1
|
Zhang J, Yan H, Wang Y, Yue X, Wang M, Liu L, Qiao P, Zhu Y, Li Z. Emerging insights into pulmonary hypertension: the potential role of mitochondrial dysfunction and redox homeostasis. Mol Cell Biochem 2025; 480:1407-1429. [PMID: 39254871 DOI: 10.1007/s11010-024-05096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Pulmonary hypertension (PH) is heterogeneous diseases that can lead to death due to progressive right heart failure. Emerging evidence suggests that, in addition to its role in ATP production, changes in mitochondrial play a central role in their pathogenesis, regulating integrated metabolic and signal transduction pathways. This review focuses on the basic principles of mitochondrial redox status in pulmonary vascular and right ventricular disorders, a series of dysfunctional processes including mitochondrial quality control (mitochondrial biogenesis, mitophagy, mitochondrial dynamics, mitochondrial unfolded protein response) and mitochondrial redox homeostasis. In addition, we will summarize how mitochondrial renewal and dynamic changes provide innovative insights for studying and evaluating PH. This will provide us with a clearer understanding of the initial signal transmission of mitochondria in PH, which would further improve our understanding of the pathogenesis of PH.
Collapse
Affiliation(s)
- Junming Zhang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Huimin Yan
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yan Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Xian Yue
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Meng Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Limin Liu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Pengfei Qiao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yixuan Zhu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Zhichao Li
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
2
|
Bjork S, Jain D, Marliere MH, Predescu SA, Mokhlesi B. Obstructive Sleep Apnea, Obesity Hypoventilation Syndrome, and Pulmonary Hypertension: A State-of-the-Art Review. Sleep Med Clin 2024; 19:307-325. [PMID: 38692755 DOI: 10.1016/j.jsmc.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The pathophysiological interplay between sleep-disordered breathing (SDB) and pulmonary hypertension (PH) is complex and can involve a variety of mechanisms by which SDB can worsen PH. These mechanistic pathways include wide swings in intrathoracic pressure while breathing against an occluded upper airway, intermittent and/or sustained hypoxemia, acute and/or chronic hypercapnia, and obesity. In this review, we discuss how the downstream consequences of SDB can adversely impact PH, the challenges in accurately diagnosing and classifying PH in the severely obese, and review the limited literature assessing the effect of treating obesity, obstructive sleep apnea, and obesity hypoventilation syndrome on PH.
Collapse
Affiliation(s)
- Sarah Bjork
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Deepanjali Jain
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Manuel Hache Marliere
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Ho L, Hossen N, Nguyen T, Vo A, Ahsan F. Epigenetic Mechanisms as Emerging Therapeutic Targets and Microfluidic Chips Application in Pulmonary Arterial Hypertension. Biomedicines 2022; 10:170. [PMID: 35052850 PMCID: PMC8773438 DOI: 10.3390/biomedicines10010170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease that progress over time and is defined as an increase in pulmonary arterial pressure and pulmonary vascular resistance that frequently leads to right-ventricular (RV) failure and death. Epigenetic modifications comprising DNA methylation, histone remodeling, and noncoding RNAs (ncRNAs) have been established to govern chromatin structure and transcriptional responses in various cell types during disease development. However, dysregulation of these epigenetic mechanisms has not yet been explored in detail in the pathology of pulmonary arterial hypertension and its progression with vascular remodeling and right-heart failure (RHF). Targeting epigenetic regulators including histone methylation, acetylation, or miRNAs offers many possible candidates for drug discovery and will no doubt be a tempting area to explore for PAH therapies. This review focuses on studies in epigenetic mechanisms including the writers, the readers, and the erasers of epigenetic marks and targeting epigenetic regulators or modifiers for treatment of PAH and its complications described as RHF. Data analyses from experimental cell models and animal induced PAH models have demonstrated that significant changes in the expression levels of multiple epigenetics modifiers such as HDMs, HDACs, sirtuins (Sirt1 and Sirt3), and BRD4 correlate strongly with proliferation, apoptosis, inflammation, and fibrosis linked to the pathological vascular remodeling during PAH development. The reversible characteristics of protein methylation and acetylation can be applied for exploring small-molecule modulators such as valproic acid (HDAC inhibitor) or resveratrol (Sirt1 activator) in different preclinical models for treatment of diseases including PAH and RHF. This review also presents to the readers the application of microfluidic devices to study sex differences in PAH pathophysiology, as well as for epigenetic analysis.
