1
|
Honda T, Henry T, Porucznik CA, Corlin L, Kirwa K, Alshawabkeh A, Cordero JF, Velez Vega CM, Rosario Pabon ZY, Meeker JD, Suh H. Associations among PM 2.5, corticotropin releasing hormone, estriol, and progesterone in pregnant persons in Puerto Rico. ENVIRONMENTAL RESEARCH COMMUNICATIONS 2025; 7:031008. [PMID: 40151202 PMCID: PMC11937643 DOI: 10.1088/2515-7620/adc0f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Background. Exposure to PM2.5 is associated with adverse birth outcomes and early development. Pregnancy is typically characterized by the production of several important hormones that impact aspects of maternal and fetal physiology, including progesterone, estriol, and corticotropin releasing hormone (CRH). No previous studies have examined PM associations in pregnant persons for CRH and estriol. Methods. We used linear mixed effects models to investigate associations between PM2.5 and pregnancy hormones in 1,041 pregnant persons ages 18-41 living in Puerto Rico between 2011 and 2020. Individual 3-, 7-, and 30-day moving average exposures were assigned from EPA data sources. Hormone levels were analyzed in blood collected at study visits at 16-20 and 20-24 weeks of gestation. Models were adjusted for demographics, socioeconomic status, and health behaviors.Results. Mean participant exposures for 3-, 7-, and 30-day PM2.5 were 8.0 ± 5.9, 8.2 ± 5.3, and 8.1 ± 4.4 μg m-3. In base models, increased PM2.5 exposure was associated with lower levels of progesterone, CRH, and estriol. In adjusted models, 10 μg m-3 increase in PM2.5 was associated with 11.2% (95% CI: 17.6, 4.3; p = 0.003) and 14.9% (95% CI: 23.4, 5.4; p = 0.004) lower CRH for 7-day and 30-day exposures. In cross-sectional models, the inverse CRH association was driven by the 20-24 week gestation period with a 12.4% reduction (95% CI: 21.8, 1.9; p = 0.022) for 7-day and 17.5% reduction (95% CI: 29.7, 3.0; p = 0.020) for 30-day exposure. Other investigated associations were null.Conclusions. In pregnant persons in Puerto Rico, we observed that elevated PM2.5 exposures were significantly associated with decrements in CRH, but not in other pregnancy-associated hormones. CRH may be an important pathway through which prenatal PM2.5 impacts normal pregnancy.
Collapse
Affiliation(s)
- Trenton Honda
- School of Clinical and Rehabilitation Sciences, Northeastern University, Boston, MA, United States of America
| | - Trenton Henry
- School of Clinical and Rehabilitation Sciences, Northeastern University, Boston, MA, United States of America
| | - Christina A Porucznik
- Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, United States of America
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA, United States of America
| | - Kipruto Kirwa
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America
| | - Akram Alshawabkeh
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - José F Cordero
- Department of Epidemiology, University of Georgia College of Public Health, Athens, GA, United States of America
| | - Carmen M Velez Vega
- University of Puerto Rico Medical Sciences Campus, University of Puerto Rico Graduate School of Public Health, San Juan, PR, United States of America
| | - Zaira Y Rosario Pabon
- Department of Social Sciences, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States of America
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States of America
| | - Helen Suh
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA, United States of America
| |
Collapse
|
2
|
Honda T, Henry TD, Corlin L, Kirwa K, Alshawabkeh A, Varshavsky JR, Kennedy W, Cordero JF, Velez Vega CM, Rosario Pabon ZY, Meeker JD, Suh H. Associations Between Ambient PM 2.5 and Thyroid Hormones in Pregnant Persons in Puerto Rico. TOXICS 2025; 13:58. [PMID: 39853056 PMCID: PMC11769198 DOI: 10.3390/toxics13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
INTRODUCTION This study investigates associations between fine particulate air pollution (PM2.5) exposure and thyroid hormone levels during pregnancy in Puerto Rican individuals, a vulnerable population facing socioeconomic and environmental disparities. METHODS This research draws on data from the PROTECT cohort study and involves 1040 participants to measure the effect of PM2.5 on developmentally important thyroid hormones (TSH, T3, T4, and FT4). Pollution concentrations were linked to participant locations using EPA air quality data and analyzed across two visits during gestational weeks 16-20 and 24-28. RESULTS The results suggest that PM2.5 exposure is positively associated with maternal T3, T4, and FT4 levels but not TSH. These effects vary by timing, with T3 showing stronger associations later in pregnancy and T4/FT4 earlier. Nonlinear dose-response relationships were observed, suggesting thresholds for certain hormones. DISCUSSION These findings support previous studies linking altered thyroid hormones to adverse birth outcomes and highlight the potential role of air pollution in disrupting maternal thyroid function and its implications for fetal development, calling for further research into mechanisms and interventions to mitigate these risks.
