1
|
Huh JY, Kim H, Park S, Ra SW, Kang SY, Jung BH, Kim M, Lee SM, Lee SP, Lamichhane DK, Park YJ, Lee SJ, Lee JS, Oh YM, Kim HC, Lee SW. Seasonal effect of PM 2.5 exposure in patients with COPD: a multicentre panel study. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1244-1252. [PMID: 39744880 DOI: 10.1039/d4em00376d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Background: Exposure to particulate matter <2.5 μm (PM2.5) is linked to chronic obstructive pulmonary disease (COPD), but most studies lack individual PM2.5 measurements. Seasonal variation and their impact on clinical outcomes remain understudied. Objective: This study investigated the impact of PM2.5 concentrations on COPD-related clinical outcomes and their seasonal changes. Methods: A multicentre panel study enrolled 105 COPD patients (age range: 46-82) from July 2019 to August 2020. Their mean forced expiratory volume in 1 second after bronchodilation was 53.9%. Individual PM2.5 levels were monitored continuously with indoor measurements at residences and outdoor data from the National Ambient Air Quality Monitoring Information System. Clinical parameters, including pulmonary function tests, symptom questionnaires (CAT and SGRQ-C), and impulse oscillometry (IOS), were assessed every three months over the course of one year. Statistical analysis was conducted using a linear mixed-effect model to account for repeated measurements and control for confounding variables, including age, sex, smoking status and socioeconomic status. Results: The mean indoor and outdoor PM2.5 concentrations were 16.2 ± 8.4 μg m-3 and 17.2 ± 5.0 μg m-3, respectively. Winter had the highest PM2.5 concentrations (indoor, 18.8 ± 11.7 μg m3; outdoor, 22.5 ± 5.0 μg m-3). Higher PM2.5 concentrations significantly correlated with poorer St. George's Respiratory Questionnaire for COPD (SGRQ-C) scores and increased acute exacerbations, particularly in winter. Patients of lower socioeconomic status were more vulnerable. Increased PM2.5 concentrations were also associated with amplified small airway resistance (R5-R20). Conclusions: PM2.5 concentration changes are positively correlated with poorer SGRQ-C scores and increased acute exacerbations in COPD patients with significant seasonal variations, especially in winter.
Collapse
Affiliation(s)
- Jin-Young Huh
- Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul 05505, South Korea.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, South Korea
| | - Hajeong Kim
- Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul 05505, South Korea.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Shinhee Park
- Department of Pulmonary, Allergy and Critical Care Medicine, Gangneung Asan Hospital, Gangneung, South Korea
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Seung Won Ra
- Division of Pulmonology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Sung-Yoon Kang
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Bock Hyun Jung
- Department of Pulmonary, Allergy and Critical Care Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - Mihye Kim
- Department of Pulmonary, Allergy and Critical Care Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - Sang Min Lee
- Division of Respiratory Disease and Allergy, Department of Internal Medicine, Dankook University College of Medicine, Cheonan, South Korea
| | - Sang Pyo Lee
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Dirga Kumar Lamichhane
- Department of Occupational and Environmental Medicine, College of Medicine, Inha University, Incheon, South Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul 05505, South Korea.
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul 05505, South Korea.
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, College of Medicine, Inha University, Incheon, South Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul 05505, South Korea.
| |
Collapse
|
2
|
Lane K, Daouda M, Yuan A, Olson C, Smalls-Mantey L, Siegel E, Hernández D. Readiness for a clean energy future: Prevalence, perceptions, and barriers to adoption of electric stoves and solar panels in New York City. ENERGY POLICY 2024; 194:114301. [PMID: 39463762 PMCID: PMC11507541 DOI: 10.1016/j.enpol.2024.114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Adoption of electric stoves and rooftop solar can reduce fossil-fuel reliance and improve health by decreasing indoor air pollution and alleviating energy insecurity. This study assessed prevalence and perceptions of these clean-energy technologies to increase adoption in New York City (NYC). A representative survey of 1,950 NYC adults was conducted from February 28 to April 1, 2022. Fourteen percent of people had an electric stove; 86% had gas stoves. Black, Latino/a, and lower-income residents were more likely to have electric stoves than White and higher-income residents. Only 14% of residents were interested in switching from gas to electric stoves. Of the 71% with gas stoves uninterested in switching, nearly half (45%) preferred gas cooking, particularly among White and higher-income residents, indicating a large opportunity to shift preferences. About 5% used solar for their home or building; another 77% were interested in solar. Of the 18% uninterested in solar, reasons included lack of agency, confusion about operation, and costs. Education about health and cost benefits, induction technology, how to transition, available subsidies, and other efforts to reduce adoption barriers can support clean technology uptake. Residential clean energy metrics should be tracked regularly to ensure that technology adoption proceeds equitably.
Collapse
Affiliation(s)
- Kathryn Lane
- Bureau of Environmental Surveillance & Policy, New York City Department of Mental Health & Hygiene
| | - Misbath Daouda
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley
| | - Ariel Yuan
- Bureau of Environmental Surveillance & Policy, New York City Department of Mental Health & Hygiene
| | - Carolyn Olson
- Bureau of Environmental Surveillance & Policy, New York City Department of Mental Health & Hygiene
| | - Lauren Smalls-Mantey
- Bureau of Environmental Surveillance & Policy, New York City Department of Mental Health & Hygiene
| | - Eva Siegel
- Columbia University Mailman School of Public Health
| | - Diana Hernández
- Department of Sociomedical Sciences, Mailman School of Public Health and Center on Global Energy Policy, School of International and Public Affairs, Columbia University
| |
Collapse
|
3
|
Ni W, Stafoggia M, Zhang S, Ljungman P, Breitner S, Bont JD, Jernberg T, Atar D, Agewall S, Schneider A. Short-Term Effects of Lower Air Temperature and Cold Spells on Myocardial Infarction Hospitalizations in Sweden. J Am Coll Cardiol 2024; 84:1149-1159. [PMID: 39230547 DOI: 10.1016/j.jacc.2024.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Lower air temperature and cold spells have been associated with an increased risk of various diseases. However, the short-term effect of lower air temperature and cold spells on myocardial infarction (MI) remains incompletely understood. OBJECTIVES The purpose of this study was to investigate the short-term effects of lower air temperature and cold spells on the risk of hospitalization for MI in Sweden. METHODS This population-based nationwide study included 120,380 MI cases admitted to hospitals in Sweden during the cold season (October to March) from 2005 to 2019. Daily mean air temperature (1 km2 resolution) was estimated using machine learning, and percentiles of daily temperatures experienced by individuals in the same municipality were used as individual exposure indicators to account for potential geographic adaptation. Cold spells were defined as periods of at least 2 consecutive days with a daily mean temperature below the 10th percentile of the temperature distribution for each municipality. A time-stratified case-crossover design incorporating conditional logistic regression models with distributed lag nonlinear models using lag 0 to 1 (immediate) and 2 to 6 days (delayed) was used to evaluate the short-term effects of lower air temperature and cold spells on total MI, non-ST-segment elevation myocardial infarction (NSTEMI) and ST-segment elevation myocardial infarction (STEMI). RESULTS A decrease of 1-U in percentile temperature at a lag of 2 to 6 days was significantly associated with increased risks of total MI, NSTEMI, and STEMI, with ORs of 1.099 (95% CI: 1.057-1.142), 1.110 (95% CI: 1.060-1.164), and 1.076 (95% CI: 1.004-1.153), respectively. Additionally, cold spells at a lag of 2 to 6 days were significantly associated with increased risks for total MI, NSTEMI, and STEMI, with ORs of 1.077 (95% CI: 1.037-1.120), 1.069 (95% CI: 1.020-1.119), and 1.095 (95% CI: 1.023-1.172), respectively. Conversely, lower air temperature and cold spells at a lag of 0 to 1 days were associated with decreased risks for MI. CONCLUSIONS This nationwide case-crossover study reveals that short-term exposures to lower air temperature and cold spells are associated with an increased risk of hospitalization for MI at lag 2 to 6 days.
Collapse
Affiliation(s)
- Wenli Ni
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Germany; Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Germany
| | - Jeroen de Bont
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Dan Atar
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ulleval, Oslo, Norway
| | - Stefan Agewall
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
4
|
Kamis A, Gadia N, Luo Z, Ng SX, Thumbar M. Obtaining the Most Accurate, Explainable Model for Predicting Chronic Obstructive Pulmonary Disease: Triangulation of Multiple Linear Regression and Machine Learning Methods. JMIR AI 2024; 3:e58455. [PMID: 39207843 PMCID: PMC11393512 DOI: 10.2196/58455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Lung disease is a severe problem in the United States. Despite the decreasing rates of cigarette smoking, chronic obstructive pulmonary disease (COPD) continues to be a health burden in the United States. In this paper, we focus on COPD in the United States from 2016 to 2019. OBJECTIVE We gathered a diverse set of non-personally identifiable information from public data sources to better understand and predict COPD rates at the core-based statistical area (CBSA) level in the United States. Our objective was to compare linear models with machine learning models to obtain the most accurate and interpretable model of COPD. METHODS We integrated non-personally identifiable information from multiple Centers for Disease Control and Prevention sources and used them to analyze COPD with different types of methods. We included cigarette smoking, a well-known contributing factor, and race/ethnicity because health disparities among different races and ethnicities in the United States are also well known. The models also included the air quality index, education, employment, and economic variables. We fitted models with both multiple linear regression and machine learning methods. RESULTS The most accurate multiple linear regression model has variance explained of 81.1%, mean absolute error of 0.591, and symmetric mean absolute percentage error of 9.666. The most accurate machine learning model has variance explained of 85.7%, mean absolute error of 0.456, and symmetric mean absolute percentage error of 6.956. Overall, cigarette smoking and household income are the strongest predictor variables. Moderately strong predictors include education level and unemployment level, as well as American Indian or Alaska Native, Black, and Hispanic population percentages, all measured at the CBSA level. CONCLUSIONS This research highlights the importance of using diverse data sources as well as multiple methods to understand and predict COPD. The most accurate model was a gradient boosted tree, which captured nonlinearities in a model whose accuracy is superior to the best multiple linear regression. Our interpretable models suggest ways that individual predictor variables can be used in tailored interventions aimed at decreasing COPD rates in specific demographic and ethnographic communities. Gaps in understanding the health impacts of poor air quality, particularly in relation to climate change, suggest a need for further research to design interventions and improve public health.
Collapse
Affiliation(s)
- Arnold Kamis
- Brandeis International Business School, Brandeis University, Waltham, MA, United States
| | - Nidhi Gadia
- Brandeis International Business School, Brandeis University, Waltham, MA, United States
| | - Zilin Luo
- Brandeis International Business School, Brandeis University, Waltham, MA, United States
| | - Shu Xin Ng
- Brandeis International Business School, Brandeis University, Waltham, MA, United States
| | - Mansi Thumbar
- Brandeis International Business School, Brandeis University, Waltham, MA, United States
| |
Collapse
|
5
|
Trees I, Yu F, Deng X, Luo G, Zhang W, Lin S. Ultrafine Particles and Hospital Visits for Chronic Lower Respiratory Diseases in New York State. Ann Am Thorac Soc 2024; 21:1147-1155. [PMID: 38445971 DOI: 10.1513/annalsats.202303-267oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 03/05/2024] [Indexed: 03/07/2024] Open
Abstract
Rationale: Exposure to particulate matter is associated with various adverse health outcomes. Ultrafine particles (UFPs; diameter <0.1 μm) are a unique public health challenge because of their size. However, limited studies have examined their impacts on human health, especially across seasons and demographic characteristics. Objectives: To evaluate the effect of UFP exposure on the risk of visiting the emergency department (ED) for a chronic lower respiratory disease (CLRD) in New York State in 2013-2018. Methods: We used a case-crossover design and conditional logistic regression to estimate how UFP exposure led to CLRD-related ED visits. GEOS-Chem Advanced Particle Microphysics, a state-of-the-art chemical transport model with a size-resolved particle microphysics model, generated air pollution simulation data. We then matched UFP exposure estimates to geocoded health records for asthma, bronchiectasis, chronic bronchitis, emphysema, unspecified bronchitis, and other chronic airway obstructions in New York State from 2013 through 2018. In addition, we assessed interactions with age, ethnicity, race, sex, meteorological factors, and season. Results: Each 1-(interquartile range [IQR]) increase in UFP exposure led to a 0.37% increased risk of a respiratory-related ED visit on lag 0-0, or the day of the ED visits, (95% confidence interval [CI], 0.23-0.52%) and a 1.81% increase on lag 0-6, or 6 days before the ED visit, (95% CI, 1.58-2.03%). The highest risk was in the emphysema subtype (lag 0-5, 4.18%; 95% CI, 0.16-8.37%), followed by asthma (lag 0-6, 2.00%), chronic bronchitis (lag 0-6, 1.78%), other chronic airway obstructions (lag 0-6, 1.60%), and unspecified bronchitis (lag 0-6, 1.49%). We also found significant interactions between UFP health impacts and season (Fall, 3.29%), temperature (<90th percentile, 2.27%), relative humidity (>90th percentile, 4.63%), age (children aged <18 yr, 3.19%), and sex (men, 2.06%) on lag 0-6. Conclusions: In this study, UFP exposure increased CLRD-related ED visits across all seasons and demographic characteristics, yet these associations varied according to various factors, which requires more research.
Collapse
Affiliation(s)
- Ian Trees
- Department of Environmental Health Sciences and
| | - Fangqun Yu
- Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York; and
| | - Xinlei Deng
- Department of Environmental Health Sciences and
| | - Gan Luo
- Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York; and
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shao Lin
- Department of Environmental Health Sciences and
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York
| |
Collapse
|
6
|
Sánchez LF, Villacura L, Catalán F, Araya RT, Guzman MAL. The Oxidative Potential of Airborne Particulate Matter Research Trends, Challenges, and Future Perspectives-Insights from a Bibliometric Analysis and Scoping Review. Antioxidants (Basel) 2024; 13:640. [PMID: 38929079 PMCID: PMC11200927 DOI: 10.3390/antiox13060640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 06/28/2024] Open
Abstract
This study is a comprehensive analysis of the oxidative potential (OP) of particulate matter (PM) and its environmental and health impacts. The researchers conducted a bibliometric analysis and scoping review, screening 569 articles and selecting 368 for further analysis. The study found that OP is an emerging field of study, with a notable increase in the number of publications in the 2010s compared to the early 2000s. The research is primarily published in eight journals and is concentrated in a few academic and university-based institutions. The study identified key research hotspots for OP-PM, emphasizing the importance of capacity building, interdisciplinary collaboration, understanding emission sources and atmospheric processes, and the impacts of PM and its OP. The study highlighted the need to consider the effects of climate change on OP-PM and the regulatory framework for PM research. The findings of this study will contribute to a better understanding of PM and its consequences, including human exposure and its effects. It will also inform strategies for managing air quality and protecting public health. Overall, this study provides valuable insights into the field of OP-PM research and highlights the need for continued research and collaboration to address the environmental and health impacts of PM.