Collapse
Affiliation(s)
- Linh Ho
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Nazir Hossen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Trieu Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
- East Bay Institute for Research & Education (EBIRE), Mather, CA 95655, USA
| | - Au Vo
- Department of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
4
|
Bryant AJ, Ebrahimi E, Nguyen A, Wolff CA, Gumz ML, Liu AC, Esser KA. A wrinkle in time: circadian biology in pulmonary vascular health and disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L84-L101. [PMID: 34850650 PMCID: PMC8759967 DOI: 10.1152/ajplung.00037.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An often overlooked element of pulmonary vascular disease is time. Cellular responses to time, which are regulated directly by the core circadian clock, have only recently been elucidated. Despite an extensive collection of data regarding the role of rhythmic contribution to disease pathogenesis (such as systemic hypertension, coronary artery, and renal disease), the roles of key circadian transcription factors in pulmonary hypertension remain understudied. This is despite a large degree of overlap in the pulmonary hypertension and circadian rhythm fields, not only including shared signaling pathways, but also cell-specific effects of the core clock that are known to result in both protective and adverse lung vessel changes. Therefore, the goal of this review is to summarize the current dialogue regarding common pathways in circadian biology, with a specific emphasis on its implications in the progression of pulmonary hypertension. In this work, we emphasize specific proteins involved in the regulation of the core molecular clock while noting the circadian cell-specific changes relevant to vascular remodeling. Finally, we apply this knowledge to the optimization of medical therapy, with a focus on sleep hygiene and the role of chronopharmacology in patients with this disease. In dissecting the unique relationship between time and cellular biology, we aim to provide valuable insight into the practical implications of considering time as a therapeutic variable. Armed with this information, physicians will be positioned to more efficiently use the full four dimensions of patient care, resulting in improved morbidity and mortality of pulmonary hypertension patients.
Collapse
Affiliation(s)
- Andrew J. Bryant
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Elnaz Ebrahimi
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Amy Nguyen
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher A. Wolff
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Michelle L. Gumz
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Andrew C. Liu
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Karyn A. Esser
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
5
|
Tian Q, Fan X, Ma J, Li D, Han Y, Yin X, Wang H, Huang T, Wang Z, Shentu Y, Xue F, Du C, Wang Y, Mao S, Fan J, Gong Y. Critical role of VGLL4 in the regulation of chronic normobaric hypoxia-induced pulmonary hypertension in mice. FASEB J 2021; 35:e21822. [PMID: 34314061 DOI: 10.1096/fj.202002650rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Pulmonary hypertension (PH), a rare but deadly cardiopulmonary disorder, is characterized by extensive remodeling of pulmonary arteries resulting from enhancement of pulmonary artery smooth muscle cell proliferation and suppressed apoptosis; however, the underlying pathophysiological mechanisms remain largely unknown. Recently, epigenetics has gained increasing prominence in the development of PH. We aimed to investigate the role of vestigial-like family member 4 (VGLL4) in chronic normobaric hypoxia (CNH)-induced PH and to address whether it is associated with epigenetic regulation. The rodent model of PH was established by CNH treatment (10% O2 , 23 hours/day). Western blot, quantitative reverse transcription polymerase chain reaction, immunofluorescence, immunoprecipitation, and adeno-associated virus tests were performed to explore the potential mechanisms involved in CNH-induced PH in mice. VGLL4 expression was upregulated and correlated with CNH in PH mouse lung tissues in a time-dependent manner. VGLL4 colocalized with α-smooth muscle actin in cultured pulmonary arterial smooth muscle cells (PASMCs), and VGLL4 immunoactivity was increased in PASMCs following hypoxia exposure in vitro. VGLL4 knockdown attenuated CNH-induced PH and pulmonary artery remodeling by blunting signal transducer and activator of transcription 3 (STAT3) signaling; conversely, VGLL4 overexpression exacerbated the development of PH. CNH enhanced the acetylation of VGLL4 and increased the interaction of ac-H3K9/VGLL4 and ac-H3K9/STAT3 in the lung tissues, and levels of ac-H3K9, p-STAT3/STAT3, and proliferation-associated protein levels were markedly up-regulated, whereas apoptosis-related protein levels were significantly downregulated, in the lung tissues of mice with CNH-induced PH. Notably, abrogation of VGLL4 acetylation reversed CNH-induced PH and pulmonary artery remodeling and suppressed STAT3 signaling. Finally, STAT3 knockdown alleviated CNH-induced PH. In conclusion, VGLL4 acetylation upregulation could contribute to CNH-induced PH and pulmonary artery remodeling via STAT3 signaling, and abrogation of VGLL4 acetylation reversed CNH-induced PH. Pharmacological or genetic deletion of VGLL4 might be a potential target for therapeutic interventions in CNH-induced PH.