Collapse
Affiliation(s)
- Trenton Honda
- School of Clinical and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Trenton D. Henry
- School of Clinical and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| | - Kipruto Kirwa
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Akram Alshawabkeh
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Julia R. Varshavsky
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Public Health and Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Winston Kennedy
- School of Clinical and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - José F. Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602, USA
| | - Carmen M. Velez Vega
- Department of Social Sciences, UPR Medical Sciences Campus, University of Puerto Rico Graduate School of Public Health, San Juan, PR 00936, USA
| | - Zaira Y. Rosario Pabon
- Department of Social Sciences, UPR Medical Sciences Campus, University of Puerto Rico Graduate School of Public Health, San Juan, PR 00936, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Helen Suh
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
3
|
Márquez-Lázaro J, Madera M, Bernabe E. Particulate matter 2.5 exposure during pregnancy and birth outcomes: Evidence from Colombia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172369. [PMID: 38604361 DOI: 10.1016/j.scitotenv.2024.172369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Particulate matter is a type of air pollution that consists of fine particles with a diameter <2.5 μm (PM2.5), which can easily penetrate the respiratory system and enter the bloodstream, increasing health risks for pregnant women and their unborn babies. Recent reports have suggested that there is a positive association between PM2.5 exposure and adverse pregnancy outcomes. However, most evidence of this relationship comes from Western countries. Thus, the objective of this study was to evaluate the association between PM2.5 exposure during pregnancy and birth outcomes among pregnant women in Colombia. This study included 542,800 singletons born in 2019 to Colombian women, aged 15+ years, residing in 981 municipalities. Data on parental, child and birth characteristics were extracted from anonymized live birth records. Satellite-based estimates of monthly PM2.5 concentrations at the surface level were extracted for each municipality from the Atmospheric Composition Analysis Group (ACAG). PM2.5 exposure during pregnancy was indicated by the monthly average of PM2.5 concentrations across the pregnancy duration for the municipality where the child was born. The associations of municipality-level PM2.5 concentration during pregnancy with pre-term birth (PTB) and low birth weight (LBW) were tested in separate two-level logistic regression models, with babies nested within municipalities. The prevalence of PTB and LBW were 8.6 % and 8.3 %, respectively. The mean PM2.5 concentration across the 981 municipalities was 18.26 ± 3.30 μg/m3, ranging from 9.11 to 31.44 μg/m3. Greater PM2.5 concentration at municipality level was associated with greater odds of PTB (1.05; 95%CI: 1.04-1.06) and LBW (1.04; 95%CI: 1.03-1.05), after adjustment for confounders. Our findings provide new evidence on the association between PM2.5 on adverse pregnancy outcomes from a middle-income country.