Collapse
Affiliation(s)
| | | | | | | | - Manuel A. Leiva Guzman
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (L.F.S.); (L.V.); (F.C.); (R.T.A.)
| |
Collapse
|
7
|
Dröge J, Klingelhöfer D, Braun M, Groneberg DA. Influence of a large commercial airport on the ultrafine particle number concentration in a distant residential area under different wind conditions and the impact of the COVID-19 pandemic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123390. [PMID: 38309420 DOI: 10.1016/j.envpol.2024.123390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Exposure to ultrafine particles has a significant influence on human health. In regions with large commercial airports, air traffic and ground operations can represent a potential particle source. The particle number concentration was measured in a low-traffic residential area about 7 km from Frankfurt Airport with a Condensation Particle Counter in a long-term study. In addition, the particle number size distribution was determined using a Fast Mobility Particle Sizer. The particle number concentrations showed high variations over the entire measuring period and even within a single day. A maximum 24 h-mean of 24,120 cm-3 was detected. Very high particle number concentrations were in particular measured when the wind came from the direction of the airport. In this case, the particle number size distribution showed a maximum in the particle size range between 5 and 15 nm. Particles produced by combustion in jet engines typically have this size range and a high potential to be deposited in the alveoli. During a period with high air traffic volume, significantly higher particle number concentrations could be measured than during a period with low air traffic volume, as in the COVID-19 pandemic. A large commercial airport thus has the potential to lead to a high particle number concentration even in a distant residential area. Due to the high particle number concentrations, the critical particle size, and strong concentration fluctuations, long-term measurements are essential for a realistic exposure analysis.
Collapse
Affiliation(s)
- Janis Dröge
- Goethe University Frankfurt, Institute of Occupational, Social and Environmental Medicine, Frankfurt am Main, Germany.
| | - Doris Klingelhöfer
- Goethe University Frankfurt, Institute of Occupational, Social and Environmental Medicine, Frankfurt am Main, Germany
| | - Markus Braun
- Goethe University Frankfurt, Institute of Occupational, Social and Environmental Medicine, Frankfurt am Main, Germany
| | - David A Groneberg
- Goethe University Frankfurt, Institute of Occupational, Social and Environmental Medicine, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Rus AA, Pescariu SA, Zus AS, Gaiţă D, Mornoş C. Impact of Short-Term Exposure to Nitrogen Dioxide (NO 2) and Ozone (O 3) on Hospital Admissions for Non-ST-Segment Elevation Acute Coronary Syndrome. TOXICS 2024; 12:123. [PMID: 38393217 PMCID: PMC10893050 DOI: 10.3390/toxics12020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
In the context of recent climate change, global warming, industrial growth, and population expansion, air pollution has emerged as a significant environmental and human health risk. This study employed a multivariable Poisson regression analysis to examine the association between short-term exposure to atmospheric pollutants (nitrogen dioxide-NO2, sulfur dioxide -SO2, ozone-O3, and particulate matter with a diameter less than 10 μm-PM10) and hospital admissions for non-ST-segment elevation acute coronary syndrome (NSTE-ACS). Daily data on NSTE-ACS admissions, air pollutants, and meteorological variables were collected from January 2019 to December 2021. Elevated NO2 concentrations were associated with a higher risk of NSTE-ACS hospitalization, notably in spring (OR: 1.426; 95% CI: 1.196-1.701). Hypertensive individuals (OR: 1.101; 95% CI: 1.007-1.204) and those diagnosed with unstable angina (OR: 1.107; 95%CI: 1.010-1.213) exhibited heightened susceptibility to elevated NO2 concentrations. A 10 μg/m3 increase in NO2 during spring at lag 07 (OR: 1.013; 95% CI: 1.001-1.025) and O3 in winter at lag 05 (OR: 1.007; 95% CI: 1.001-1.014) was correlated with an elevated daily occurrence of NSTE-ACS admissions. Short-term exposure to various air pollutants posed an increased risk of NSTE-ACS hospitalization, with heightened sensitivity observed in hypertensive patients and those with unstable angina. Addressing emerging environmental risk factors is crucial to mitigate substantial impacts on human health and the environment.
Collapse
Affiliation(s)
- Andreea-Alexandra Rus
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (S.-A.P.); (A.-S.Z.); (D.G.); (C.M.)
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Silvius-Alexandru Pescariu
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (S.-A.P.); (A.-S.Z.); (D.G.); (C.M.)
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Adrian-Sebastian Zus
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (S.-A.P.); (A.-S.Z.); (D.G.); (C.M.)
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Dan Gaiţă
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (S.-A.P.); (A.-S.Z.); (D.G.); (C.M.)
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristian Mornoş
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (S.-A.P.); (A.-S.Z.); (D.G.); (C.M.)
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
9
|
Yan R, Ying S, Jiang Y, Duan Y, Chen R, Kan H, Fu Q, Gu Y. Associations between ultrafine particle pollution and daily outpatient visits for respiratory diseases in Shanghai, China: a time-series analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3004-3013. [PMID: 38072886 PMCID: PMC10791965 DOI: 10.1007/s11356-023-31248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Previous epidemiological studies have linked short-term exposure to particulate matter with outpatient visits for respiratory diseases. However, evidence on ultrafine particle (UFP) is still scarce in China. To investigate the association between short-term UFP exposure and outpatient visits for respiratory diseases as well as the corresponding lag patterns, information on outpatient visits for main respiratory diseases during January 1, 2017, to December 31, 2019 was collected from electronic medical records of two large tertiary hospitals in Shanghai, China. Generalized additive models employing a Quasi-Poisson distribution were employed to investigate the relationships between UFP and respiratory diseases. We computed the percentage change and its corresponding 95% confidence interval (CI) for outpatient visits related to respiratory diseases per interquartile range (IQR) increase in UFP concentrations. Based on a total of 1,034,394 hospital visits for respiratory diseases in Shanghai, China, we found that the strongest associations of total UFP with acute upper respiratory tract infection (AURTI), bronchitis, chronic obstructive pulmonary disease (COPD), and pneumonia occurred at lag 03, 03, 0, and 03 days, respectively. Each IQR increase in the total UFP concentrations was associated with increments of 9.02% (95% CI: 8.64-9.40%), 3.94% (95% CI: 2.84-5.06%), 4.10% (95% CI: 3.01-5.20%), and 10.15% (95% CI: 9.32-10.99%) for AURTI, bronchitis, COPD, and pneumonia, respectively. Almost linear concentration-response relationship curves without apparent thresholds were observed between total UFP and outpatient-department visits for four respiratory diseases. Stratified analyses illustrated significantly stronger associations of total UFP with AURTI, bronchitis, and pneumonia among female patients, while that with COPD was stronger among male patients. After adjustment of criteria air pollutants, these associations all remained robust. This time-series study indicates that short-term exposure to UFP was associated with increased risk of hospital visits for respiratory diseases, underscoring the importance of reducing ambient UFP concentrations for respiratory diseases control and prevention.
Collapse
Affiliation(s)
- Ran Yan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Shengjie Ying
- Shanghai Minhang District Center for Disease Control and Prevention, Shanghai, 201101, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Yiqin Gu
- Shanghai Minhang District Center for Disease Control and Prevention, Shanghai, 201101, China.
- Shanghai Minhang Dental Disease Prevention and Treatment Institute, Shanghai, 201103, China.
| |
Collapse
|
10
|
Delavar MA, Jahani MA, Sepidarkish M, Alidoost S, Mehdinezhad H, Farhadi Z. Relationship between fine particulate matter (PM 2.5) concentration and risk of hospitalization due to chronic obstructive pulmonary disease: a systematic review and meta-analysis. BMC Public Health 2023; 23:2229. [PMID: 37953239 PMCID: PMC10641956 DOI: 10.1186/s12889-023-17093-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Short-term exposure to PM2.5 has been associated with human health risks. However, evidence on the association between short-term exposure to PM2.5 and the risk of chronic obstructive pulmonary disease (COPD) remains limited and controversial. This study aimed to specifically assess the relationship between exposure to PM2.5 and the risk of hospitalization due to COPD. METHODS A systematic search was conducted in PubMed, Web of Science, and Google Scholar databases from January 1, 2010 to May 1, 2022. The odds ratio (OR) statistic was calculated as a common measure of effect size. Publication bias was also examined in all eligible studies on COPD hospitalization using funnel plots and Egger's test, as well as trim-and-fill method for missing studies on COPD hospitalization. RESULTS A total of 19 studies were included in this meta-analysis. Random-effects models were plotted to calculate the pooled effect size by measuring OR (χ2 = 349.95; df = 18; I2 = 94.86%; P = 0.007; Z = 2.68; P < 0.001). A 10-mg/m3 daily increase in PM2.5 concentration was associated with a 1.6% (95% CI: 0.4-2.9%) increase in COPD hospitalization. There was no publication bias regarding the association between COPD hospitalization and PM2.5 (bias = 1.508; 95% CI: -1.475, 4.491; t = 1.066; P = 0.301). The subgroups of age ≥ 65 years and Asian countries were associated with an increased risk of COPD hospitalization. Besides, higher risks were estimated in the subgroups of studies performed in the warm season, case-crossover studies, studies with three lag days, and studies without adjustments for humidity and temperature confounders, with very small heterogeneity. CONCLUSION Evidence suggests that short-term exposure to PM2.5 increases COPD hospitalization. Further studies are needed to understand the mechanism of the association between PM2.5 and COPD for reducing air pollution, which can be beneficial for COPD patients.
Collapse
Affiliation(s)
- Mouloud Agajani Delavar
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ali Jahani
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Sepidarkish
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Saeide Alidoost
- National Center for Strategic Research in Medical Education, Tehran, Iran
| | - Hamed Mehdinezhad
- Department of Internal Medicine, School of Medicine, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Zeynab Farhadi
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
11
|
Ma Y, Zhao H, Su Y. Ozone Pollution and Acute Exacerbation of Asthma in Residents of China: An Ecological Study. J Asthma Allergy 2023; 16:951-960. [PMID: 37700876 PMCID: PMC10493139 DOI: 10.2147/jaa.s422476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose The evidence for a causal relationship between high-level ozone (O3) exposure and acute exacerbation of asthma among adults is limited, and the conclusions are less definitive. Patients and methods Here we collected the daily data on asthma cases, O3 exposure, and meteorological factors from 2010 to 2016 in Shijiazhuang, China. We investigated the risk of asthma exacerbation associated with high-level ozone exposure using a polynomial distributed lag model (PDLM). Using a generalized additive model (GAM), we estimated the interactive effects between O3 and other pollutants as well as meteorological factors on asthma exacerbation. Results A total of 7270 patients with asthma were enrolled from 22 governmental hospitals in 13 counties. Each 10 μg/m3 increase in O3 concentration on the exacerbation of asthma was associated with a 1.92% (95% CI = 0.80-3.03%) higher risk of asthma exacerbation on day lag 7. The cumulative risk of O3 on asthma exacerbation increased by 18.9% (95% CI = 12.8-25.4%) on the 14th day. High consecutive levels of O3 increase the risk of asthma exacerbation, and the interactive effect of O3 and sulfur dioxide (SO2) appears before the exacerbation onset. Conclusion These findings suggested that O3 should be an important risk factor for asthma exacerbation, and health benefits in reducing asthma exacerbation risk would be gained with continued efforts to improve the air quality in China.
Collapse
Affiliation(s)
- Yunlei Ma
- Department of Respiratory Medicine, Traditional Chinese Medicine Hospital of Hebei Province, Shijiazhuang, People’s Republic of China
| | - Hanjun Zhao
- Department of Respiratory Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Yinghao Su
- Department of Respiratory Medicine, Traditional Chinese Medicine Hospital of Hebei Province, Shijiazhuang, People’s Republic of China
| |
Collapse
|
12
|
Schwarz M, Schneider A, Cyrys J, Bastian S, Breitner S, Peters A. Impact of ultrafine particles and total particle number concentration on five cause-specific hospital admission endpoints in three German cities. ENVIRONMENT INTERNATIONAL 2023; 178:108032. [PMID: 37352580 DOI: 10.1016/j.envint.2023.108032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
INTRODUCTION Numerous studies have shown associations between daily concentrations of fine particles (e.g., particulate matter with an aerodynamic diameter ≤2.5 µm; PM2.5) and morbidity. However, evidence for ultrafine particles (UFP; particles with an aerodynamic diameter of 10-100 nm) remains conflicting. Therefore, we aimed to examine the short-term associations of UFP with five cause-specific hospital admission endpoints for Leipzig, Dresden, and Augsburg, Germany. MATERIAL AND METHODS We obtained daily counts of (cause-specific) cardiorespiratory hospital admissions between 2010 and 2017. Daily average concentrations of UFP, total particle number (PNC; 10-800 nm), and black carbon (BC) were measured at six sites; PM2.5 and nitrogen dioxide (NO2) were obtained from monitoring networks. We assessed immediate (lag 0-1), delayed (lag 2-4, lag 5-7), and cumulative (lag 0-7) effects by applying station-specific confounder-adjusted Poisson regression models. We then used a novel multi-level meta-analytical method to obtain pooled risk estimates. Finally, we performed two-pollutant models to investigate interdependencies between pollutants and examined possible effect modification by age, sex, and season. RESULTS UFP showed a delayed (lag 2-4) increase in respiratory hospital admissions of 0.69% [95% confidence interval (CI): -0.28%; 1.67%]. For other hospital admission endpoints, we found only suggestive results. Larger particle size fractions, such as accumulation mode particles (particles with an aerodynamic diameter of 100-800 nm), generally showed stronger effects (respiratory hospital admissions & lag 2-4: 1.55% [95% CI: 0.86%; 2.25%]). PM2.5 showed the most consistent associations for (cardio-)respiratory hospital admissions, whereas NO2 did not show any associations. Two-pollutant models showed independent effects of PM2.5 and BC. Moreover, higher risks have been observed for children. CONCLUSIONS We observed clear associations with PM2.5 but UFP or PNC did not show a clear association across different exposure windows and cause-specific hospital admissions. Further multi-center studies are needed using harmonized UFP measurements to draw definite conclusions on the health effects of UFP.