Collapse
Affiliation(s)
- Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dantong Li
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yujiao Han
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xianghong Yin
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Huang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenglu Wang
- Renji College, Wenzhou Medical University, Wenzhou, China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Xue
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Congkuo Du
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sunzhong Mao
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Hsu JY, Major JL, Riching AS, Sen R, Pires da Silva J, Bagchi RA. Beyond the genome: challenges and potential for epigenetics-driven therapeutic approaches in pulmonary arterial hypertension. Biochem Cell Biol 2020; 98:631-646. [PMID: 32706995 DOI: 10.1139/bcb-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease of the cardiopulmonary system caused by the narrowing of the pulmonary arteries, leading to increased vascular resistance and pressure. This leads to right ventricle remodeling, dysfunction, and eventually, death. While conventional therapies have largely focused on targeting vasodilation, other pathological features of PAH including aberrant inflammation, mitochondrial dynamics, cell proliferation, and migration have not been well explored. Thus, despite some recent improvements in PAH treatment, the life expectancy and quality of life for patients with PAH remains poor. Showing many similarities to cancers, PAH is characterized by increased pulmonary arterial smooth muscle cell proliferation, decreased apoptotic signaling pathways, and changes in metabolism. The recent successes of therapies targeting epigenetic modifiers for the treatment of cancer has prompted epigenetic research in PAH, revealing many new potential therapeutic targets. In this minireview we discuss the emergence of epigenetic dysregulation in PAH and highlight epigenetic-targeting compounds that may be effective for the treatment of PAH.
Collapse
Affiliation(s)
- Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L Major
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew S Riching
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rwik Sen
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Pires da Silva
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Flores K, Siques P, Brito J, Ordenes S, Arriaza K, Pena E, León-Velarde F, López R, López de Pablo ÁL, Arribas S. Lower Body Weight in Rats Under Hypobaric Hypoxia Exposure Would Lead to Reduced Right Ventricular Hypertrophy and Increased AMPK Activation. Front Physiol 2020; 11:342. [PMID: 32372974 PMCID: PMC7185171 DOI: 10.3389/fphys.2020.00342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Both chronic hypoxia (CH) and long-term chronic intermittent hypoxia (CIH) exposure lead to right ventricular hypertrophy (RVH). Weight loss is an effective intervention to improve cardiac function and energy metabolism in cardiac hypertrophy. Likewise, caloric restriction (CR) also plays an important role in this cardioprotection through AMPK activation. We aimed to determine the influence of body weight (BW) on RVH, AMPK and related variables by comparing rats exposed to both hypoxic conditions. Methods Sixty male adult rats were separated into two groups (n = 30 per group) according to their previous diet: a caloric restriction (CR) group and an ad libitum (AL) group. Rats in both groups were randomly assigned to 3 groups: a normoxic group (NX, n = 10), a CIH group (2 days hypoxia/2 days normoxia; n = 10) and a CH group (n = 10). The CR group was previously fed 10 g daily, and the other was fed ad libitum. Rats were exposed to simulated hypobaric hypoxia in a hypobaric chamber set to 428 Torr (the equivalent pressure to that at an altitude of 4,600 m above sea level) for 30 days. Measurements included body weight; hematocrit; serum insulin; glycemia; the degree of RVH (Fulton's index and histology); and AMPK, mTOR, and PP2C expression levels in the right ventricle determined by western blotting. Results A lower degree of RVH, higher AMPK activation, and no activation of mTOR were found in the CR groups exposed to hypobaric hypoxia compared to the AL groups (p < 0.05). Additionally, decreased glycemia and serum insulin levels were observed. Interestingly, PP2C expression showed an increase in the AL groups but not in the CR groups (p < 0.05). Conclusion Maintaining a low weight before and during exposure to high-altitude hypoxia, during either CH or CIH, could prevent a major degree of RVH. This cardioprotection would likely be due to the activation of AMPK. Thus, body weight is a factor that might contribute to RVH at high altitudes.