Collapse
Affiliation(s)
- Johana Márquez-Lázaro
- Medicine program, TOXSA group, Corporación Universitaria Rafael Núñez, Cartagena, Colombia.
| | - Meisser Madera
- Department of Research, Faculty of Dentistry, Universidad de Cartagena, Cartagena, Colombia.
| | - Eduardo Bernabe
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Yan R, Ma D, Liu Y, Wang R, Fan L, Yan Q, Chen C, Wang W, Ren Z, Ku T, Ning X, Sang N. Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives. TOXICS 2024; 12:274. [PMID: 38668497 PMCID: PMC11054511 DOI: 10.3390/toxics12040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Particulate matter of size ≤ 2.5 μm (PM2.5) is a critical environmental threat that considerably contributes to the global disease burden. However, accompanied by the rapid research progress in this field, the existing research on developmental toxicity is still constrained by limited data sources, varying quality, and insufficient in-depth mechanistic analysis. This review includes the currently available epidemiological and laboratory evidence and comprehensively characterizes the adverse effects of PM2.5 on developing individuals in different regions and various pollution sources. In addition, this review explores the effect of PM2.5 exposure to individuals of different ethnicities, genders, and socioeconomic levels on adverse birth outcomes and cardiopulmonary and neurological development. Furthermore, the molecular mechanisms involved in the adverse health effects of PM2.5 primarily encompass transcriptional and translational regulation, oxidative stress, inflammatory response, and epigenetic modulation. The primary findings and novel perspectives regarding the association between public health and PM2.5 were examined, highlighting the need for future studies to explore its sources, composition, and sex-specific effects. Additionally, further research is required to delve deeper into the more intricate underlying mechanisms to effectively prevent or mitigate the harmful effects of air pollution on human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China; (R.Y.); (D.M.); (Y.L.); (R.W.); (L.F.); (Q.Y.); (C.C.); (W.W.); (Z.R.); (X.N.); (N.S.)
| | | | | |
Collapse
|
5
|
Chaudhary E, George F, Saji A, Dey S, Ghosh S, Thomas T, Kurpad AV, Sharma S, Singh N, Agarwal S, Mehta U. Cumulative effect of PM 2.5 components is larger than the effect of PM 2.5 mass on child health in India. Nat Commun 2023; 14:6955. [PMID: 37907499 PMCID: PMC10618175 DOI: 10.1038/s41467-023-42709-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
While studies on ambient fine particulate matter (PM2.5) exposure effect on child health are available, the differential effects, if any, of exposure to PM2.5 species are unexplored in lower and middle-income countries. Using multiple logistic regression, we showed that for every 10 μg m-3 increase in PM2.5 exposure, anaemia, acute respiratory infection, and low birth weight prevalence increase by 10% (95% uncertainty interval, UI: 9-11), 11% (8-13), and 5% (4-6), respectively, among children in India. NO3-, elemental carbon, and NH4+ were more associated with the three health outcomes than other PM2.5 species. We found that the total PM2.5 mass as a surrogate marker for air pollution exposure could substantially underestimate the true composite impact of different components of PM2.5. Our findings provide key indigenous evidence to prioritize control strategies for reducing exposure to more toxic species for greater child health benefits in India.
Collapse
Affiliation(s)
- Ekta Chaudhary
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Franciosalgeo George
- Division of Epidemiology, Biostatistics, and Population Health, St John's Research Institute, Bangalore, India
| | - Aswathi Saji
- Division of Epidemiology, Biostatistics, and Population Health, St John's Research Institute, Bangalore, India
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India.
- Centre of Excellence for Research on Clean Air, IIT Delhi, New Delhi, India.
- School of Public Policy, IIT Delhi, New Delhi, India.
| | - Santu Ghosh
- Department of Biostatistics, St John's Medical College, Bengaluru, India.