Collapse
Affiliation(s)
- Maximilian Schwarz
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Jia Y, Lin Z, He Z, Li C, Zhang Y, Wang J, Liu F, Li J, Huang K, Cao J, Gong X, Lu X, Chen S. Effect of Air Pollution on Heart Failure: Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:76001. [PMID: 37399145 PMCID: PMC10317211 DOI: 10.1289/ehp11506] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 02/15/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Heart failure (HF) poses a significant global disease burden. The current evidence on the impact of air pollution on HF remains inconsistent. OBJECTIVES We aimed to conduct a systematic review of the literature and meta-analysis to provide a more comprehensive and multiperspective assessment of the associations between short- and long-term air pollution exposure and HF from epidemiological evidences. METHODS Three databases were searched up to 31 August 2022 for studies investigating the association between air pollutants (PM 2.5 , PM 10 , NO 2 , SO 2 , CO, O 3 ) and HF hospitalization, incidence, or mortality. A random effects model was used to derive the risk estimations. Subgroup analysis was conducted by geographical location, age of participants, outcome, study design, covered area, the methods of exposure assessment, and the length of exposure window. Sensitivity analysis and adjustment for publication bias were performed to test the robustness of the results. RESULTS Of 100 studies covering 20 countries worldwide, 81 were for short-term and 19 were for long-term exposure. Almost all air pollutants were adversely associated with the risk of HF in both short- and long-term exposure studies. For short-term exposures, we found the risk of HF increased by 1.8% [relative risk ( RR ) = 1.018 , 95% confidence interval (CI): 1.011, 1.025] and 1.6% (RR = 1.016 , 95% CI: 1.011, 1.020) per 10 - μ g / m 3 increment of PM 2.5 and PM 10 , respectively. HF was also significantly associated with NO 2 , SO 2 , and CO, but not O 3 . Positive associations were stronger when exposure was considered over the previous 2 d (lag 0-1) rather than on the day of exposure only (lag 0). For long-term exposures, there were significant associations between several air pollutants and HF with RR (95% CI) of 1.748 (1.112, 2.747) per 10 - μ g / m 3 increment in PM 2.5 , 1.212 (1.010, 1.454) per 10 - μ g / m 3 increment in PM 10 , and 1.204 (1.069, 1.356) per 10 -ppb increment in NO 2 , respectively. The adverse associations of most pollutants with HF were greater in low- and middle-income countries than in high-income countries. Sensitivity analysis demonstrated the robustness of our results. DISCUSSION Available evidence highlighted adverse associations between air pollution and HF regardless of short- and long-term exposure. Air pollution is still a prevalent public health issue globally and sustained policies and actions are called for to reduce the burden of HF. https://doi.org/10.1289/EHP11506.
Collapse
Affiliation(s)
- Yanhui Jia
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Zhennan Lin
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Zhi He
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Chenyang Li
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Youjing Zhang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Jingyu Wang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Fangchao Liu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Jianxin Li
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Keyong Huang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Jie Cao
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Xinyuan Gong
- Department of Science and Education, Tianjin First Central Hospital, Tianjin, China
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| |
Collapse
|
14
|
Barhoumi B, Guigue C, Touil S, Johnson-Restrepo B, Driss MR, Tedetti M. Hydrocarbons in the atmospheric gas phase of a coastal city in Tunisia: Levels, gas-particle partitioning, and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162986. [PMID: 36958548 DOI: 10.1016/j.scitotenv.2023.162986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Many studies have focused on aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (AHs and PAHs) in different environmental compartments, especially atmospheric particles (aerosols), due to their adverse effects on the environment and human health. However, much less information is currently available on the content of AHs and PAHs in the atmospheric gas phase, which is a major reservoir of volatile and photoreactive compounds. Here, for the first time, we assessed the levels, gas-particle partitioning, human health risks and seasonal variations of AHs and PAHs in the atmospheric gas-phase of Bizerte city (Tunisia, North Africa) over a one-year period (March 2015-January 2016). Σ34PAH concentration in the gas phase over the period ranged from 6.7 to 90.6 ng m-3 and on average was 2.5 times higher in the cold season than in the warm season. Σ28AH concentration in the gas phase over the period ranged from 14.0 to 35.9 ng m-3, with no clear seasonal variations. In the gas phase, hydrocarbons were dominated by low-molecular-weight (LMW) compounds, i.e. 3- and 4-ring for PAHs and < n-C24 for AHs. Gas-phase concentrations of PAHs and AHs accounted for up to 80 % of the total (gas + particle phases) atmospheric concentrations of PAHs and AHs. Further analysis of gas-particle partitioning showed that LMW hydrocarbons preferential accumulated in the gas phase, and that gas-particle partitioning was not in equilibrium but dominated by absorption processes into the aerosol organic matter. Benzo[a]pyrene toxic equivalency quotient (BaP-TEQ) in the gas phase represented on average 37 % of the total atmospheric BaP-TEQ concentration, which was always higher in the cold season. Atmospheric gas is a significant factor in the risks of cancer associated with inhalation of ambient air. The Monte Carlo simulation-based exposure assessment model predicted that outdoor air exposure to PAHs does not pose a cancer risk to infants, but the children, adolescent, and adult populations may face a lower cancer risk during the warm season and a higher risk in the cold season.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia; Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France.
| | - Catherine Guigue
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, University Campus of San Pablo, University of Cartagena, Zaragocilla, Carrera 50 No. 24-99, Cartagena, 130015, Colombia
| | - Mohamed Ridha Driss
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Marc Tedetti
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| |
Collapse
|
15
|
Han Y, Ye Z, Zhang L, Fang Y. The effect of PM 2.5 levels on continuum functional capability among older adults: Potential cause-effect or statistical associations. Arch Gerontol Geriatr 2023; 108:104917. [PMID: 36621241 DOI: 10.1016/j.archger.2022.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Since there is limited knowledge about health effects of the clean air policy (CAP, i.e., a series of emission-control actions) on continuum functional capacity (CFC) among the older adults on a large representative data, our research was to fill this gap. METHODS We used a continuous variable of airborne fine particulate matter (PM2.5) particles as a proxy for the CAP to evaluate the linear and non-linear effect of PM2.5 exposure on CFC of older adults, under the quasi-experimental framework of the temporal contrast between 2011 (before the CAP) and 2015 (after the CAP). Multiple environmental factors were considered and spline function was utilized to fit the spatial autocorrelations. A competing risk model was constructed to qualify the impact of PM2.5 on multidimensional disability. RESULTS After adjusting for potential confounders, a J-shaped association was found between PM2.5 concentration increase on CFC, with a threshold 2μg/m3. We also demonstrated that a 10-µg/m3 increase in PM2.5 concentration was related to a 14.0% (95% CI:0.00, 19.00%) increment risk in the functional decline. Similarly, the competing risk model presented a hazard ratio of multidimensional disability ranging from 1.707(0.928-4.141) at 40μg/m3 concentration of PM2.5 to 4.384 (1.970-9.755) over 80μg/m3. Stratified analyses showed that married men less than 80 years old in rural areas are more likely to be affected by PM2.5 exposure, where the influencing mechanism of air pollutant to outdoor and indoor activities might be the potential cause. CONCLUSION Implementing CAP might improve CFC, prevent the occurrence of disability, and update the air policy.
Collapse
Affiliation(s)
- Ying Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen Fujian 361102, China.
| | - Zirong Ye
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen Fujian 361102, China.
| | - Liangwen Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen Fujian 361102, China; Xiamen University, School of Economics, 422 Siming South Road, Xiamen Fujian 361005, China.
| | - Ya Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen Fujian 361102, China.
| |
Collapse
|
16
|
Jiang Y, Chen R, Peng W, Luo Y, Chen X, Jiang Q, Han B, Su G, Duan Y, Huo J, Qu X, Fu Q, Kan H. Hourly Ultrafine Particle Exposure and Acute Myocardial Infarction Onset: An Individual-Level Case-Crossover Study in Shanghai, China, 2015-2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1701-1711. [PMID: 36668989 DOI: 10.1021/acs.est.2c06651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Associations between ultrafine particles (UFPs) and hourly onset of acute myocardial infarction (AMI) have rarely been investigated. We aimed to evaluate the impacts of UFPs on AMI onset and the lag patterns. A time-stratified case-crossover study was performed among 20,867 AMI patients from 46 hospitals in Shanghai, China, between January 2015 and December 2020. Hourly data of AMI onset and number concentrations of nanoparticles of multiple size ranges below 0.10 μm (0.01-0.10, UFP/PNC0.01-0.10; 0.01-0.03, PNC0.01-0.03; 0.03-0.05, PNC0.03-0.05; and 0.05-0.10 μm, PNC0.05-0.10) were collected. Conditional logistic regressions were applied. Transient exposures to these nanoparticles were significantly associated with AMI onset, with almost linear exposure-response curves. These associations occurred immediately after exposure, lasted for approximately 6 h, and attenuated to be null thereafter. Each interquartile range increase in concentrations of total UFPs, PNC0.01-0.03, PNC0.03-0.05, and PNC0.05-0.10 during the preceding 0-6 h was associated with increments of 3.29, 2.08, 2.47, and 2.93% in AMI onset risk, respectively. The associations were stronger during warm season and at high temperatures and were robust after adjusting for criteria air pollutants. Our findings provide novel evidence that hourly UFP exposure is associated with immediate increase in AMI onset risk.
Collapse
Affiliation(s)
- Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Yun Luo
- Department of Cardiology, Jiujiang No. 1 People's Hospital, Jiujiang 332000, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo 315010, China
| | - Qianfeng Jiang
- Department of Cardiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi 563000, China
| | - Bingjiang Han
- Department of Cardiology, The Second Hospital of Jiaxing (The Second Affiliated Hospital of Jiaxing University), Jiaxing 314000, China
| | - Guohai Su
- Jinan Central Hospital, Jinan 250013, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Juntao Huo
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Xinkai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
17
|
Yang YS, Pei YH, Gu YY, Zhu JF, Yu P, Chen XH. Association between short-term exposure to ambient air pollution and heart failure: An updated systematic review and meta-analysis of more than 7 million participants. Front Public Health 2023; 10:948765. [PMID: 36755739 PMCID: PMC9900180 DOI: 10.3389/fpubh.2022.948765] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction Exposure to air pollution has been linked to the mortality of heart failure. In this study, we sought to update the existing systematic review and meta-analysis, published in 2013, to further assess the association between air pollution and acute decompensated heart failure, including hospitalization and heart failure mortality. Methods PubMed, Web of Science, EMBASE, and OVID databases were systematically searched till April 2022. We enrolled the studies regarding air pollution exposure and heart failure and extracted the original data to combine and obtain an overall risk estimate for each pollutant. Results We analyzed 51 studies and 7,555,442 patients. Our results indicated that heart failure hospitalization or death was associated with increases in carbon monoxide (3.46% per 1 part per million; 95% CI 1.0233-1.046, P < 0.001), sulfur dioxide (2.20% per 10 parts per billion; 95% CI 1.0106-1.0335, P < 0.001), nitrogen dioxide (2.07% per 10 parts per billion; 95% CI 1.0106-1.0335, P < 0.001), and ozone (0.95% per 10 parts per billion; 95% CI 1.0024-1.0166, P < 0.001) concentrations. Increases in particulate matter concentration were related to heart failure hospitalization or death (PM2.5 1.29% per 10 μg/m3, 95% CI 1.0093-1.0165, P < 0.001; PM10 1.30% per 10 μg/m3, 95% CI 1.0102-1.0157, P < 0.001). Conclusion The increase in the concentration of all pollutants, including gases (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone) and particulate matter [(PM2.5), (PM10)], is positively correlated with hospitalization rates and mortality of heart failure. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42021256241.
Collapse
Affiliation(s)
- Yu-shan Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying-hao Pei
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan-yuan Gu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jun-feng Zhu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Peng Yu
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Peng Yu ✉
| | - Xiao-hu Chen
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Xiao-hu Chen ✉
| |
Collapse
|
18
|
Ke L, Zhang Y, Fu Y, Shen X, Zhang Y, Ma X, Di Q. Short-term PM 2.5 exposure and cognitive function: Association and neurophysiological mechanisms. ENVIRONMENT INTERNATIONAL 2022; 170:107593. [PMID: 36279737 DOI: 10.1016/j.envint.2022.107593] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although converging evidence has demonstrated that exposure to fine particulate matter (PM2.5) caused adverse effects on brain structure and cognitive function, the association between the short-term exposure to PM2.5 and cognition dysfunction remained underexplored, especially possible neurophysiological mechanisms. METHODS We conducted a longitudinal observational study with four repeated measurement sessions among 90 young adults from September 2020 to June 2021. During each measurement session, we measured participants' personal-level air pollution exposure for one week with portable monitors, followed by executive function assessment and electrophysiological signal recording at an assessment center. Standard Stroop color-word test was used accompanied with electroencephalogram (EEG) recording to assess performance on executive function. We used linear mixed-effect model with lagged values of PM2.5 levels to analyze the association between PM2.5 exposure and changes in executive function, and mediation analysis to investigate mediation effect by EEG signal. RESULTS Adjusted mixed-effect models demonstrated that elevated PM2.5 exposure three days prior to cognitive assessment (lag-3) was associated with (1) declined performance in both congruent and incongruent tasks in Stroop test, (2) reduced lower and upper alpha event-related desynchronization (ERD) during 500-1000 ms after stimuli, both indicating impaired executive control. Lower and upper alpha ERD also mediated observed associations between short-term PM2.5 exposure and executive function. No significant associations were found between short-term PM2.5 exposure or aperiodic exponents in tonic and phasic states, or periodic alpha oscillations in tonic state. CONCLUSION Our results provided evidence that short-term PM2.5 exposure was associated with executive dysfunction. Reduced alpha ERD was likely to be the underlying pathway through which PM2.5 induced adverse effects on neuron activities during cognitive tasks.
Collapse
Affiliation(s)
- Limei Ke
- School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Yao Zhang
- Soochow College, Soochow University, Suzhou 215006, China; Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Yingyao Fu
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; Department of senior high school, Beijing Jianhua Experimental Etown School, Beijing 100176, China.
| | - Xinke Shen
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yu Zhang
- Institute of Education, Tsinghua University, Beijing 100084, China.
