1
|
Haque F, Akhtar E, Chanda BC, Ara A, Haq MA, Sarker P, Kippler M, Wagatsuma Y, von Ehrenstein OS, Raqib R. Association of chronic arsenic exposure with cellular immune profile in MINIMat adolescents: A birth cohort in Bangladesh. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104583. [PMID: 39481821 DOI: 10.1016/j.etap.2024.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
Chronic arsenic exposure is known to affect the immune system. We aimed to evaluate the association between arsenic exposure and immune cell profile in 15 years old adolescents (n=389) in rural Bangladesh, with chronic exposure to groundwater arsenic. Single blood and urine were collected. Urinary arsenic (U-As) concentration was measured using atomic absorption spectrometry. Peripheral blood mononuclear cells (PBMC) were analyzed by flow cytometry. Non-linear association was found between U-As (median, 24.9 µg/L) and immune cells with a cut-off at U-As 20 µg/L. U-As (<20 µg/L) were significantly associated with increases in CD8+T (21 %), naïve CD8+T (42 %) and early B cells (40 %), and classical monocytes (55 %), but reduction in CD3+T cells (37%) and intermediate-monocytes (56 %). U-As (>20 µg/L) were associated with a 3 % reduction in memory B cells. Arsenic exposure was associated with altered immune cell profile in adolescents likely rendering them vulnerable to adverse health effects in later life.
Collapse
Affiliation(s)
- Farjana Haque
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Evana Akhtar
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | | | - Anjuman Ara
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Md Ahsanul Haq
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Protim Sarker
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, SE, Stockholm 171 77, Sweden
| | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukaba, Japan
| | | | - Rubhana Raqib
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh.
| |
Collapse
|
2
|
Zhang H, Wang J, Zhang K, Shi J, Gao Y, Zheng J, He J, Zhang J, Song Y, Zhang R, Shi X, Jin L, Li H. Association between heavy metals exposure and persistent infections: the mediating role of immune function. Front Public Health 2024; 12:1367644. [PMID: 39104887 PMCID: PMC11298456 DOI: 10.3389/fpubh.2024.1367644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Persistent infections caused by certain viruses and parasites have been associated with multiple diseases and substantial mortality. Heavy metals are ubiquitous environmental pollutants with immunosuppressive properties. This study aimed to determine whether heavy metals exposure suppress the immune system, thereby increasing the susceptibility to persistent infections. Methods Using data from NHANES 1999-2016, we explored the associations between heavy metals exposure and persistent infections: Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Hepatitis C Virus (HCV), Herpes Simplex Virus Type-1 (HSV-1), Toxoplasma gondii (T. gondii), and Toxocara canis and Toxocara cati (Toxocara spp.) by performing logistic regression, weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models. Mediation analysis was used to determine the mediating role of host immune function in these associations. Results Logistic regression analysis revealed positive associations between multiple heavy metals and the increased risk of persistent infections. In WQS models, the heavy metals mixture was associated with increased risks of several persistent infections: CMV (OR: 1.58; 95% CI: 1.17, 2.14), HCV (OR: 2.94; 95% CI: 1.68, 5.16), HSV-1 (OR: 1.25; 95% CI: 1.11, 1.42), T. gondii (OR: 1.97; 95% CI: 1.41, 2.76), and Toxocara spp. (OR: 1.76; 95% CI: 1.16, 2.66). BKMR models further confirmed the combined effects of heavy metals mixture and also identified the individual effect of arsenic, cadmium, and lead. On mediation analysis, the systemic immune inflammation index, which reflects the host's immune status, mediated 12.14% of the association of mixed heavy metals exposure with HSV-1 infection. Discussion The findings of this study revealed that heavy metals exposure may increase susceptibility to persistent infections, with the host's immune status potentially mediating this relationship. Reducing exposure to heavy metals may have preventive implications for persistent infections, and further prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lina Jin
- School of Public Health, Jilin University, Changchun, China
| | - Hui Li
- School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