| | - Tinku Thomas
- Department of Biostatistics, St John's Medical College, Bengaluru, India
| | - Anura V Kurpad
- Department of Physiology, St John's Medical College, Bengaluru, India
| | | | - Nimish Singh
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
- TERI, New Delhi, India
| | - Shivang Agarwal
- TERI, New Delhi, India
- Johns Hopkins University, Baltimore, MD, USA
| | - Unnati Mehta
- Harvard T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
6
|
Predisposed obesity and long-term metabolic diseases from maternal exposure to fine particulate matter (PM2.5) — A review of its effect and potential mechanisms. Life Sci 2022; 310:121054. [DOI: 10.1016/j.lfs.2022.121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
7
|
Huang HJ, Yu QY, Zheng T, Wang SS, Yang XJ. Associations between seasonal ambient air pollution and adverse perinatal outcomes: a retrospective cohort study in Wenzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59903-59914. [PMID: 35397724 DOI: 10.1007/s11356-022-20084-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Prenatal exposure to ambient air pollution has been associated with adverse perinatal outcomes in previous studies. However, few studies have examined the interaction between air pollution and the season of conception on term low birth weight (TLBW) or macrosomia. Birth registry data of singleton live births in Wenzhou, China, between January 2015 and December 2016 were accessed from the Wenzhou Maternal and Child Health Information Management platform, and data on the ambient air pollutants in Wenzhou were obtained from the Chinese Air Quality Online Monitoring and Analysis Platform. Single-/two-pollutant binary logistic regression models were used to assess the associations between ambient air pollutants (PM2.5, PM10, NO2, SO2, and O3) and TLBW/macrosomia, further exploring whether the season of conception interacts with air pollution to impact birth weight. Finally, 213,959 term newborns were selected, including 2452 (1.1%) infants with TLBW and 13,173 (6.1%) infants with macrosomia. In the single-/two-pollutant models, we observed an increased risk of TLBW associated with maternal exposure to PM2.5, PM10, SO2, and NO2 during the entire pregnancy, especially in the 2nd trimester. Maternal exposure to O3 during the 1st trimester was associated with increased macrosomia risk, and O3 exposure during the 3rd trimester was associated with increased TLBW risk. Pregnant women who conceive in the warm season may experience a more adverse ambient air environment that is related to the risks of TLBW. These findings add to the evidence suggesting that air pollution and the season of conception may have synergistic effects on adverse perinatal outcomes, especially TLBW. Further prospective cohort studies are needed to validate our results.
Collapse
Affiliation(s)
- Hui-Jun Huang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qiu-Yan Yu
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Tian Zheng
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shan-Shan Wang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xin-Jun Yang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
8
|
Gong C, Wang J, Bai Z, Rich DQ, Zhang Y. Maternal exposure to ambient PM 2.5 and term birth weight: A systematic review and meta-analysis of effect estimates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150744. [PMID: 34619220 DOI: 10.1016/j.scitotenv.2021.150744] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Effect estimates of prenatal exposure to ambient PM2.5 on change in grams (β) of birth weight among term births (≥37 weeks of gestation; term birth weight, TBW) vary widely across studies. We present the first systematic review and meta-analysis of evidence regarding these associations. Sixty-two studies met the eligibility criteria for this review, and 31 studies were included in the meta-analysis. Random-effects meta-analysis was used to assess the quantitative relationships. Subgroup analyses were performed to gain insight into heterogeneity derived from exposure assessment methods (grouped by land use regression [LUR]-models, aerosol optical depth [AOD]-based models, interpolation/dispersion/Bayesian models, and data from monitoring stations), study regions, and concentrations of PM2.5 exposure. The overall pooled estimate involving 23,925,941 newborns showed that TBW was negatively associated with PM2.5 exposure (per 10 μg/m3 increment) during the entire pregnancy (β = -16.54 g), but with high heterogeneity (I2 = 95.6%). The effect estimate in the LUR-models subgroup (β = -16.77 g) was the closest to the overall estimate and with less heterogeneity (I2 = 18.3%) than in the other subgroups of AOD-based models (β = -41.58 g; I2 = 95.6%), interpolation/dispersion models (β = -10.78 g; I2 = 86.6%), and data from monitoring stations (β = -11.53 g; I2 = 97.3%). Even PM2.5 exposure levels of lower than 10 μg/m3 (the WHO air quality guideline value) had adverse effects on TBW. The LUR-models subgroup was the only subgroup that obtained similar significant of negative associations during the three trimesters as the overall trimester-specific analyses. In conclusion, TBW was negatively associated with maternal PM2.5 exposures during the entire pregnancy and each trimester. More studies based on relatively standardized exposure assessment methods need to be conducted to further understand the precise susceptible exposure time windows and potential mechanisms.