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Xi Y, Richardson DB, Kshirsagar AV, Wade TJ, Flythe JE, Whitsel EA, Rappold AG. Association Between Long-term Ambient PM 2.5 Exposure and Cardiovascular Outcomes Among US Hemodialysis Patients. Am J Kidney Dis 2022; 80:648-657.e1. [PMID: 35690155 PMCID: PMC12159867 DOI: 10.1053/j.ajkd.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/15/2022] [Indexed: 02/02/2023]
Abstract
RATIONALE & OBJECTIVE Ambient PM2.5 (particulate matter with a diameter of 2.5 microns) is a ubiquitous air pollutant with established adverse cardiovascular (CV) effects. However, quantitative estimates of the association between PM2.5 exposure and CV outcomes in the setting of kidney disease are limited. This study assessed the association of long-term PM2.5 exposure with CV events and cardiovascular disease (CVD)-specific mortality among patients receiving maintenance in-center hemodialysis (HD). STUDY DESIGN Retrospective cohort study. SETTINGS & PARTICIPANTS 314,079 adult kidney failure patients initiating HD between 2011 and 2016 identified from the US Renal Data System. EXPOSURE Estimated daily ZIP code-level PM2.5 concentrations were used to calculate each participant's annual average PM2.5 exposure based on the dialysis clinics visited during the 365 days before the outcome. OUTCOME CV event and CVD-specific mortality were ascertained based on ICD-9/ICD-10 diagnostic codes and recorded cause of death from Centers for Medicare & Medicaid Services form 2746. ANALYTICAL APPROACH Discrete time hazards models were used to estimate hazards ratios per 1 μg/m3 greater annual average PM2.5, adjusting for temperature, humidity, day of the week, season, age at baseline, race, employment status, and geographic region. Effect measure modification was assessed for age, sex, race, and baseline comorbidities. RESULTS Each 1 μg/m3 greater annual average PM2.5 was associated with a greater rate of CV events (HR, 1.02 [95% CI, 1.01-1.02]) and CVD-specific mortality (HR, 1.02 [95% CI, 1.02-1.03]). The association was more pronounced for people who initiated dialysis at an older age, had chronic obstructive pulmonary disease (COPD) at baseline, or were Asian. Evidence of effect modification was also observed across strata of race, and other baseline comorbidities. LIMITATIONS Potential exposure misclassification and unmeasured confounding. CONCLUSIONS Long-term ambient PM2.5 exposure was associated with CVD outcomes among patients receiving maintenance in-center HD. Stronger associations between long-term PM2.5 exposure and adverse effects were observed among patients who were of advanced age, had COPD, or were Asian. PLAIN-LANGUAGE SUMMARY Long-term exposure to air pollution, also called PM2.5, has been linked to adverse cardiovascular outcomes. However, little is known about the association of PM2.5 and outcomes among patients receiving dialysis, who are individuals with high cardiovascular disease burdens. We conducted an epidemiological study to assess the association between the annual PM2.5 exposure and cardiovascular events and death among patients receiving regular outpatient hemodialysis in the United States between 2011 and 2016. We found a higher risk of heart attacks, strokes, and related events in patients exposed to higher levels of air pollution. Stronger associations between air pollution and adverse health events were observed among patients who were older at the start of dialysis, had chronic obstructive pulmonary disease, or were Asian. These findings bolster the evidence base linking air pollution and adverse health outcomes and may inform policy makers and clinicians.
Collapse
Affiliation(s)
- Yuzhi Xi
- Oak Ridge Institute for Science and Education, United States Environmental Protection Agency, Research Triangle Park, North Carolina; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Abhijit V Kshirsagar
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Timothy J Wade
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Jennifer E Flythe
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ana G Rappold
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina.
| |
Collapse
|
20
|
Shin D, Kim Y, Hong K, Lee G, Park I, Han B. The Actual Efficacy of an Air Purifier at Different Outdoor PM 2.5 Concentrations in Residential Houses with Different Airtightness. TOXICS 2022; 10:616. [PMID: 36287896 PMCID: PMC9610078 DOI: 10.3390/toxics10100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
It is important to control airborne particles in residential houses for protecting human health. Indoor particulate matter of <2.5 μm (PM2.5) can be effectively monitored and managed using an air purifier. In this study, the actual clean air delivery rates in residential houses (CADRActual) were acquired by comparing decay rates of fine particles with and without operations of the air purifier under actual conditions, following the standard CADR of an air purifier obtained in a closed test chamber. The measurements of CADRActual at different outdoor PM2.5 concentrations over a month in two residential houses revealed different airtightness levels, compared to the standardized clean air delivery rate of the air purifier (CADRAP). Air changes per hour at 50 Pa (ACH50) was 4.8 h−1 for “house A” (built in 2007) and 2.1 h−1 for “house B” (built in 2018). The CADR of the air purifier used in this study was 10.6 m3/min, while the averaged CADRActual at the “house A” was 7.2 m3/min (approximately 66% of the CADR of the air purifier) and 9.5 m3/min at “house B” (approximately 90% of the CADR of the air purifier). Under the outdoor PM2.5 concentrations of <35 μg/m3, the averaged CADRActual of house A and house B were 7.8 ± 0.3 and 9.7 ± 0.4 m3/min, respectively. However, under the outdoor PM2.5 concentrations of >35 μg/m3, the analogous averaged concentrations were 6.8 ± 0.6 and 9.6 ± 0.3 m3/min for houses A and B, respectively. The measured CADRActual agreed well with the theoretical estimates of CADRActual acquired by the mass balance equation using the infiltration rate of ACH50/20. We also estimated CADRActual/CADRAP for house C built in 2017, where the ACH50 was 1.8 h−1. Overall, this study demonstrated how CADRActual/CADRAP of an air purifier at residential houses can be predicted according to outdoor PM2.5 concentration and airtightness of the house. As shown, it can be closer to 1 at lower ACH50 houses and at lower outdoor PM2.5 concentrations.
Collapse
Affiliation(s)
- Dongho Shin
- Department of Sustainable Environment Research, Korea Institute of Machinery & Materials, Daejeon 34103, Korea
| | - Younghun Kim
- Department of Sustainable Environment Research, Korea Institute of Machinery & Materials, Daejeon 34103, Korea
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Keejung Hong
- Department of Sustainable Environment Research, Korea Institute of Machinery & Materials, Daejeon 34103, Korea
| | - Gunhee Lee
- Department of Sustainable Environment Research, Korea Institute of Machinery & Materials, Daejeon 34103, Korea
| | - Inyong Park
- Department of Sustainable Environment Research, Korea Institute of Machinery & Materials, Daejeon 34103, Korea
| | - Bangwoo Han
- Department of Sustainable Environment Research, Korea Institute of Machinery & Materials, Daejeon 34103, Korea
| |
Collapse
|
21
|
He R, Qiu Z. Exposure characteristics of ultrafine particles on urban streets and its impact on pedestrians. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:735. [PMID: 36068351 DOI: 10.1007/s10661-022-10453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
In order to investigate the pedestrian exposure characteristics of ultrafine particles (UFPs) on urban streets, both mobile and fixed-point monitoring experiments were conducted. A generalized additive model and a respiratory deposition dose model were used to quantify the influencing factors and potential harm of UFPs, respectively. The results showed that UFPs' hotspots were more likely to manifest at places where vehicles tend to cluster, namely at road intersections and bus stops. The pedestrian bridge had the lowest number concentration of UFPs in comparison with the pedestrian crossing and underground passage at the same intersection. Aboveground, a "weekend effect" acting upon urban streets and evidence for periodicity at the intersections were found. The UFPs' number concentration was comprehensively explained-about 62.7% of its variation-by traffic volume, wind speed, temperature, and relative humidity. The UFPs were mainly deposited in the alveolar region of the respiratory system, but the deposition doses of males exceeded those of females under the same conditions. Based on these findings, the study also provides appropriate suggestions for better managing traffic pollution sources, traffic infrastructure, and traffic organization.
Collapse
Affiliation(s)
- Rong He
- School of Transportation Engineering, Chang'an University, Yucai Road, Xi'an, 710064, Shaanxi, People's Republic of China
| | - Zhaowen Qiu
- School of Automobile, Chang'an University, Chang'an Road, Xi'an, 710064, Shaanxi, People's Republic of China.
| |
Collapse
|
22
|
Rus AA, Mornoş C. The Impact of Meteorological Factors and Air Pollutants on Acute Coronary Syndrome. Curr Cardiol Rep 2022; 24:1337-1349. [PMID: 35932446 PMCID: PMC9361940 DOI: 10.1007/s11886-022-01759-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/04/2022]
Abstract
Purpose of Review Several studies have found that air pollution and climate change can have an impact on acute coronary syndromes (ACS), the leading cause of death worldwide. We synthesized the latest information about the impact of air pollution and climate change on ACS, the latest data about the pathophysiological mechanisms of meteorological factors and atmospheric pollutants on atherosclerotic disease, and an overall image of air pollution and coronary heart disease in the context of the COVID-19 pandemic. Recent Findings The variation of meteorological factors in different seasons increased the risk of ACS. Both the increase and the decrease in apparent temperature were found to be risk factors for ACS admissions. It was also demonstrated that exposure to high concentrations of air pollutants, especially particulate matter, increased cardiovascular morbidity and mortality. Summary Climate change as well as increased emissions of air pollutants have a major impact on ACS. The industrialization era and the growing population cause a constant increase in air pollution worldwide. Thus, the number of ACS favored by air pollution and the variations in meteorological factors is expected to increase dramatically in the next few years.
Collapse
Affiliation(s)
- Andreea-Alexandra Rus
- PhD School Department, Research Centre of the Institute for Cardiovascular Diseases, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041, Timisoara, Romania.
| | - Cristian Mornoş
- Department VI Cardiology, 2nd Discipline of Cardiology, Research Centre of the Institute for Cardiovascular Diseases, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041, Timisoara, Romania
| |
Collapse
|
23
|
Dąbrowiecki P, Badyda A, Chciałowski A, Czechowski PO, Wrotek A. Influence of Selected Air Pollutants on Mortality and Pneumonia Burden in Three Polish Cities over the Years 2011-2018. J Clin Med 2022; 11:jcm11113084. [PMID: 35683472 PMCID: PMC9181391 DOI: 10.3390/jcm11113084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Poland has one of the worst air qualities in the European Union, particularly regarding concentrations of particulate matter (PM). This study aimed to evaluate the short-term effects of air pollution and weather conditions on all-cause mortality and pneumonia-related hospitalizations in three Polish agglomerations. We investigated data from 2011 to 2018 on a number of health outcomes, concentrations of PM2.5, PM10, nitrogen dioxide (NO2), ozone (O3), and selected meteorological parameters. To examine the impact of air pollutants and weather conditions on mortality and pneumonia burden, we identified optimal general regression models for each agglomeration. The final models explained <24% of the variability in all-cause mortality. In the models with interactions, O3 concentration in Warsaw, NO2, O3, and PM2.5 concentrations in Cracow and PM10 and O3 concentrations in the Tricity explained >10% of the variability in the number of deaths. Up to 46% of daily variability in the number of pneumonia-related hospitalizations was explained by the combination of both factors, i.e., air quality and meteorological parameters. The impact of NO2 levels on pneumonia burden was pronounced in all agglomerations. We showed that the air pollution profile and its interactions with weather conditions exert a short-term effect on all-cause mortality and pneumonia-related hospitalizations. Our findings may be relevant for prioritizing strategies to improve air quality.
Collapse
Affiliation(s)
- Piotr Dąbrowiecki
- Department of Allergology and Infectious Diseases, Military Institute of Medicine, 04-141 Warsaw, Poland;
- Polish Federation of Asthma, Allergy and COPD Patients Associations, 01-604 Warsaw, Poland
- Correspondence: (P.D.); (A.B.)
| | - Artur Badyda
- Polish Federation of Asthma, Allergy and COPD Patients Associations, 01-604 Warsaw, Poland
- Faculty of Building Services, Hydro- and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland
- Correspondence: (P.D.); (A.B.)
| | - Andrzej Chciałowski
- Department of Allergology and Infectious Diseases, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Piotr Oskar Czechowski
- Department of Quantitative Methods and Environmental Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland;
| | - August Wrotek
- Department of Pediatrics, The Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Pediatrics, Bielanski Hospital, 01-809 Warsaw, Poland
| |
Collapse
|
24
|
Li N, Ma J, Ji K, Wang L. Association of PM2.5 and PM10 with Acute Exacerbation of Chronic Obstructive Pulmonary Disease at lag0 to lag7: A Systematic Review and Meta-Analysis. COPD 2022; 19:243-254. [PMID: 35616887 DOI: 10.1080/15412555.2022.2070062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study aimed to conduct a meta-analysis to investigate whether short-term exposure to fine (PM2.5) and coarse (PM10) particulate matter was associated with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) hospitalization, emergency room visit, and outpatient visit at different lag values. PubMed, Embase, and the Cochrane Library were searched for relevant papers published up to March 2021. For studies reporting results per 1-µg/m3 increase in PM2.5, the results were recalculated as per 10-µg/m3 increase. We manually calculated the RRs for these two studies and transferred the RRs to estimate 10 µg/m3 increases in PM2.5. Automation tools were initially used to remove ineligible studies. Two reviewers independently screened the remaining records and retrieved reports. Twenty-six studies (28 datasets; 7,018,419 patients) were included. There was a significant association between PM2.5 and AECOPD events on lag0 (ES = 1.01, 95%CI: 1.01-1.02, p < 0.001; I2=88.6%, Pheterogeneity<0.001), lag1 (ES = 1.00, 95%CI: 1.00-1.01, p < 0.001; I2=82.5%, Pheterogeneity<0.001), lag2 (ES = 1.01, 95%CI: 1.01-1.01, p < 0.001; I2=90.6%, Pheterogeneity<0.001), lag3 (ES = 1.01, 95%CI: 1.00-1.01, p < 0.001; I2=88.9%, Pheterogeneity<0.001), lag4 (ES = 1.00, 95%CI: 1.00-1.01, p < 0.001; I2=83.7%, Pheterogeneity<0.001), and lag7 (ES = 1.00, 95%CI: 1.00-1.00, p < 0.001; I2=0.0%, Pheterogeneity=0.743). The subgroup analyses showed that PM2.5 influenced the rates of hospitalization, emergency room visits, and outpatient visits. Similar trends were observed with PM10. The risk of AECOPD events (hospitalization, emergency room visit, and outpatient visit) was significantly increased with a 10-µg/m3 increment in PM2.5 and PM10 from lag0 to lag7.List Of Abbreviations: particulate matter (PM2.5 and PM10); acute exacerbation of chronic obstructive pulmonary disease (AECOPD); Chronic obstructive pulmonary disease (COPD); Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA); Effect sizes [48]; confidence intervals (CIs).