3
|
Feiler MO, Kulick ER, Sinclair K, Spiegel N, Habel S, Castello OG. Toxic metals and pediatric clinical immune dysfunction: A systematic review of the epidemiological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172303. [PMID: 38599398 DOI: 10.1016/j.scitotenv.2024.172303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Children are at high risk for exposure to toxic metals and are vulnerable to their effects. Significant research has been conducted evaluating the role of these metals on immune dysfunction, characterized by biologic and clinical outcomes. However, there are inconsistencies in these studies. The objective of the present review is to critically evaluate the existing literature on the association between toxic metals (lead, mercury, arsenic, and cadmium) and pediatric immune dysfunction. METHODS Seven databases (PubMed (NLM), Embase (Elsevier), CINAHL (Ebsco), Web of Science (Clarivate Analytics), ProQuest Public Health Database, and ProQuest Environmental Science Collection) were searched following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in February 2024. Rayaan software identified duplicates and screened by title and abstract in a blinded and independent review process. The remaining full texts were reviewed for content and summarized. Exclusions during the title, abstract, and full-text reviews included: 1) not original research, 2) not epidemiology, 3) did not include toxic metals, 4) did not examine an immune health outcome, or 5) not pediatric (>18 years). This systematic review protocol followed the PRISMA guidelines. Rayaan was used to screen records using title and abstract by two blinded and independent reviewers. This process was repeated for full-text article screening selection. RESULTS The search criteria produced 7906 search results; 2456 duplicate articles were removed across search engines. In the final review, 79 studies were included which evaluated the association between toxic metals and outcomes indicative of pediatric immune dysregulation. CONCLUSIONS The existing literature suggests an association between toxic metals and pediatric immune dysregulation. Given the imminent threat of infectious diseases demonstrated by the recent COVID-19 epidemic in addition to increases in allergic disease, understanding how ubiquitous exposure to these metals in early life can impact immune response, infection risk, and vaccine response is imperative.
Collapse
Affiliation(s)
- Marina Oktapodas Feiler
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, United States of America; Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America.
| | - Erin R Kulick
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Krystin Sinclair
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Nitzana Spiegel
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Sonia Habel
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Olivia Given Castello
- Charles Library, Temple University Libraries, Temple University, United States of America
| |
Collapse
|
4
|
Aryan Y, Pon T, Panneerselvam B, Dikshit AK. A comprehensive review of human health risks of arsenic and fluoride contamination of groundwater in the South Asia region. JOURNAL OF WATER AND HEALTH 2024; 22:235-267. [PMID: 38421620 PMCID: wh_2023_082 DOI: 10.2166/wh.2023.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The present study found that ∼80 million people in India, ∼60 million people in Pakistan, ∼70 million people in Bangladesh, and ∼3 million people in Nepal are exposed to arsenic groundwater contamination above 10 μg/L, while Sri Lanka remains moderately affected. In the case of fluoride contamination, ∼120 million in India, >2 million in Pakistan, and ∼0.5 million in Sri Lanka are exposed to the risk of fluoride above 1.5 mg/L, while Bangladesh and Nepal are mildly affected. The hazard quotient (HQ) for arsenic varied from 0 to 822 in India, 0 to 33 in Pakistan, 0 to 1,051 in Bangladesh, 0 to 582 in Nepal, and 0 to 89 in Sri Lanka. The cancer risk of arsenic varied from 0 to 1.64 × 1-1 in India, 0 to 1.07 × 10-1 in Pakistan, 0 to 2.10 × 10-1 in Bangladesh, 0 to 1.16 × 10-1 in Nepal, and 0 to 1.78 × 10-2 in Sri Lanka. In the case of fluoride, the HQ ranged from 0 to 21 in India, 0 to 33 in Pakistan, 0 to 18 in Bangladesh, 0 to 10 in Nepal, and 0 to 10 in Sri Lanka. Arsenic and fluoride have adverse effects on animals, resulting in chemical poisoning and skeletal fluorosis. Adsorption and membrane filtration have demonstrated outstanding treatment outcomes.