Collapse
Affiliation(s)
- Chen Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
9
|
Kirwa K, Feric Z, Manjourides J, Alshawabekeh A, Vega CMV, Cordero JF, Meeker JD, Suh HH. Preterm birth and PM 2.5 in Puerto Rico: evidence from the PROTECT birth cohort. Environ Health 2021; 20:69. [PMID: 34116688 PMCID: PMC8196435 DOI: 10.1186/s12940-021-00748-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/09/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Preterm birth (PTB, birth before 37 weeks of gestation) has been associated with adverse health outcomes across the lifespan. Evidence on the association between PTB and prenatal exposure to air pollutants is inconsistent, and is especially lacking for ethnic/racial minority populations. METHODS We obtained data on maternal characteristics and behaviors and PTB and other birth outcomes for women participating in the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) cohort, who lived in municipalities located along the North Coast of Puerto Rico. We assessed pre-natal PM2.5 exposures for each infant based on the nearest US Environmental Protection Agency monitor. We estimated prenatal phthalate exposures as the geometric mean of urinary measurements obtained during pregnancy. We then examined the association between PM2.5 and PTB using modified Poisson regression and assessed modification of the association by phthalate exposure levels and sociodemographic factors such as maternal age and infant gender. RESULTS Among 1092 singleton births, 9.1% of infants were born preterm and 92.9% of mothers had at least a high school education. Mothers had a mean (standard deviation) age of 26.9 (5.5) years and a median (range) of 2.0 (1.0-8.0) pregnancies. Nearly all women were Hispanic white, black, or mixed race. Median (range) prenatal PM2.5 concentrations were 6.0 (3.1-19.8) μ g/m3. Median (interquartile range) prenatal phthalate levels were 14.9 (8.9-26.0) and 14.5 (8.4-26.0), respectively, for di-n-butyl phthalate (DBP) and di-isobutyl phthalate (DiBP). An interquartile range increase in PM2.5 was associated with a 1.2% (95% CI 0.4, 2.1%) higher risk of PTB. There was little difference in PTB risk in strata of infant sex, mother's age, family income, history of adverse birth outcome, parity, and pre-pregnancy body mass index. Pregnancy urinary phthalate metabolite levels did not modify the PM2.5-PTB association. CONCLUSION Among ethnic minority women in Puerto Rico, prenatal PM2.5 exposure is associated with a small but significant increase in risk of PTB.
Collapse
Affiliation(s)
- Kipruto Kirwa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA USA
| | - Zlatan Feric
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA USA
| | | | - Akram Alshawabekeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA USA
| | | | - José F. Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA USA
| | - John D. Meeker
- School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Helen H. Suh
- Department of Civil and Environmental Engineering, Tufts University, Anderson Hall, 200 College Avenue, Medford, MA 02155 USA
| |
Collapse
|
10
|
Uwak I, Olson N, Fuentes A, Moriarty M, Pulczinski J, Lam J, Xu X, Taylor BD, Taiwo S, Koehler K, Foster M, Chiu WA, Johnson NM. Application of the navigation guide systematic review methodology to evaluate prenatal exposure to particulate matter air pollution and infant birth weight. ENVIRONMENT INTERNATIONAL 2021; 148:106378. [PMID: 33508708 PMCID: PMC7879710 DOI: 10.1016/j.envint.2021.106378] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 05/04/2023]
Abstract