Collapse
Affiliation(s)
- Niuniu Li
- Department of Respiration, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jianling Ma
- Department of Respiration, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Kun Ji
- Department of Respiration, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Liyun Wang
- Department of Respiration, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Effect of high-level fine particulate matter and its interaction with meteorological factors on AECOPD in Shijiazhuang, China. Sci Rep 2022; 12:8711. [PMID: 35610290 PMCID: PMC9130147 DOI: 10.1038/s41598-022-12791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Epidemiological evidence of the effect of high-level air pollution and its interaction with meteorological factors on the risk of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is limited. Daily data on AECOPD cases, air pollutants and meteorological factors were collected from 2015 to 2018 in Shijiazhuang. A distributed lag non-linear model (DLNM) was used to explore the lag and cumulative effect of PM2.5 on the risk of AECOPD. The effect of the interaction between PM2.5 and meteorological factors on AECOPD was estimated by a generalized additive model (GAM) and a stratification model. A total of 4766 patients with AECOPD were enrolled. After controlling for confounders, each 10 μg/m3 increase in PM2.5 led to a 5.8% increase in the risk of AECOPD on day lag 0. The cumulative effect of PM2.5 on AECOPD risk showed an increasing trend after 3 days. Similar results were observed in both smoking and non-smoking patients. There was an interaction between PM2.5 and meteorological factors, and the risk of AECOPD was higher in cold and lower humidity conditions than in other conditions. High-level PM2.5 exposure is positively associated with the risk of AECOPD onset, and the effect of PM2.5 can be modified by the temperature and relative humidity. Public health guidelines should pay close attention to AECOPD risk under the condition of high-level PM2.5 with low temperature or low humidity.
Collapse
|
26
|
Moradi M, Mokhtari A, Mohammadi MJ, Hadei M, Vosoughi M. Estimation of long-term and short-term health effects attributed to PM 2.5 standard pollutants in the air of Ardabil (using Air Q + model). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21508-21516. [PMID: 34761318 DOI: 10.1007/s11356-021-17303-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Clean air is considered as a basic need for human health. However, air pollution is a significant threat to health in developed and developing countries. The aim of this study was to estimate the health effects attributed to PM2.5 pollutants in the air of Ardabil in 2018 (using Air Q + model). Raw data related to particles were collected from the Department of Environment and processed in Excel software and converted into an input file of the Air Q + model, and in the final stage, by considering appropriate epidemiological parameters and combining these data with air quality data, it was possible to estimate the health effects of air pollution. The results showed that the average annual concentrations of PM2.5 and PM10 were 15.47 and 30.94 in the study year, respectively. The total number of deaths due to ALRI, COPD, lung cancer, IHD, and stroke deaths on average during the study period were estimated to be 73, 11, 7, 15, and 14 deaths, respectively, which include 14.62, 15.78, 4.9, 12.43, and 11.6% of deaths due to ALRI, COPD, lung cancer, IHD, and stroke deaths, respectively. In conditions of concentration above 5 µg/m3, attributed proportion, total number of attributed cases and number of attributed cases per 100,000 population (with moderate relative risk and confidence interval of 95%) for cardiovascular diseases have been estimated to be 0.95% 103 people and 42.19 people. Also, the attributed proportion, the total number of attributable cases, and the number of attributable cases per 100,000 population (with moderate relative risk and confidence of 95%) for the admission of respiratory diseases have been estimated at 97.1%, 68 persons and 3 persons, respectively. Our results suggest that particle exposure even at low concentrations is associated with an increased risk of overall mortality and specific cause mortality and hospital admissions for respiratory and cardiovascular diseases.
Collapse
Affiliation(s)
- Mina Moradi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Mokhtari
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Vosoughi
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran.
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
27
|
Jin JQ, Han D, Tian Q, Chen ZY, Ye YS, Lin QX, Ou CQ, Li L. Individual exposure to ambient PM 2.5 and hospital admissions for COPD in 110 hospitals: a case-crossover study in Guangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11699-11706. [PMID: 34545525 PMCID: PMC8794997 DOI: 10.1007/s11356-021-16539-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 05/22/2023]
Abstract
Few studies have evaluated the short-term association between hospital admissions and individual exposure to ambient particulate matter (PM2.5). Particularly, no studies focused on hospital admissions for chronic obstructive pulmonary disease (COPD) at the individual level. We assessed the short-term effects of PM2.5 on hospitalization admissions for COPD in Guangzhou, China, during 2014-2015, based on satellite-derived estimates of ambient PM2.5 concentrations at a 1-km resolution near the residential address as individual-level exposure for each patient. Around 40,002 patients with COPD admitted to 110 hospitals were included in this study. A time-stratified case-crossover design with conditional logistic regression models was applied to assess the effects of PM2.5 based on a 1-km grid data of aerosol optical depth provided by the National Aeronautics and Space Administration on hospital admissions for COPD. Further, we performed stratified analyses by individual demographic characteristics and season of hospital admission. Around 10 μg/m3 increase in individual-level PM2.5 was associated with an increase of 1.6% (95% confidence interval [CI]: 0.6%, 2.7%) in hospitalization for COPD at a lag of 0-5 days. The impact of PM2.5 on hospitalization for COPD was greater significantly in males and patients admitted in summer. Our study strengthened the evidence for the adverse effect of PM2.5 based on satellite-based individual-level exposure data.
Collapse
Affiliation(s)
- Jie-Qi Jin
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Dong Han
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Qi Tian
- Guangzhou Health Technology Identification & Human Resources Assessment Center, Guangzhou, 510080, China
| | - Zhao-Yue Chen
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Shao Ye
- Guangzhou Health Technology Identification & Human Resources Assessment Center, Guangzhou, 510080, China
| | - Qiao-Xuan Lin
- Guangzhou Health Technology Identification & Human Resources Assessment Center, Guangzhou, 510080, China
| | - Chun-Quan Ou
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Goin DE, Sudat S, Riddell C, Morello-Frosch R, Apte JS, Glymour MM, Karasek D, Casey JA. Hyperlocalized Measures of Air Pollution and Preeclampsia in Oakland, California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14710-14719. [PMID: 34648281 PMCID: PMC8968652 DOI: 10.1021/acs.est.1c02151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exposure to nitrogen dioxide (NO2), black carbon (BC), and ultrafine particles (UFPs) during pregnancy may increase the risk of preeclampsia, but previous studies have not assessed hyperlocalized differences in pollutant levels, which may cause exposure misclassification. We used data from Google Street View cars with mobile air monitors that repeatedly sampled NO2, BC, and UFPs every 30 m in Downtown and West Oakland neighborhoods during 2015-2017. Data were linked to electronic health records of pregnant women in the 2014-2016 Sutter Health population, who resided within 120 m of monitoring data (N = 1095), to identify preeclampsia cases. We used G-computation with log-binomial regression to estimate risk differences (RDs) associated with a hypothetical intervention reducing pollutant levels to the 25th percentile observed in our sample on preeclampsia risk, overall and stratified by race/ethnicity. Prevalence of preeclampsia was 6.8%. Median (interquartile range) levels of NO2, BC, and UFPs were 10.8 ppb (9.0, 13.0), 0.34 μg/m3 (0.27, 0.42), and 29.2 # × 103/cm3 (26.6, 32.6), respectively. Changes in the risk of preeclampsia achievable by limiting each pollutant to the 25th percentile were NO2 RD = -1.5 per 100 women (95% confidence interval (CI): -2.5, -0.5); BC RD = -1.0 (95% CI: -2.2, 0.02); and UFP RD = -0.5 (95% CI: -1.8, 0.7). Estimated effects were the largest for non-Latina Black mothers: NO2 RD = -2.8 (95% CI: -5.2, -0.3) and BC RD = -3.0 (95% CI: -6.4, 0.4).
Collapse
Affiliation(s)
- Dana E. Goin
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Francisco, San Francisco, California, 94158, United States of America
| | - Sylvia Sudat
- Research, Development and Dissemination, Sutter Health, Walnut Creek, California, 94596, United States of America
| | - Corinne Riddell
- Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, 94720, United States of America
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, 94720, United States of America
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy, and Management & School of Public Health, University of California, Berkeley, Berkeley, California, 94720, United States of America
| | - Joshua S. Apte
- Department of Civil and Environmental Engineering & School of Public Health, University of California, Berkeley, Berkeley, California, 94720, United States of America
| | - M. Maria Glymour
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, 94158, United States of America
| | - Deborah Karasek
- Preterm Birth Initiative, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, 94158, United States of America
| | - Joan A. Casey
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, 10032, United States of America
| |
Collapse
|
29
|
Zhuang J, Bai H, Sun J, Zhang T, Li J, Chen Y, Zhang H, Sun Q. The association between fine particulate matter and acute lower respiratory infections in Yancheng City, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61723-61731. [PMID: 34184226 DOI: 10.1007/s11356-021-15102-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Due to the rapid economic development and acceleration of industrialization, most cities in China are experiencing severe air pollution. Exposure to fine particulate matter (PM2.5) has been associated with acute lower respiratory tract infection (ALRI). To estimate associations between short-term exposure to PM2.5 and ALRI hospitalization in Yancheng City, China. This was a 6-year time-series study from 2014 to 2019. Data on hospitalization were collected from four high-ranked general hospitals, including for community-acquired pneumonia (CAP), acute exacerbation of chronic bronchitis (AECB), acute exacerbation of chronic obstructive pulmonary disease (AECOPD), and acute exacerbation of bronchiectasis (AEB), and the sum was termed total ALRIs. We obtained pollutant exposure data from five fixed monitoring stations. The association between PM2.5 and ALRI hospitalization was estimated using the generalized linear model with quasi-Poisson regression. Two-pollutant models were applied to test the robustness of the observed correlations. Subgroup analyses included sex, age, and season. During the study period, a total of 43,283 cases of total ALRIs were recorded. The average annual mean PM2.5 concentration was 45.4 ± 32.3 μg/m3. A 10-μg/m3 increase in PM2.5 concentration (lag 0) was significantly associated with increases in hospitalizations for total ALRIs (at 0.73%; 95% CI: 0.40%, 1.06%), in CAP (at 0.80%; 95% CI: 0.02%, 1.57%), in for AECOPD (1.08%; 95% CI: 0.38%, 1.78%), and AECB (0.67%; 95% CI: 0.23%, 1.11%). The estimated effects for total ALRIs and AECB were relatively robust with adjustment for other air pollutants. Associations between PM2.5 and total ALRIs were stronger in females, in the elderly, and in the cold season. PM2.5 exposure was significantly associated with ALRI morbidity, and females and older people were more susceptible to PM2.5 air pollution, especially in the cold season.
Collapse
Affiliation(s)
- Jin Zhuang
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Affiliated Hospital 4 of Nantong University, No. 166 Yulong West Road, Yancheng, Jiangsu Province, 224006, China
- School of Medicine, Nantong University, Nantong, Jiangsu Province, 224006, China
| | - Hongjian Bai
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Affiliated Hospital 4 of Nantong University, No. 166 Yulong West Road, Yancheng, Jiangsu Province, 224006, China
- School of Medicine, Nantong University, Nantong, Jiangsu Province, 224006, China
| | - Jian Sun
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Affiliated Hospital 4 of Nantong University, No. 166 Yulong West Road, Yancheng, Jiangsu Province, 224006, China
| | - Ting Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Affiliated Hospital 4 of Nantong University, No. 166 Yulong West Road, Yancheng, Jiangsu Province, 224006, China
| | - Jingjing Li
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Affiliated Hospital 4 of Nantong University, No. 166 Yulong West Road, Yancheng, Jiangsu Province, 224006, China
| | - Yanjun Chen
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Affiliated Hospital 4 of Nantong University, No. 166 Yulong West Road, Yancheng, Jiangsu Province, 224006, China
| | - Haiyan Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Affiliated Hospital 4 of Nantong University, No. 166 Yulong West Road, Yancheng, Jiangsu Province, 224006, China
| | - Qian Sun
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Affiliated Hospital 4 of Nantong University, No. 166 Yulong West Road, Yancheng, Jiangsu Province, 224006, China.
| |
Collapse
|
30
|
Jiang J, Wu D, Chen Y, Han Y, Jin W. Relationship between different air pollutants and total and cause-specific emergency ambulance dispatches in Shanghai, China. Int Arch Occup Environ Health 2021; 94:1709-1719. [PMID: 34319408 DOI: 10.1007/s00420-021-01743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Air pollutants play a crucial role in human health and disease. Emergency ambulance dispatch data have excellent potential for public and environmental health research. This study aimed at investigating the impact of short-term exposure to air pollutants on the emergency ambulance dispatches. METHODS We used data on emergency ambulance dispatches in Shanghai Municipality, China, from April 1, 2016 to December 31, 2017. The association of the daily emergency ambulance dispatches with air pollutants including PM2.5 (particles ≤ 2.5 μm in aerodynamic diameter), PM10, O3, NO2 and SO2 was analyzed with the use of time-series analyses. RESULTS A total of 310,825 emergency ambulance dispatches for acute illness occurred in Shanghai during the study period. An increase in PM2.5 by 10 μg/m3 at lag1 and lag2 was shown to increase the risk of emergency ambulance dispatches (RR for lag1 = 1.05, 95% CI 1.00-1.11, RR for lag2 = 1.07, 95% CI 1.01-1.12). PM10, NO2, and SO2 also showed significant associations with emergency ambulance dispatches in single-pollutant models. Cause-specific analyses showed an elevation in PM2.5 by 10 μg/m3 was associated with an increased risk of emergency ambulance dispatches related to respiratory diseases on the current day (lag0, RR 1.17, 95% CI 1.01-1.33), while the impact on emergency ambulance dispatches related to other diseases presented 1-3 days later. The other pollutants have the similar trend. CONCLUSIONS Our findings show a strong relationship between ambient air pollutants and emergency ambulance dispatches. Our study contributes to the growing body of evidence describing the adverse health effects of ambient air pollution and will benefit ambulance services for early warning and effective ambulatory planning.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Degen Wu
- Shanghai Medical Emergency Center, No. 638, Yishan Road, Shanghai, China
| | - Yanjia Chen
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Yanxin Han
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Wei Jin
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China.