Collapse
Affiliation(s)
- Yash Aryan
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India E-mail:
| | - Thambidurai Pon
- Department of Coastal Disaster Management, School of Physical, Chemical and Applied Sciences, Pondicherry University, Port Blair Campus - 744112, Andaman and Nicobar Islands, India
| | - Balamurugan Panneerselvam
- Center of Excellence in Interdisciplinary Research for Sustainable Development, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anil Kumar Dikshit
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
5
|
Zheng K, Zeng Z, Tian Q, Huang J, Zhong Q, Huo X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161691. [PMID: 36669659 DOI: 10.1016/j.scitotenv.2023.161691] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Heavy metals exist widely in daily life, and exposure to heavy metals caused by environmental pollution has become a serious public health problem worldwide. Due to children's age-specific behavioral characteristics and imperfect physical function, the adverse health effects of heavy metals on children are much higher than in adults. Studies have found that heavy metal exposure is associated with low immune function in children. Although there are reviews describing the evidence for the adverse effects of heavy metal exposure on the immune system in children, the summary of evidence from epidemiological studies involving the level of immune molecules is not comprehensive. Therefore, this review summarizes the current epidemiological study on the effect of heavy metal exposure on childhood immune function from multiple perspectives, emphasizing its risks to the health of children's immune systems. It focuses on the effects of six heavy metals (lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), nickel (Ni), and manganese (Mn)) on children's innate immune cells, lymphocytes and their subpopulations, cytokines, total and specific immunoglobulins, and explores the immunotoxicological effects of heavy metals. The review finds that exposure to heavy metals, particularly Pb, Cd, As, and Hg, not only reduced lymphocyte numbers and suppressed adaptive immune responses in children, but also altered the innate immune response to impair the body's ability to fight pathogens. Epidemiological evidence suggests that heavy metal exposure alters cytokine levels and is associated with the development of inflammatory responses in children. Pb, As, and Hg exposure was associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Cd, Ni and Mn showed activation effects on the immune response to childhood vaccination. Exposure age, sex, nutritional status, and co-exposure may influence the effects of heavy metals on immune function in children.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jintao Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
6
|
Avolio LN, Smith TJS, Navas‐Acien A, Kruczynski K, Pisanic N, Randad PR, Detrick B, Fry RC, van Geen A, Goessler W, Karron RA, Klein SL, Ogburn EL, Wills‐Karp M, Alland K, Ayesha K, Dyer B, Islam MT, Oguntade HA, Rahman MH, Ali H, Haque R, Shaikh S, Schulze KJ, Muraduzzaman AKM, Alamgir ASM, Flora MS, West KP, Labrique AB, Heaney CD. The Pregnancy, Arsenic, and Immune Response (PAIR) Study in rural northern Bangladesh. Paediatr Perinat Epidemiol 2023; 37:165-178. [PMID: 36756808 PMCID: PMC10096093 DOI: 10.1111/ppe.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND Arsenic exposure and micronutrient deficiencies may alter immune reactivity to influenza vaccination in pregnant women, transplacental transfer of maternal antibodies to the foetus, and maternal and infant acute morbidity. OBJECTIVES The Pregnancy, Arsenic, and Immune Response (PAIR) Study was designed to assess whether arsenic exposure and micronutrient deficiencies alter maternal and newborn immunity and acute morbidity following maternal seasonal influenza vaccination during pregnancy. POPULATION The PAIR Study recruited pregnant women across a large rural study area in Gaibandha District, northern Bangladesh, 2018-2019. DESIGN Prospective, longitudinal pregnancy and birth cohort. METHODS We conducted home visits to enrol pregnant women in the late first or early second trimester (11-17 weeks of gestational age). Women received a quadrivalent seasonal inactivated influenza vaccine at enrolment. Follow-up included up to 13 visits between enrolment and 3 months postpartum. Arsenic was measured in drinking water and maternal urine. Micronutrient deficiencies were assessed using plasma biomarkers. Vaccine-specific antibody titres were measured in maternal and infant serum. Weekly telephone surveillance ascertained acute morbidity symptoms in women and infants. PRELIMINARY RESULTS We enrolled 784 pregnant women between October 2018 and March 2019. Of 784 women who enrolled, 736 (93.9%) delivered live births and 551 (70.3%) completed follow-up visits to 3 months postpartum. Arsenic was detected (≥0.02 μg/L) in 99.7% of water specimens collected from participants at enrolment. The medians (interquartile ranges) of water and urinary arsenic at enrolment were 5.1 (0.5, 25.1) μg/L and 33.1 (19.6, 56.5) μg/L, respectively. Water and urinary arsenic were strongly correlated (Spearman's ⍴ = 0.72) among women with water arsenic ≥ median but weakly correlated (⍴ = 0.17) among women with water arsenic < median. CONCLUSIONS The PAIR Study is well positioned to examine the effects of low-moderate arsenic exposure and micronutrient deficiencies on immune outcomes in women and infants. REGISTRATION NCT03930017.