Low birth weight is an important risk factor for many co-morbidities both in early life as well as in adulthood. Numerous studies report associations between prenatal exposure to particulate matter (PM) air pollution and low birth weight. Previous systematic reviews and meta-analyses report varying effect sizes and significant heterogeneity between studies, but did not systematically evaluate the quality of individual studies or the overall body of evidence. We conducted a new systematic review to determine how prenatal exposure to PM2.5, PM10, and coarse PM (PM2.5-10) by trimester and across pregnancy affects infant birth weight. Using the Navigation Guide methodology, we developed and applied a systematic review protocol [CRD42017058805] that included a comprehensive search of the epidemiological literature, risk of bias (ROB) determination, meta-analysis, and evidence evaluation, all using pre-established criteria. In total, 53 studies met our inclusion criteria, which included evaluation of birth weight as a continuous variable. For PM2.5 and PM10, we restricted meta-analyses to studies determined overall as "low" or "probably low" ROB; none of the studies evaluating coarse PM were rated as "low" or "probably low" risk of bias, so all studies were used. For PM2.5, we observed that for every 10 µg/m3 increase in exposure to PM2.5 in the 2nd or 3rd trimester, respectively, there was an associated 5.69 g decrease (I2: 68%, 95% CI: -10.58, -0.79) or 10.67 g decrease in birth weight (I2: 84%, 95% CI: -20.91, -0.43). Over the entire pregnancy, for every 10 µg/m3 increase in PM2.5 exposure, there was an associated 27.55 g decrease in birth weight (I2: 94%, 95% CI: -48.45, -6.65). However, the quality of evidence for PM2.5 was rated as "low" due to imprecision and/or unexplained heterogeneity among different studies. For PM10, we observed that for every 10 µg/m3 increase in exposure in the 3rd trimester or the entire pregnancy, there was a 6.57 g decrease (I2: 0%, 95% CI: -10.66, -2.48) or 8.65 g decrease in birth weight (I2: 84%, 95% CI: -16.83, -0.48), respectively. The quality of evidence for PM10 was rated as "moderate," as heterogeneity was either absent or could be explained. The quality of evidence for coarse PM was rated as very low/low (for risk of bias and imprecision). Overall, while evidence for PM2.5 and course PM was inadequate primarily due to heterogeneity and risk of bias, respectively, our results support the existence of an inverse association between prenatal PM10 exposure and low birth weight.
Collapse
Affiliation(s)
- Inyang Uwak
- Department of Environmental and Occupational Health. Texas A&M University, College Station, TX, USA
| | - Natalie Olson
- Department of Veterinary Integrative Biosciences. Texas A&M University, College Station, TX, USA
| | - Angelica Fuentes
- Department of Veterinary Integrative Biosciences. Texas A&M University, College Station, TX, USA
| | - Megan Moriarty
- Department of Environmental and Occupational Health. Texas A&M University, College Station, TX, USA
| | - Jairus Pulczinski
- Department of Environmental Health and Engineering. Johns Hopkins University, Baltimore, MD, USA
| | - Juleen Lam
- Department of Health Sciences, California State University, East Bay, Hayward, CA USA
| | - Xiaohui Xu
- Department of Epidemiology and Biostatistics. Texas A&M University, College Station, TX, USA
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics. Temple University, Philadelphia, PA, USA
| | - Samuel Taiwo
- Department of Environmental and Occupational Health. Texas A&M University, College Station, TX, USA
| | - Kirsten Koehler
- Department of Environmental Health and Engineering. Johns Hopkins University, Baltimore, MD, USA
| | - Margaret Foster
- Medical Sciences Library. Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences. Texas A&M University, College Station, TX, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health. Texas A&M University, College Station, TX, USA.