| |
Collapse
|
31
|
Li M, Chen S, Zhao H, Tang C, Lai Y, Ung COL, Su J, Hu H. The short-term associations of chronic obstructive pulmonary disease hospitalizations with meteorological factors and air pollutants in Southwest China: a time-series study. Sci Rep 2021; 11:12914. [PMID: 34155257 PMCID: PMC8217527 DOI: 10.1038/s41598-021-92380-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/31/2021] [Indexed: 11/09/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth major cause of mortality and morbidity worldwide and is projected to be the third by 2030. However, there is little evidence available on the associations of COPD hospitalizations with meteorological factors and air pollutants in developing countries/regions of Asia. In particular, no study has been done in western areas of China considering the nonlinear and lagged effects simultaneously. This study aims to evaluate the nonlinear and lagged associations of COPD hospitalizations with meteorological factors and air pollutants using time-series analysis. The modified associations by sex and age were also investigated. The distributed lag nonlinear model was used to establish the association of daily COPD hospitalizations of all 441 public hospitals in Chengdu, China from Jan/2015-Dec/2017 with the ambient meteorological factors and air pollutants. Model parameters were optimized based on quasi Akaike Information Criterion and model diagnostics was conducted by inspecting the deviance residuals. Subgroup analysis by sex and age was also performed. Temperature, relative humidity, wind and Carbon Monoxide (CO) have statistically significant and consistent associations with COPD hospitalizations. The cumulative relative risk (RR) was lowest at a temperature of 19℃ (relative humidity of 67%). Both extremely high and low temperature (and relative humidity) increase the cumulative RR. An increase of wind speed above 4 mph (an increase of CO above 1.44 mg/m3) significantly decreases (increases) the cumulative RR. Female populations were more sensitive to low temperature and high CO level; elderly (74+) populations are more sensitive to high relative humidity; younger populations (< = 74) are more susceptible to CO higher than 1.44 mg/m3. Therefore, people with COPD should avoid exposure to adverse environmental conditions of extreme temperatures and relative humidity, low wind speed and high CO level, especially for female and elderly patients who were more sensitive to extreme temperatures and relative humidity.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Shengqi Chen
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Hanqing Zhao
- Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Chengxiang Tang
- School of Public Administration, Guangzhou University, Guangzhou, China
| | - Yunfeng Lai
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Carolina Oi Lam Ung
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jinya Su
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK.
| | - Hao Hu
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
32
|
Li X, Cheng H, Fang Y, Chen Z, Qi G, Chen R, Kan H, Liu C, Cao J. Association between fine particulate matter and heart failure hospitalizations: a time-series analysis in Yancheng, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26906-26912. [PMID: 33501575 DOI: 10.1007/s11356-021-12428-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Heart failure (HF) is a global public health problem of increasing importance. The association between acute exposure to air pollution and HF has been well established in developed countries, but little evidence is available in developing countries where air pollution levels are much higher. OBJECTIVES To explore the associations between PM2.5 and HF hospitalizations in Yancheng, China. METHODS In this time-series study, daily HF hospitalizations admitted in three major hospitals in Yancheng from May 1, 2015 to Apr 30, 2020 were collected. We used a generalized additive model with quasi-Poisson regression to investigate the association between PM2.5 and HF hospitalizations. The robustness of the associations was tested using two-pollutant models, and we examined the potential effect modification by age, gender, and season via stratification analyses. Lastly, we pooled the concentration-response curves. RESULTS A total of 10,466 HF hospitalizations were recorded, with a daily average of 6 cases. We observed the most robust estimates on lag 0 day, and the associated increment in HF was 1.28% (95% CI 0.45%, 2.11%) for a 10-μg/m3 increase of PM2.5. The association remained after adjustment of O3, but not for NO2, CO, and SO2. The PM2.5-HF associations were positive in females, patients aged ≥ 65 years, and in cold season. The C-R relationship curve was generally increasing below 30 μg/m3. CONCLUSION This study provided evidence on the association of PM2.5 with acute exacerbation of chronic heart failure, which may benefit future prevention strategy and policymaking.
Collapse
Affiliation(s)
- Xu Li
- Department of Cardiology, Yancheng Hospital Affiliated to Xuzhou Medical University and the First Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224006, China
| | - Hongyi Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yan Fang
- Department of Cardiology, Yancheng Hospital Affiliated to Xuzhou Medical University and the First Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224006, China
| | - Zhichao Chen
- Department of Cardiology, Yancheng Hospital Affiliated to Xuzhou Medical University and the First Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224006, China
| | - Guangyu Qi
- Department of Hematology, Yancheng Hospital Affiliated to Xuzhou Medical University and the First Hospital of Yancheng, Yancheng, 224006, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, No.130 Dong-An Road, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, No.130 Dong-An Road, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, No.130 Dong-An Road, Shanghai, 200032, China.
| | - Jingyan Cao
- Department of Cardiology, Yancheng Hospital Affiliated to Xuzhou Medical University and the First Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224006, China.
| |
Collapse
|
33
|
Zhang F, Zhang Y, Liu L, Jiao A, Chen D, Xiang Q, Fang J, Ding Z, Zhang Y. Assessing PM 2.5-associated risk of hospitalization for COPD: an application of daily excessive concentration hours. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30267-30277. [PMID: 33590391 DOI: 10.1007/s11356-021-12655-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Existing PM2.5-morbidity studies using daily mean concentration as exposure metric may fail to capture intra-day variations of PM2.5 concentrations, resulting in underestimated health impacts to some extent. This study introduced a novel indicator, daily excessive concentration hours (DECH), defined as sums of per-hourly excessive concentrations of PM2.5 against a specific threshold within a day. PM2.5 DECHs were separately calculated as daily concentration-hours >8, 10, 15, 20, and 25 μg/m3 (abbreviations: DECH-8, DECH-10, DECH-15, DECH-20, and DECH-25). We adopted a time-stratified case-crossover design with conditional logistic regression models to compare risks of hospitalizations for chronic obstructive pulmonary disease (COPD) associated with PM2.5 mean and DECHs in Shenzhen, China. We observed highly comparable PM2.5-COPD associations using exposure metrics of daily mean and DECHs with above-defined thresholds. For instance, PM2.5 mean and DECHs showed similar increases in risks of COPD hospitalization for an interquartile range rise in exposure, with odds ratio estimates of 1.26 (95% confidence interval: 1.06-1.50) for PM2.5 mean, 1.24 (1.05-1.46) for DECH-10 and 1.21 (1.06-1.39) for DECH-25, respectively. Findings remained robust after further adjusting for gaseous pollutants (e.g., SO2, NO2, CO, and O3) and meteorologic factors (e.g., wind speed and air pressure). Our study strengthened the evidence that DECHs could come be as a novel exposure metric in health risk assessments associated with short-term exposure to ambient PM2.5.
Collapse
Affiliation(s)
- Faxue Zhang
- Center of Health Administration and Development Studies, Hubei University of Medicine, Shiyan, 442000, China
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuanyuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Linjiong Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Anqi Jiao
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Dieyi Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Qianqian Xiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Jiaying Fang
- Medical Department, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, China
| | - Zan Ding
- The Institute of Metabolic Diseases, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, 518102, Guangdong, China
| | - Yunquan Zhang
- Center of Health Administration and Development Studies, Hubei University of Medicine, Shiyan, 442000, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
34
|
Shin HH, Parajuli RP, Gogna P, Maquiling A, Dehghani P. Pollutant-sex specific differences in respiratory hospitalization and mortality risk attributable to short-term exposure to ambient air pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143135. [PMID: 33168238 DOI: 10.1016/j.scitotenv.2020.143135] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Many studies have reported associations of individual pollutants with respiratory hospitalization and mortality based on different populations, which makes it difficult to directly compare adverse health effects among multiple air pollutants. OBJECTIVES The study goal is to compare acute respiratory-related hospitalization and mortality associated with short-term exposure to three ambient air pollutants and analyze differences in health risks by season, age and sex. METHODS Hourly measurements of air pollutants (ozone, NO2, PM2.5) and temperature were collected from ground-monitors for 24 cities along with daily hospitalization (1996-2012) and mortality (1984-2012) data. National associations between air pollutant and health outcome were estimated for season (warm, cold vs. year-round), age (base ≥ 1, seniors > 65), and sex (females ≥ 1 and males ≥ 1) using Bayesian hierarchical models. RESULTS Overall, the three air pollutants were significantly associated with acute respiratory health outcomes at different lag-days. For respiratory hospitalization, the increased risks in percent changes with 95% posterior intervals for a 10-unit increase in each pollutant were: ozone (lag1, 0.7% (0.4, 0.9)), NO2 (lag0, 0.7% (0.1, 1.4)), and PM2.5 (lag1, 1.3% (0.7, 1.9)). For respiratory mortality: ozone (lag2, 1.2% (0.4, 1.9)), NO2 (lag1, 2.1% (0.6, 3.5)), and PM2.5 (lag1, 0.6% (-1.0, 2.2)). While some differences in risk were observed by season and age group, sex-specific differences were more pronounced. Compared with males, females had a higher respiratory mortality risk (1.8% (0.6, 2.9) vs 0.5% (-0.3, 1.3)) from ozone, a higher respiratory hospitalization risk (0.9% (0.0, 1.8) vs 0.6% (-0.3, 1.4)) but lower mortality risk (1.4% (-1.0, 3.7) vs 2.2% (0.4, 4.0)) from NO2, and a lower hospitalization risk (0.7% (-0.2, 1.7) vs 1.8% (1.0, 2.6)) from PM2.5. CONCLUSION This study reports significant health effects of short-term exposure to three ambient air pollutants on respiratory hospitalization (ozone≈NO2 < PM2.5 per-10 unit; ozone>NO2 ≈ PM2.5 per-IQR) and mortality (ozone≈NO2 > PM2.5) in Canada. Pollutant-sex-specific differences were found, but inconclusive due to limited biological and physiological explanations. Further studies are warranted to understand the pollutant-sex specific differences.
Collapse
Affiliation(s)
- Hwashin Hyun Shin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada.
| | | | - Priyanka Gogna
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada.
| | - Aubrey Maquiling
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Parvin Dehghani
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
35
|
Chen C, Liu S, Dong W, Song Y, Chu M, Xu J, Guo X, Zhao B, Deng F. Increasing cardiopulmonary effects of ultrafine particles at relatively low fine particle concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141726. [PMID: 32889464 DOI: 10.1016/j.scitotenv.2020.141726] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Ultrafine particles (UFPs) are of concern because of their high pulmonary deposition efficiency. However, present control measures are generally targeted at fine particles (PM2.5), with little effect on UFPs. The health effects of UFPs at different PM2.5 concentrations may provide a basic for controlling UFPs but remain unclear in polluted areas. School children spend the majority of their time in the classrooms. This study investigated the different short-term effects of indoor UFPs on school children in Beijing, China when indoor PM2.5 concentrations exceeded or satisfied the recently published Chinese standard for indoor PM2.5. Cardiopulmonary functions of 48 school children, of whom 46 completed, were measured three times. Indoor PM2.5 and UFPs were monitored in classrooms on weekdays. Measurements were separated into two groups according to the abovementioned standard. Mixed-effect models were used to explore the health effects of the air pollutants. Generally, UFP-associated effects on children's cardiopulmonary function persisted even at relatively low PM2.5 concentrations, especially on heart rate variability indices. The risks associated with high PM2.5 concentrations are well-known, but the effects of UFPs on children's cardiopulmonary function deserve more attention even when PM2.5 has been controlled. UFP control and standard setting should therefore be considered.
Collapse
Affiliation(s)
- Chen Chen
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Mengtian Chu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
36
|
Samoli E, Rodopoulou S, Schneider A, Morawska L, Stafoggia M, Renzi M, Breitner S, Lanki T, Pickford R, Schikowski T, Enembe O, Zhang S, Zhao Q, Peters A. Meta-analysis on short-term exposure to ambient ultrafine particles and respiratory morbidity. Eur Respir Rev 2020; 29:200116. [PMID: 33115789 PMCID: PMC9488642 DOI: 10.1183/16000617.0116-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/22/2020] [Indexed: 11/24/2022] Open
Abstract
AIM There is growing interest in the health effects following exposure to ambient particles with a diameter <100 nm defined as ultrafine particles (UFPs), although studies so far have reported inconsistent results. We have undertaken a systematic review and meta-analysis for respiratory hospital admissions and emergency room visits following short-term exposure to UFPs. METHODS We searched PubMed and the Web of Science for studies published up to March 2019 to update previous reviews. We applied fixed- and random-effects models, assessed heterogeneity between cities and explored possible effect modifiers. RESULTS We identified nine publications, reporting effects from 15 cities, 11 of which were European. There was great variability in exposure assessment, outcome measures and the exposure lags considered. Our meta-analyses did not support UFP effects on respiratory morbidity across all ages. We found consistent statistically significant associations following lag 2 exposure during the warm period and in cities with mean daily UFP concentrations <6000 particles·cm‒3, which was approximately the median of the city-specific mean levels. Among children aged 0-14 years, a 10 000 particle·cm‒3 increase in UFPs 2 or 3 days before was associated with a relative risk of 1.01 (95% CI 1.00-1.02) in respiratory hospital admissions. CONCLUSIONS Our study indicates UFP effects on respiratory health among children, and during the warm season across all ages at longer lags. The limited evidence and the large heterogeneity of previous reports call for future exposure assessment harmonisation and expanded research.
Collapse
Affiliation(s)
- Evangelia Samoli
- Dept of Hygiene, Epidemiology and Medical Statistics, Medical school, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Rodopoulou
- Dept of Hygiene, Epidemiology and Medical Statistics, Medical school, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | | | - Matteo Renzi
- Dept of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE-Chair of Epidemiology, Ludwig Maximilians Universität München, Munich, Germany
| | - Timo Lanki
- Finnish Institute for Health and Welfare, Kuopio, Finland
- University of Eastern Finland, Dept of Environmental and Biological Sciences, Kuopio, Finland
- University of Eastern Finland, School of Medicine, Kuopio, Finland
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Okokon Enembe
- Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Qi Zhao
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE-Chair of Epidemiology, Ludwig Maximilians Universität München, Munich, Germany
| |
Collapse
|
37
|
Lin YC, Zhang YL, Song W, Yang X, Fan MY. Specific sources of health risks caused by size-resolved PM-bound metals in a typical coal-burning city of northern China during the winter haze event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:138651. [PMID: 32460085 DOI: 10.1016/j.scitotenv.2020.138651] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
High particulate matter (PM) pollution frequently occurs in winter over northern China , resulting in threats to human health. To date, there are limited studies to link source apportionments and health risk assessments in the different size-resolved PM samples during high PM events. In this study, size-segregated PM samples were collected in Linfen, a typical coal-burning city, in northern China during a wintertime haze pollution. In addition to water-soluble ions and carbon contents, metallic elements in the different size-segregated PM samples were also determined for health risk assessments by inhalation of PM. During the sampling period, the average concentration of PM10 was 274 ± 57 μg m-3 with a major fraction (73%) of organic material and secondary-related aerosols, and an insignificant portion of trace elements (TEs, ~ 3%). The size distribution showed that As and Se, markers of coal combustion, exhibited a mono-modal distribution with a major peak at 0.4-0.7 μm and the others mostly possessed mono-/bi-modal patterns with a major peak at 3.3-5.8 μm. The cancer risk (CR) resulted from PM10 metals by inhalation was estimated to be 2.91 × 10-5 for children and 7.75 × 10-5 for adults while non-cancer risk (NCR) was 2.10 for children and 0.70 for adults. Chromium (Cr) was the dominant species (~89%) of cancer risk in PM10. Road dust was a major fraction (~65%) to total metals in coarse PM (dp > 3.3 μm) whereas coal combustion was a dominant source (~55%) in submicron (dp < 1.1 μm) PM metals. However, traffic emissions (40%) and coal combustion (36%) were the dominant sources of CR since both emissions contributed major fractions (74%) to Cr, especially in submicron PM which exhibited high deposition efficiency of TEs into respiratory tracts, resulting in high CR in Linfen City.