Collapse
Affiliation(s)
- Lindsay N. Avolio
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Tyler J. S. Smith
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Ana Navas‐Acien
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNew YorkUSA
| | - Kate Kruczynski
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Nora Pisanic
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Pranay R. Randad
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Barbara Detrick
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rebecca C. Fry
- Department of Environmental Sciences and EngineeringUniversity of North Carolina at Chapel Hill Gillings School of Global Public HealthChapel HillNorth CarolinaUSA
| | | | - Walter Goessler
- Institute of Chemistry – Analytical ChemistryUniversity of GrazGrazAustria
| | - Ruth A. Karron
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Sabra L. Klein
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Elizabeth L. Ogburn
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Marsha Wills‐Karp
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Kelsey Alland
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Kaniz Ayesha
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Brian Dyer
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Md. Tanvir Islam
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Habibat A. Oguntade
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Division of Epidemiology and Community HealthUniversity of Minnesota School of Public HealthMinneapolisMinnesotaUSA
| | - Md. Hafizur Rahman
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Hasmot Ali
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Rezwanul Haque
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Saijuddin Shaikh
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Kerry J. Schulze
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | | | - A. S. M. Alamgir
- Institute of Epidemiology, Disease Control, and ResearchDhakaBangladesh
| | - Meerjady S. Flora
- Institute of Epidemiology, Disease Control, and ResearchDhakaBangladesh
| | - Keith P. West
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Alain B. Labrique
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Christopher D. Heaney
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | | |
Collapse
|
7
|
Amin MB, Talukdar PK, Asaduzzaman M, Roy S, Flatgard BM, Islam MR, Saha SR, Sharker Y, Mahmud ZH, Navab-Daneshmand T, Kile ML, Levy K, Julian TR, Islam MA. Effects of chronic exposure to arsenic on the fecal carriage of antibiotic-resistant Escherichia coli among people in rural Bangladesh. PLoS Pathog 2022; 18:e1010952. [PMID: 36480516 PMCID: PMC9731454 DOI: 10.1371/journal.ppat.1010952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is a leading cause of hospitalization and death worldwide. Heavy metals such as arsenic have been shown to drive co-selection of antibiotic resistance, suggesting arsenic-contaminated drinking water is a risk factor for antibiotic resistance carriage. This study aimed to determine the prevalence and abundance of antibiotic-resistant Escherichia coli (AR-Ec) among people and drinking water in high (Hajiganj, >100 μg/L) and low arsenic-contaminated (Matlab, <20 μg/L) areas in Bangladesh. Drinking water and stool from mothers and their children (<1 year) were collected from 50 households per area. AR-Ec was detected via selective culture plating and isolates were tested for antibiotic resistance, arsenic resistance, and diarrheagenic genes by PCR. Whole-genome sequencing (WGS) analysis was done for 30 E. coli isolates from 10 households. Prevalence of AR-Ec was significantly higher in water in Hajiganj (48%) compared to water in Matlab (22%, p <0.05) and among children in Hajiganj (94%) compared to children in Matlab (76%, p <0.05), but not among mothers. A significantly higher proportion of E. coli isolates from Hajiganj were multidrug-resistant (83%) compared to isolates from Matlab (71%, p <0.05). Co-resistance to arsenic and multiple antibiotics (MAR index >0.2) was observed in a higher proportion of water (78%) and child stool (100%) isolates in Hajiganj than in water (57%) and children (89%) in Matlab (p <0.05). The odds of arsenic-resistant bacteria being resistant to third-generation cephalosporin antibiotics were higher compared to arsenic-sensitive bacteria (odds ratios, OR 1.2-7.0, p <0.01). WGS-based phylogenetic analysis of E. coli isolates did not reveal any clustering based on arsenic exposure and no significant difference in resistome was found among the isolates between the two areas. The positive association detected between arsenic exposure and antibiotic resistance carriage among children in arsenic-affected areas in Bangladesh is an important public health concern that warrants redoubling efforts to reduce arsenic exposure.
