thomas C Chiles
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Pushpam Kumar
- Department of Environmental Economics, United Nations Environment, Nairobi, Kenya
| | - William A Suk
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|