Collapse
Affiliation(s)
- Yu-Chi Lin
- Yale-NUIST Center on Atmospheric Environment, School of Applied Meteorology, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan-Lin Zhang
- Yale-NUIST Center on Atmospheric Environment, School of Applied Meteorology, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Wenhuai Song
- Yale-NUIST Center on Atmospheric Environment, School of Applied Meteorology, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaoying Yang
- Yale-NUIST Center on Atmospheric Environment, School of Applied Meteorology, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mei-Yi Fan
- Yale-NUIST Center on Atmospheric Environment, School of Applied Meteorology, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
38
|
Lin CY, Li D, Lu JM, Yu ZB, Zhu Y, Shen P, Tang ML, Jin MJ, Lin HB, Shui LM, Chen K, Wang JB. Short-term associations between ambient fine particulate matter pollution and hospital visits for chronic obstructive pulmonary disease in Yinzhou District, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21647-21653. [PMID: 32279255 DOI: 10.1007/s11356-020-08448-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Ambient particulate matter is one of the main risk factors of chronic obstructive pulmonary disease (COPD) in developing countries. However, the studies were scant in China concerning the health effects of the fine particulate matter (PM2.5; particulate matter ≤ 2.5 μm in diameter) on hospital visits for COPD. We applied a generalized additive model (GAM) to calculate relative risks (RRs) with 95% confidence intervals (CIs) for the associations between hospital visits for COPD and an interquartile range (24.50 μg/m3) increment of ambient PM2.5 concentrations in Yinzhou District between 2016 and 2018. The ambient PM2.5 concentration was positively associated with hospital visits for COPD at a distributed lag of 0-7 days (RR = 1.073, 95% CI, 1.016, 1.133). In the stratified analysis, we found that the association between ambient PM2.5 and COPD was stronger during the warm season (April to September) than that during the cold season (October to March), but we did not observe statistically significant differences in age groups (< 60 years and ≥ 60 years) or gender groups (male and female) related to the effects of PM2.5. The associations between ambient PM2.5 and COPD became partially attenuated after the adjustment for gaseous pollutants in subgroups. Our findings could provide evidence that regulations for controlling both PM2.5 and gaseous pollutants should be implemented to protect the overall population.
Collapse
Affiliation(s)
- Cheng-Yi Lin
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Die Li
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie-Ming Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhe-Bin Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yao Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peng Shen
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Meng-Ling Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Juan Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Bo Lin
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Li-Ming Shui
- Yinzhou District Health Bureau of Ningbo, Ningbo, Zhejiang, China
| | - Kun Chen
- Department of Epidemiology and Biostatistics and the Second Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| | - Jian-Bing Wang
- Department of Epidemiology and Biostatistics, the Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
39
|
Zhu RX, Nie XH, Chen YH, Chen J, Wu SW, Zhao LH. Relationship Between Particulate Matter (PM2.5) and Hospitalizations and Mortality of Chronic Obstructive Pulmonary Disease Patients: A Meta-Analysis. Am J Med Sci 2020; 359:354-364. [DOI: 10.1016/j.amjms.2020.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
|
40
|
Gestro M, Condemi V, Bardi L, Tomaino L, Roveda E, Bruschetta A, Solimene U, Esposito F. Short-term air pollution exposure is a risk factor for acute coronary syndromes in an urban area with low annual pollution rates: Results from a retrospective observational study (2011-2015). Arch Cardiovasc Dis 2020; 113:308-320. [PMID: 32359859 DOI: 10.1016/j.acvd.2020.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Epidemiological data suggest that air pollutants are risk factors for cardiovascular disease. Recent studies have questioned the adequacy of current legal pollutant limits, because concentrations lower than those recommended still affect cardiovascular morbidity and mortality. AIM To investigate the association between short-term exposure to air pollutants and the daily diagnosis of acute coronary syndrome (ACS) at the emergency department (ED) of S. Croce Hospital (Cuneo, Italy), between 2011 and 2015. METHODS We evaluated the effect of particulate matter (PM2.5-10), nitrogen dioxide and ozone as primary exposure, together with temperature and relative humidity as climatological control variables, on ED admissions for ACS (response variables). We studied residents aged ≥35 years, classified into three age groups (35-64, 65-74 and ≥75 years). Environmental data were analysed according to Poisson's regression, and conventional cardiovascular risk factors (CRFs; hypertension, diabetes, coronary artery disease, smoking and dyslipidaemia) were included as control variables. RESULTS ED admissions for ACS were 1625/391,689, with 298 in 2011 (0.183%), 305 in 2012 (0.188%), 347 in 2013 (0.214%), 341 in 2014 (0.21%) and 334 in 2015 (0.206%), with a general growth rate of 2.08% (from 2011 to 2015). The CRFs examined were confirmed to be highly associated with occurrence of ACS. Our study identified PM2.5 and temperature in all age groups to be additional risk factors, with PM2.5 exposure (P<0.01) being a particular risk for those aged ≥75 years. Dose-response models confirmed only PM2.5 as the main environmental risk factor in elderly patients (relative risk 1.06, 95% confidence interval 1.02-1.11; lag time 0-3 days). We also found a consistent relative risk for temperature in all age groups. CONCLUSION This study confirms the importance of PM2.5 as a risk factor for ACS, mostly in elderly patients, even in a city with low annual pollution rates.
Collapse
Affiliation(s)
- Massimo Gestro
- Department of Biomedical Science for Health, University of Milan, Via Colombo 71, 20133 Milano, Italy
| | - Vincenzo Condemi
- Department of Biomedical Science for Health, University of Milan, Via Colombo 71, 20133 Milano, Italy.
| | - Luisella Bardi
- Cuneo Department, Environmental Protection Agency of Piedmont, 10135 Turin, Italy
| | - Laura Tomaino
- Department of Clinical Science and Community Health (DISCCO), University of Milan, 20122 Milan, Italy
| | - Eliana Roveda
- Department of Biomedical Science for Health, University of Milan, Via Colombo 71, 20133 Milano, Italy; IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| | | | - Umberto Solimene
- Department of Biomedical Science for Health, University of Milan, Via Colombo 71, 20133 Milano, Italy
| | - Fabio Esposito
- Department of Biomedical Science for Health, University of Milan, Via Colombo 71, 20133 Milano, Italy; IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| |
Collapse
|
41
|
Chen N, Shi J, Huang J, Yu W, Liu R, Gu L, Yang R, Yu Z, Liu Q, Yang Y, Cui S, Wang Z. Impact of air pollutants on pediatric admissions for Mycoplasma pneumonia: a cross-sectional study in Shanghai, China. BMC Public Health 2020; 20:447. [PMID: 32252726 PMCID: PMC7132958 DOI: 10.1186/s12889-020-8423-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/27/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Children are especially vulnerable to pneumonia and the effects of air pollution. However, little is known about the impacts of air pollutants on pediatric admissions for Mycoplasma pneumonia. This study was conducted to investigate the impacts of air pollutants on pediatric hospital admissions for Mycoplasma pneumonia in Shanghai, China. METHODS A cross-sectional design was applied to explore the association between pediatric hospital admissions and levels of air pollutants (fine particulate matter, particulate matter, ozone, sulfur dioxide, nitrogen dioxide, and carbon monoxide). Data on hospital admissions for pneumonia and levels of ambient air pollutants were obtained for the period of 2015 to 2018. Associations between pediatric admissions for Mycoplasma pneumonia and ambient air pollutants were calculated using logistic regression and described by the odds ratio and relevant 95% confidence interval. The hysteresis effects of air pollutants from the day of hospital admission to the previous 7 days were evaluated in single-pollutant models and multi-pollutant models with adjustments for weather variables and seasonality. Lag 0 was defined as the day of hospital admission, lag 1 was defined as the day before hospital admission, and so forth. RESULTS In the single-pollutant models (without adjustment for other pollutants), pediatric hospital admissions for pneumonia were positively associated with elevated concentrations of nitrogen dioxide and fine particulate matter. A 0.5% increase in daily admissions per 10-μg/m3 increase in the nitrogen dioxide level occurred at lag 1 and lag 2, and a 0.3% increase in daily admissions per 10-μg/m3 increase in fine particulate matter occurred at lag 1. In the multi-pollutant models, nitrogen dioxide and fine particulate matter remained significant after inclusion of particulate matter, ozone, sulfur dioxide, and carbon monoxide. CONCLUSIONS This study illustrated that higher levels of nitrogen dioxide and fine particulate matter increase the risk of pediatric hospitalization for Mycoplasma pneumonia in Shanghai, China. These findings imply that the high incidence of Mycoplasma pneumonia in children in Asia might be attributed to the high concentration of specific air pollutants in Asia.
Collapse
Affiliation(s)
- Ning Chen
- Department of Pediatrics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
- School of Medicine, Tongji University, Shanghai, 200092 China
| | - Jianwei Shi
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 South Chongqing Rd, Shanghai, 200025 China
- Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090 China
| | - Jiaoling Huang
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 South Chongqing Rd, Shanghai, 200025 China
| | - Wenya Yu
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 South Chongqing Rd, Shanghai, 200025 China
| | - Rui Liu
- Department of Pediatrics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Li Gu
- Department of Pediatrics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Zhaohu Yu
- Navy 971 Hospital, Qingdao, 266071 China
| | - Qian Liu
- School of Economics & Management, Tongji University, Shanghai, 200092 China
| | - Yan Yang
- School of Economics & Management, Tongji University, Shanghai, 200092 China
| | - Sainan Cui
- Department of Pediatrics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Zhaoxin Wang
- Department of Pediatrics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 South Chongqing Rd, Shanghai, 200025 China
- General Practice Center, Nanhai Hospital, Southern Medical University, Foshan, 528244 China
| |
Collapse
|
42
|
Mirabelli MC, Ebelt S, Damon SA. Air Quality Index and air quality awareness among adults in the United States. ENVIRONMENTAL RESEARCH 2020; 183:109185. [PMID: 32007750 PMCID: PMC7182097 DOI: 10.1016/j.envres.2020.109185] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Information about local air quality is reported across the United States using air quality alerts such as the Environmental Protection Agency's Air Quality Index. However, the role of such alerts in raising awareness of air quality is unknown. We conducted this study to evaluate associations between days with Air Quality Index ≥101, corresponding to a categorization of air quality as unhealthy for sensitive groups, unhealthy, very unhealthy, or hazardous, and air quality awareness among adults in the United States. METHODS Data from 12,396 respondents to the 2016-2018 ConsumerStyles surveys were linked by geographic location and survey year to daily Air Quality Index data. We evaluated associations between the number of days in the past year with Air Quality Index ≥101 and responses to survey questions about awareness of air quality alerts, perception of air quality, and changes in behavior to reduce air pollution exposure using logistic regression. RESULTS Awareness of air quality alerts (prevalence ratio [PR] = 1.23; 95% confidence interval [CI] = 1.15, 1.31), thinking/being informed air quality was bad (PR = 2.02; 95% CI = 1.81, 2.24), and changing behavior (PR = 2.27; 95% CI = 1.94, 2.67) were higher among respondents living in counties with ≥15 days with Air Quality Index ≥101 than those in counties with zero days in the past year with Air Quality Index ≥101. Each aspect of air quality awareness was higher among adults with than without asthma, but no differences were observed by heart disease status. Across quintiles of the number of days with Air Quality Index ≥101, air quality awareness increased among those with and without selected respiratory and cardiovascular diseases. CONCLUSIONS Among U.S. adults, air quality awareness increases with increasing days with alerts of unhealthy air. These findings improve our understanding of the extent to which air quality alerts prompt people to take actions to protect their health amidst poor air quality.
Collapse
Affiliation(s)
- Maria C Mirabelli
- Asthma and Community Health Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Mailstop S106-6, Atlanta, GA, 30341, USA.
| | - Stefanie Ebelt
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | - Scott A Damon
- Asthma and Community Health Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Mailstop S106-6, Atlanta, GA, 30341, USA.
| |
Collapse
|
43
|
Farhadi Z, Abulghasem Gorgi H, Shabaninejad H, Aghajani Delavar M, Torani S. Association between PM 2.5 and risk of hospitalization for myocardial infarction: a systematic review and a meta-analysis. BMC Public Health 2020; 20:314. [PMID: 32164596 PMCID: PMC7068986 DOI: 10.1186/s12889-020-8262-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background It is generally assumed that there have been mixed results in the literature regarding the association between ambient particulate matter (PM) and myocardial infarction (MI). The aim of this meta-analysis was to explore the rate of short-term exposure PM with aerodynamic diameters ≤2.5 μm (PM2.5) and examine its potential effect(s) on the risk of MI. Methods A systematic search was conducted on databases like PubMed, Scopus, Web of Science, and Embase with components: “air pollution” and “myocardial infarction”. The summary relative risk (RR) and 95% confidence intervals (95%CI) were also calculated to assess the association between the PM2.5 and MI. Results Twenty-six published studies were ultimately identified as eligible candidates for the meta-analysis of MI until Jun 1, 2018. The results illustrated that a 10-μg/m 3 increase in PM2.5 was associated with the risk of MI (RR = 1.02; 95% CI 1.01–1.03; P ≤ 0.0001). The heterogeneity of the studies was assessed through a random-effects model with p < 0.0001 and the I2 was 69.52%, indicating a moderate degree of heterogeneity. We also conducted subgroup analyses including study quality, study design, and study period. Accordingly, it was found that subgroups time series study design and high study period could substantially decrease heterogeneity (I2 = 41.61, 41.78). Conclusions This meta-analysis indicated that exposure – response between PM2.5 and MI. It is vital decision makers implement effective strategies to help improve air pollution, especially in developing countries or prevent exposure to PM2.5 to protect human health.