Collapse
Affiliation(s)
- Mohammed Badrul Amin
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Prabhat Kumar Talukdar
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Muhammad Asaduzzaman
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Subarna Roy
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Brandon M. Flatgard
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Md. Rayhanul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sumita Rani Saha
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yushuf Sharker
- Center for Data Research and Analytics LLC, Bethesda, Maryland, United States of America
| | - Zahid Hayat Mahmud
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tala Navab-Daneshmand
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States of America
| | - Molly L. Kile
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington, Washington, United States of America
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Mohammad Aminul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
8
|
Hung CH, Hsu HY, Chiou HYC, Tsai ML, You HL, Lin YC, Liao WT, Lin YC. Arsenic Induces M2 Macrophage Polarization and Shifts M1/M2 Cytokine Production via Mitophagy. Int J Mol Sci 2022; 23:ijms232213879. [PMID: 36430358 PMCID: PMC9693596 DOI: 10.3390/ijms232213879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Arsenic is an environmental factor associated with epithelial-mesenchymal transition (EMT). Since macrophages play a crucial role in regulating EMT, we studied the effects of arsenic on macrophage polarization. We first determined the arsenic concentrations to be used by cell viability assays in conjunction with previous studies. In our results, arsenic treatment increased the alternatively activated (M2) macrophage markers, including arginase 1 (ARG-1) gene expression, chemokine (C-C motif) ligand 16 (CCL16), transforming growth factor-β1 (TGF-β1), and the cluster of differentiation 206 (CD206) surface marker. Arsenic-treated macrophages promoted A549 lung epithelial cell invasion and migration in a cell co-culture model and a 3D gel cell co-culture model, confirming that arsenic treatment promoted EMT in lung epithelial cells. We confirmed that arsenic induced autophagy/mitophagy by microtubule-associated protein 1 light-chain 3-II (LC3 II) and phosphor-Parkin (p-Parkin) protein markers. The autophagy inhibitor chloroquine (CQ) recovered the expression of the inducible nitric oxide synthase (iNOS) gene in arsenic-treated M1 macrophages, which represents a confirmation that arsenic indeed induced the repolarization of classically activated (M1) macrophage to M2 macrophages through the autophagy/mitophagy pathway. Next, we verified that arsenic increased M2 cell markers in mouse blood and lungs. This study suggests that mitophagy is involved in the arsenic-induced M1 macrophage switch to an M2-like phenotype.