| |
Collapse
|
11
|
Li C, Yang M, Zhu Z, Sun S, Zhang Q, Cao J, Ding R. Maternal exposure to air pollution and the risk of low birth weight: A meta-analysis of cohort studies. ENVIRONMENTAL RESEARCH 2020; 190:109970. [PMID: 32763280 DOI: 10.1016/j.envres.2020.109970] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 05/14/2023]
Abstract
Previous studies have evaluated the relationship between prenatal air pollution exposure and low birth weight, but the results are inconsistent. The purpose of this meta-analysis is to quantitatively analyze the relationship between maternal air pollutant exposure and low birth weight (LBW). PubMed and Web of Science databases were searched to obtain the studies on the relationship between the prenatal exposure of air pollutants and LBW that published as of June 2020. The pooled effects of air pollutant exposure and LBW were calculated using random-effect model (for studies with significant heterogeneity) or fixed-effect model (for studies without significant heterogeneity). Totally, 54 studies were included in this meta-analysis. The pooled effect of PM2.5, PM10, NO2, CO, SO2, and O3 exposure on LBW were 1.081 (95% CI: 1.043, 1.120), 1.053 (95% CI: 1.030, 1.076), 1.030 (95% CI: 1.008, 1.053), 1.007 (95% CI: 1.001, 1.014), 1.125 (95% CI: 1.017, 1.244), and 1.045 (95% CI: 1.005, 1.086), respectively. NO2 (per 10 ppb increase) and CO (per 100 ppb increase) exposure in the first trimester were positively correlated with LBW, of which the pooled effect was 1.022 (95% CI: 1.009, 1. 035) and 1.008 (95% CI: 1.004, 1.012), respectively. PM2.5 (per 10 μg/m3 increase) exposure in the third trimester significantly affected the LBW, of which the pooled effect was 1.053 (95% CI: 1.010, 1.097). In addition, PM10 (per 10 μg/m3 increase) exposure in the second trimester also significantly affected the LBW, with the pooled effect of 1.011 (95% CI: 1.005, 1.017). Prenatal exposure of the major air pollutants during the entire pregnancy could increase the risk of LBW, while the susceptible window of the pollutants varied.
Collapse
Affiliation(s)
- Changlian Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Mei Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Zijian Zhu
- Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
12
|
Manjourides J, Zimmerman E, Watkins DJ, Carpenito T, Vélez-Vega CM, Huerta-Montañez G, Rosario Z, Ayala I, Vergara C, Feric Z, Ondras M, Suh HH, Gu AZ, Brown P, Cordero JF, Meeker JD, Alshawabkeh A. Cohort profile: Center for Research on Early Childhood Exposure and Development in Puerto Rico. BMJ Open 2020; 10:e036389. [PMID: 32690520 PMCID: PMC7371225 DOI: 10.1136/bmjopen-2019-036389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/23/2020] [Accepted: 05/28/2020] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Puerto Rican children experience high rates of asthma and obesity. Further, infants born in Puerto Rico are more at risk for being born prematurely compared with infants on the mainland USA. Environmental exposures from multiple sources during critical periods of child development, potentially modified by psychosocial factors, may contribute to these adverse health outcomes. To date, most studies investigating the health effects of environmental factors on infant and child health have focused on single or individual exposures. PARTICIPANTS Infants currently in gestation whose mother is enrolled in Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) cohort, and infants and children already born to mothers who participated in the PROTECT study. FINDINGS TO DATE Data collection and processing remains ongoing. Demographic data have been collected on 437 mother-child pairs. Birth outcomes are available for 420 infants, neurodevelopmental outcomes have been collected on 319 children. Concentrations of parabens and phenols in maternal spot urine samples have been measured from 386 mothers. Center for Research on Early Childhood Exposure and Development mothers have significantly higher urinary concentrations of dichlorophenols, triclosan and triclocarban, but lower levels of several parabens compared with reference values from a similar population drawn from the National Health and Nutrition Examination Survey. FUTURE PLANS Data will continue to be collected through recruitment of new births with a target of 600 children. Seven scheduled follow-up visits with existing and new participants are planned. Further, our research team continues to work with healthcare providers, paediatricians and early intervention providers to support parent's ability to access early intervention services for participants.
Collapse
Affiliation(s)
- Justin Manjourides
- Department of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, Boston, Massachusetts, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Thomas Carpenito
- Department of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Gredia Huerta-Montañez
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Zaira Rosario
- University of Puerto Rico Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Ishwara Ayala
- University of Puerto Rico Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Carlos Vergara
- University of Puerto Rico Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Zlatan Feric
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Martha Ondras
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA
| | - Helen H Suh
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Phil Brown
- Department of Health Sciences, Northeastern University, Boston, Massachusetts, USA
- Department of Sociology and Anthropology, Northeastern University, Boston, Massachusetts, USA
- Social Science Environmental Health Research Institute, Northeastern University, Boston, Massachusetts, USA
| | - José F Cordero
- University of Puerto Rico Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Akram Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|