Collapse
Affiliation(s)
- Zeynab Farhadi
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hasan Abulghasem Gorgi
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran. .,Department of Health Economics, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Hosein Shabaninejad
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mouloud Aghajani Delavar
- Infertility and Reproductive Health Research Center, Research Institute for Health, Babol University of Medical Sciences, Babol, Iran
| | - Sogand Torani
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Yang L, Li C, Tang X. The Impact of PM 2.5 on the Host Defense of Respiratory System. Front Cell Dev Biol 2020; 8:91. [PMID: 32195248 PMCID: PMC7064735 DOI: 10.3389/fcell.2020.00091] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The harm of fine particulate matter (PM2.5) to public health is the focus of attention around the world. The Global Burden of Disease (GBD) Study 2015 (GBD 2015 Risk Factors Collaborators, 2016) ranked PM2.5 as the fifth leading risk factor for death, which caused 4.2 million deaths and 103.1 million disability-adjusted life-years (DALYs) loss, representing 7.6% of total global deaths and 4.2% of global DALYs. Epidemiological studies have confirmed that exposure to PM2.5 increases the incidence and mortality of respiratory infections. The host defense dysfunction caused by PM2.5 exposure may be the key to the susceptibility of respiratory system infection. Thus, this review aims to assess the impact of PM2.5 on the host defense of respiratory system. Firstly, we elaborated the epidemiological evidence that exposure to PM2.5 increases the risk of respiratory infections. Secondly, we summarized the experimental evidence that PM2.5 exposure increases the susceptibility of different pathogens (including bacteria and viruses) in respiratory system. Furthermore, here we discussed the underlying host defense mechanisms by which PM2.5 exposure increases the risk of respiratory infections as well as future perspectives.
Collapse
Affiliation(s)
- Liyao Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cheng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoxiao Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
45
|
Quantifying the Health Burden Misclassification from the Use of Different PM 2.5 Exposure Tier Models: A Case Study of London. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031099. [PMID: 32050474 PMCID: PMC7037921 DOI: 10.3390/ijerph17031099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022]
Abstract
Exposure to PM2.5 has been associated with increased mortality in urban areas. Hence, reducing the uncertainty in human exposure assessments is essential for more accurate health burden estimates. Here, we quantified the misclassification that occurred when using different exposure approaches to predict the mortality burden of a population using London as a case study. We developed a framework for quantifying the misclassification of the total mortality burden attributable to exposure to fine particulate matter (PM2.5) in four major microenvironments (MEs) (dwellings, aboveground transportation, London Underground (LU) and outdoors) in the Greater London Area (GLA), in 2017. We demonstrated that differences exist between five different exposure Tier-models with incrementally increasing complexity, moving from static to more dynamic approaches. BenMap-CE, the open source software developed by the U.S. Environmental Protection Agency, was used as a tool to achieve spatial distribution of the ambient concentration by interpolating the monitoring data to the unmonitored areas and ultimately estimating the change in mortality on a fine resolution. Indoor exposure to PM2.5 is the largest contributor to total population exposure concentration, accounting for 83% of total predicted population exposure, followed by the London Underground, which contributes approximately 15%, despite the average time spent there by Londoners being only 0.4%. After incorporating housing stock and time-activity data, moving from static to most dynamic metric, Inner London showed the highest reduction in exposure concentration (i.e., approximately 37%) and as a result the largest change in mortality (i.e., health burden/mortality misclassification) was observed in central GLA. Overall, our findings showed that using outdoor concentration as a surrogate for total population exposure but ignoring different exposure concentration that occur indoors and time spent in transit, led to a misclassification of 1174–1541 mean predicted mortalities in GLA. We generally confirm that increasing the complexity and incorporating important microenvironments, such as the highly polluted LU, could significantly reduce the misclassification of health burden assessments.
Collapse
|
46
|
Peng L, Xiao S, Gao W, Zhou Y, Zhou J, Yang D, Ye X. Short-term associations between size-fractionated particulate air pollution and COPD mortality in Shanghai, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113483. [PMID: 31677877 DOI: 10.1016/j.envpol.2019.113483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Particulate air pollution is a continuing challenge in China, and its adverse effects on chronic obstructive pulmonary disease (COPD) have been widely reported. However, epidemiological evidence on the associations between size-fractionated particle number concentrations (PNCs) and COPD mortality is limited. In this study, we utilized a time-series approach to investigate the associations between PNCs of particles at 0.25-10 μm in diameter and COPD mortality in Shanghai, China. Quasi-Poisson regression generalized additive models were applied to evaluate these associations, with adjustment of time trend, day of week, holidays, temperature and relative humidity. Stratification analyses were performed by season and gender. There were a total of 3238 deaths due to COPD during the study period. We found that daily COPD deaths were significantly associated with PNCs of particles <0.5 μm, and the magnitude of associations increased with decreasing particle size. An interquartile range (IQR) increase in PNC0.25-0.28, PNC0.28-0.3, PNC0.3-0.35, PNC0.35-0.4, PNC0.4-0.45 and PNC0.45--0.5 was associated with increments of 7.51% (95%CI: 2.45%, 12.81%), 7.22% (95%CI: 2.16%, 12.53%), 6.95% (95%CI: 1.81%, 12.35%), 6.26% (95%CI: 1.25%, 11.52%), 5.24% (95%CI: 0.56%, 10.13%) and 4.15% (95%CI: 0.14%, 8.32%), respectively. The associations remained robustness after controlling for the mass concentrations of gaseous air pollutants. In stratification analyses, significant associations between PNCs and COPD mortality were observed in the cold seasons, and in males. Our results suggested that particles <0.5 μm in diameter might be most responsible for the adverse effects of particulate air pollution on COPD mortality, and COPD patients are more susceptible to PM air pollution in the cold seasons, especially for males.
Collapse
Affiliation(s)
- Li Peng
- Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, 200030, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, 200030, China.
| | - Shaotan Xiao
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
| | - Wei Gao
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, 200030, China
| | - Yi Zhou
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, 200030, China
| | - Dandan Yang
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, 200030, China
| | - Xiaofang Ye
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, 200030, China
| |
Collapse
|
47
|
Forastiere F, Ancona C. Air pollution and health: Evidence from epidemiological studies and population impact. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202024600016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Outdoor air pollution —in particular particulate matter, nitrogen dioxide and ozone— can exert its effects on health after acute (short-term) and chronic (long-term) exposures. Short-term exposures increase the probability of the onset of acute diseases within a few days, such as myocardial infarction or stroke, or even death in the case of susceptible individuals. Long-term exposures are associated with decreased survival and incidence of several non-communicable diseases, including cardiorespiratory conditions and lung cancer. In Europe, the large ESCAPE project (European Study of Cohorts for Air Pollution Effects — www.escapeproject.eu) evaluated the chronic effects of air pollution in the cohorts of adult subjects. The results of ESCAPE show an association between chronic exposure to air pollutants and natural mortality, cardiovascular events, lung, brain, breast and digestive tract cancer. The recent joint statement of the European Respiratory Society and the American Respiratory Society clarifies the wide spectrum of adverse effects of pollution, including “new” diseases such as neurological and metabolic syndrome previously not studied. The estimates by the Global Burden of Disease provide nowadays indications that air pollution causes illness and mortality, just after diet, smoking, hypertension and diabetes: 4.2 million premature deaths a year worldwide. Ischemic heart disease, stroke, chronic obstructive pulmonary disease, acute lower respiratory infections are the main conditions associated with air-pollution–related mortality.
Collapse
|
48
|
Chen K, Schneider A, Cyrys J, Wolf K, Meisinger C, Heier M, von Scheidt W, Kuch B, Pitz M, Peters A, Breitner S, for the KORA Study Group. Hourly Exposure to Ultrafine Particle Metrics and the Onset of Myocardial Infarction in Augsburg, Germany. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:17003. [PMID: 31939685 PMCID: PMC7015564 DOI: 10.1289/ehp5478] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Epidemiological evidence on the health effects of ultrafine particles (UFP) remains insufficient to infer a causal relationship that is largely due to different size ranges and exposure metrics examined across studies. Moreover, evidence regarding the association between UFP and cardiovascular disease at a sub-daily timescale is lacking. OBJECTIVE We investigated the relationship between different particle metrics, including particle number (PNC), length (PLC), and surface area (PSC) concentrations, and myocardial infarction (MI) at an hourly timescale. METHODS We collected hourly air pollution and meteorological data from fixed urban background monitoring sites and hourly nonfatal MI cases from a MI registry in Augsburg, Germany, during 2005-2015. We conducted a time-stratified case-crossover analysis with conditional logistic regression to estimate the association between hourly particle metrics and MI cases, adjusted for air temperature and relative humidity. We also examined the independent effects of a certain particle metric in two-pollutant models by adjusting for copollutants, including particulate matter (PM) with an aerodynamic diameter of ≤10μm or 2.5μm (PM10 and PM2.5, respectively), nitrogen dioxide, ozone, and black carbon. RESULTS Overall, a total of 5,898 cases of nonfatal MI cases were recorded. Exploratory analyses showed similar associations across particle metrics in the first 6-12 h. For example, interquartile range increases in PNC within the size range of 10-100 nm, PLC, and PSC were associated with an increase of MI 6 h later by 3.27% [95% confidence interval (CI): 0.27, 6.37], 5.71% (95% CI: 1.79, 9.77), and 5.84% (95% CI: 1.04, 10.87), respectively. Positive, albeit imprecise, associations were observed for PNC within the size range of 10-30 nm and 100-500 nm. Effect estimates for PLC and PSC remained similar after adjustment for PM and gaseous pollutants. CONCLUSIONS Transient exposure to particle number, length, and surface area concentrations or other potentially related exposures may trigger the onset of nonfatal myocardial infraction. https://doi.org/10.1289/EHP5478.
Collapse
Affiliation(s)
- Kai Chen
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- UNIKA-T, Ludwig-Maximilians-Universität München, Augsburg, Germany
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- MONICA/KORA Myocardial Infarction Registry, University Hospital of Augsburg, Augsburg, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- KORA Study Centre, University Hospital of Augsburg, Augsburg, Germany
| | - Wolfgang von Scheidt
- Department of Internal Medicine I–Cardiology, University Hospital of Augsburg, Augsburg, Germany
| | - Bernhard Kuch
- Department of Internal Medicine I–Cardiology, University Hospital of Augsburg, Augsburg, Germany
- Department of Internal Medicine/Cardiology, Hospital of Nördlingen, Nördlingen, Germany
| | - Mike Pitz
- Bavarian State Office for the Environment, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Research (DZHK), Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
49
|
Air pollutants and outpatient visits for cardiovascular disease in a severe haze-fog city: Shijiazhuang, China. BMC Public Health 2019; 19:1366. [PMID: 31651288 PMCID: PMC6814061 DOI: 10.1186/s12889-019-7690-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2019] [Indexed: 12/27/2022] Open
Abstract
Background Many studies have reported the impact of air pollution on cardiovascular disease (CVD), but few of these studies were conducted in severe haze-fog areas. The present study focuses on the impact of different air pollutant concentrations on daily CVD outpatient visits in a severe haze-fog city. Methods Data regarding daily air pollutants and outpatient visits for CVD in 2013 were collected, and the association between six pollutants and CVD outpatient visits was explored using the least squares mean (LSmeans) and logistic regression. Adjustments were made for days of the week, months, air temperature and relative humidity. Results The daily CVD outpatient visits for particulate matter (PM10 and PM2.5), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) in the 90th-quantile group were increased by 30.01, 29.42, 17.68, 14.98, 29.34%, and − 19.87%, respectively, compared to those in the <10th-quantile group. Odds ratios (ORs) and 95% confidence intervals (CIs) for the increase in daily CVD outpatient visits in PM10 300- and 500-μg/m3, PM2.5 100- and 300-μg/m3 and CO 3-mg/m3 groups were 2.538 (1.070–6.020), 7.781 (1.681–36.024), 3.298 (1.559–6.976), 8.72 (1.523–49.934), and 5.808 (1.016–33.217), respectively, and their corresponding attributable risk percentages (AR%) were 60.6, 87.15, 69.68, 88.53 and 82.78%, respectively. The strongest associations for PM10, PM2.5 and CO were found only in lag 0 and lag 1. The ORs for the increase in CVD outpatient visits per increase in different units of the six pollutants were also analysed. Conclusions All five air pollutants except O3 were positively associated with the increase in daily CVD outpatient visits in lag 0. The high concentrations of PM10, PM2.5 and CO heightened not only the percentage but also the risk of increased daily CVD outpatient visits. PM10, PM2.5 and CO may be the main factors of CVD outpatient visits.
Collapse
|
50
|
Qu F, Liu F, Zhang H, Chao L, Guan J, Li R, Yu F, Yan X. The hospitalization attributable burden of acute exacerbations of chronic obstructive pulmonary disease due to ambient air pollution in Shijiazhuang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30866-30875. [PMID: 31446603 DOI: 10.1007/s11356-019-06244-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/16/2019] [Indexed: 05/04/2023]
Abstract
Few studies have investigated the acute exacerbations of chronic obstructive pulmonary disease (AECOPD)-associated attributable burden under exposure to high levels of air pollution among Asians. Data on hospitalization for AECOPD, air pollution and meteorological factors from 1 January 2013 to 31 December 2016 were collected in Shijiazhuang, China. We used a Poisson generalized linear regression model combined with a distributed lag nonlinear model (DLNM) to evaluate the relative cumulative risk for a lag of 0-7 days and examined the potential effect modifications by age and sex via stratification analyses, controlling for long-term trends, seasonal patterns, meteorological factors, and other possible confounders. Then, we computed hospitalization percentages attributable to air pollutants. The AECOPD-associated relative cumulative risks for PM2.5, PM10, NO2, SO2, and CO for a lag of 0-7 days were significantly positively correlated with hospitalization. The associations were stronger in females and retired patients. The NO2 Cum RR of AECOPD admission was the greatest. A 10μg/m3 increase in daily NO2 concentration was associated with 6.7% and 5.7% increases in COPD hospitalizations in the retired and female groups, respectively. The results showed that 13%, 9.4%, 1.7%, 9.7%, and 8.8% of AECOPD hospitalizations were attributable to exposure to PM2.5, PM10, SO2, NO2, and CO, respectively. If the air pollutant concentration was reduced to the 24-h average grade II levels of NAAQS of China, the AECOPD attributable percentage for PM2.5 and PM10 would decrease by 80%. The air pollutants PM2.5, PM10, SO2, NO2, and CO were significantly relevant to AECOPD-associated hospitalization. The associations differed by individual characteristics. The retired and female populations were highly vulnerable.
Collapse
Affiliation(s)
- Fangfang Qu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
- Hebei Institute of Respiratory Disease, Shijiazhuang, China
| | - Feifei Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
- Hebei Institute of Respiratory Disease, Shijiazhuang, China
| | - Huiran Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
- Hebei Institute of Respiratory Disease, Shijiazhuang, China
| | - Lingshan Chao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
- Hebei Institute of Respiratory Disease, Shijiazhuang, China
| | - Jitao Guan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
- Hebei Institute of Respiratory Disease, Shijiazhuang, China
| | - Rongqin Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Fengxue Yu
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China.
- Hebei Institute of Respiratory Disease, Shijiazhuang, China.
| |
Collapse
|