Collapse
Affiliation(s)
- Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hua-Yu Hsu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying Clair Chiou
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Chih Lin
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Humanities and Education, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Medical University, Kaohsiung 807, Taiwan
- Correspondence: (W.-T.L.); (Y.-C.L.)
| | - Yi-Ching Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (W.-T.L.); (Y.-C.L.)
| |
Collapse
|
9
|
Gandhi D, Bhandari S, Mishra S, Tiwari RR, Rajasekaran S. Non-malignant respiratory illness associated with exposure to arsenic compounds in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103922. [PMID: 35779705 DOI: 10.1016/j.etap.2022.103922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As), a toxic metalloid, primarily originates from both natural and anthropogenic activities. Reports suggested that millions of people globally exposed to high levels of naturally occurring As compounds via inhalation and ingestion. There is evidence that As is a well-known lung carcinogen. However, there has been relatively little evidence suggesting its non-malignant lung effects. This review comprehensively summarises current experimental and clinical studies implicating the association of As exposure and the development of several non-malignant lung diseases. Experimental studies provided evidence that As exposure induces redox imbalance, apoptosis, inflammatory response, epithelial-to-mesenchymal transition (EMT), and affected normal lung development through alteration of the components of intracellular signaling cascades. In addition, we also discuss the sources and possible mechanisms of As influx and efflux in the lung. Finally, current experimental studies on treatment strategies using phytochemicals and our perspective on future research with As are also discussed.
Collapse
Affiliation(s)
- Deepa Gandhi
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Sneha Bhandari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Sehal Mishra
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
10
|
Bae S, Kamynina E, Guetterman HM, Farinola AF, Caudill MA, Berry RJ, Cassano PA, Stover PJ. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev 2021; 10:CD012649. [PMID: 34661903 PMCID: PMC8522704 DOI: 10.1002/14651858.cd012649.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Adetutu F Farinola
- Faculty of Public Health, Department of Human Nutrition and Dietetics, University of Ibadan, Ibadan, Nigeria
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
11
|
García-Serna AM, Martín-Orozco E, Hernández-Caselles T, Morales E. Prenatal and Perinatal Environmental Influences Shaping the Neonatal Immune System: A Focus on Asthma and Allergy Origins. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083962. [PMID: 33918723 PMCID: PMC8069583 DOI: 10.3390/ijerph18083962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023]
Abstract
It is suggested that programming of the immune system starts before birth and is shaped by environmental influences acting during critical windows of susceptibility for human development. Prenatal and perinatal exposure to physiological, biological, physical, or chemical factors can trigger permanent, irreversible changes to the developing immune system, which may be reflected in cord blood of neonates. The aim of this narrative review is to summarize the evidence on the role of the prenatal and perinatal environment, including season of birth, mode of delivery, exposure to common allergens, a farming environment, pet ownership, and exposure to tobacco smoking and pollutants, in shaping the immune cell populations and cytokines at birth in humans. We also discuss how reported disruptions in the immune system at birth might contribute to the development of asthma and related allergic manifestations later in life.
Collapse
Affiliation(s)
- Azahara María García-Serna
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.M.G.-S.); (E.M.-O.); (T.H.-C.)
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Elena Martín-Orozco
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.M.G.-S.); (E.M.-O.); (T.H.-C.)
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Trinidad Hernández-Caselles
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.M.G.-S.); (E.M.-O.); (T.H.-C.)
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.M.G.-S.); (E.M.-O.); (T.H.-C.)
- Department of Public Health Sciences, University of Murcia, 30100 Murcia, Spain
- Correspondence: ; Tel.: +34-868883691
| |
Collapse
|
12
|
Nkurunziza G, Omara T, Kiwanuka Nakiguli C, Mukasa P, Byamugisha D, Ntambi E. Physicochemical Quality of Water from Chuho Springs, Kisoro District, Uganda. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2021. [DOI: 10.17721/fujcv9i2p12-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the current study, water from Chuho springs used as the main water source in Kisoro municipality, Uganda were assessed for their suitability as drinking water. The temperature, turbidity, conductivity, total dissolved solids, dissolved oxygen, biological oxygen demand, total hardness, total alkalinity, calcium, magnesium, phosphates, iron, copper, arsenic, chlorides and the fluoride content of the water samples were determined. Not all the parameters met World Health Organizations’ guidelines for drinking water. Temperature, dissolved oxygen and fluorides were outside the recommended limits of 15 ℃, 10-12 mg/L and 1.5 mg/L, respectively. Further studies should assess the microbiological and sanitary profile of the springs.
Collapse
|