Collapse
Affiliation(s)
- Karen Flores
- Institute of Health Studies, University Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Iquique, Chile
| | - Patricia Siques
- Institute of Health Studies, University Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Iquique, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Iquique, Chile
| | - Stefany Ordenes
- Institute of Health Studies, University Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Iquique, Chile
| | - Karem Arriaza
- Institute of Health Studies, University Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Iquique, Chile
| | - E Pena
- Institute of Health Studies, University Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Iquique, Chile
| | - Fabiola León-Velarde
- Department of Biological and Physiological Sciences, Facultad de Ciencias y Filosofía/IIA, Cayetano Heredia University, Lima, Peru
| | - Rosario López
- Department of Preventive Medicine and Public Health, University Autónoma of Madrid, Madrid, Spain
| | | | - Silvia Arribas
- Department of Physiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Chelladurai P, Boucherat O, Stenmark K, Kracht M, Seeger W, Bauer UM, Bonnet S, Pullamsetti SS. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br J Pharmacol 2020; 178:54-71. [PMID: 31749139 DOI: 10.1111/bph.14932] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Epigenetic mechanisms, including DNA methylation and histone post-translational modifications (PTMs), have been known to regulate chromatin structure and lineage-specific gene expression during cardiovascular development and disease. However, alterations in the landscape of histone PTMs and their contribution to the pathogenesis of incurable cardiovascular diseases such as pulmonary hypertension (PH) and associated right heart failure (RHF) remain largely unexplored. This review focusses on the studies in PH and RHF that investigated the gene families that write (histone acetyltransferases), read (bromodomain-containing proteins) or erase (histone deacetylases [HDACs] and sirtuins [SIRT]) acetyl moieties from the ε-amino group of lysine residues of histones and non-histone proteins. Analysis of cells and tissues isolated from the in vivo preclinical models of PH and human pulmonary arterial hypertension not only confirmed significant alterations in the expression levels of multiple HDACs, SIRT1, SIRT3 and BRD4 proteins but also demonstrated their strong association to proliferative, inflammatory and fibrotic phenotypes linked to the pathological vascular remodelling process. Due to the reversible nature of post-translational protein acetylation, the therapeutic efficacy of numerous small-molecule inhibitors (vorinostat, valproic acid, sodium butyrate, mocetinostat, entinostat, tubastatin A, apabetalone, JQ1 and resveratrol) have been evaluated in different preclinical models of cardiovascular disease, which revealed the promising therapeutic benefits of targeting histone acetylation pathways in the attenuation of cardiac hypertrophy, fibrosis, left heart dysfunction, PH and RHF. This review also emphasizes the need for deeper molecular insights into the contribution of epigenetic changes to PH pathogenesis and therapeutic evaluation of isoform-specific modulation in ex vivo and in vivo models of PH and RHF. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Prakash Chelladurai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the DZL, Member of CPI, Justus-Liebig University, Giessen, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the DZL, Member of CPI, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
9
|
Lin Q, Fan C, Skinner JT, Hunter EN, Macdonald AA, Illei PB, Yamaji-Kegan K, Johns RA. RELMα Licenses Macrophages for Damage-Associated Molecular Pattern Activation to Instigate Pulmonary Vascular Remodeling. THE JOURNAL OF IMMUNOLOGY 2019; 203:2862-2871. [PMID: 31611261 DOI: 10.4049/jimmunol.1900535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023]
Abstract
Pulmonary hypertension (PH) is a debilitating disease characterized by remodeling of the lung vasculature. In rodents, resistin-like molecule-α (RELMα, also known as HIMF or FIZZ1) can induce PH, but the signaling mechanisms are still unclear. In this study, we used human lung samples and a hypoxia-induced mouse model of PH. We found that the human homolog of RELMα, human (h) resistin, is upregulated in macrophage-like inflammatory cells from lung tissues of patients with idiopathic PH. Additionally, at PH onset in the mouse model, we observed RELMα-dependent lung accumulation of macrophages that expressed high levels of the key damage-associated molecular pattern (DAMP) molecule high-mobility group box 1 (HMGB1) and its receptor for advanced glycation end products (RAGE). In vitro, RELMα/hresistin-induced macrophage-specific HMGB1/RAGE expression and facilitated HMGB1 nucleus-to-cytoplasm translocation and extracellular secretion. Mechanistically, hresistin promoted HMGB1 posttranslational lysine acetylation by preserving the NAD+-dependent deacetylase sirtuin (Sirt) 1 in human macrophages. Notably, the hresistin-stimulated macrophages promoted apoptosis-resistant proliferation of human pulmonary artery smooth muscle cells in an HMGB1/RAGE-dependent manner. In the mouse model, RELMα also suppressed the Sirt1 signal in pulmonary macrophages in the early posthypoxic period. Notably, recruited macrophages in the lungs of these mice carried the RELMα binding partner Bruton tyrosine kinase (BTK). hResistin also mediated the migration of human macrophages by activating BTK in vitro. Collectively, these data reveal a vascular-immune cellular interaction in the early PH stage and suggest that targeting RELMα/DAMP-driven macrophages may offer a promising strategy to treat PH and other related vascular inflammatory diseases.
Collapse
Affiliation(s)
- Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Chunling Fan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - John T Skinner
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Elizabeth N Hunter
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Andrew A Macdonald
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Peter B Illei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kazuyo Yamaji-Kegan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| |
Collapse
|
10
|
Sirtuin 1 regulates pulmonary artery smooth muscle cell proliferation: role in pulmonary arterial hypertension. J Hypertens 2019; 36:1164-1177. [PMID: 29369849 DOI: 10.1097/hjh.0000000000001676] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Energy metabolism shift from oxidative phosphorylation toward glycolysis in pulmonary artery smooth muscle cells (PASMCs) is suggested to be involved in their hyperproliferation in pulmonary arterial hypertension (PAH). Here, we studied the role of the deacetylase sirtuin1 (SIRT1) in energy metabolism regulation in PASMCs via various pathways including activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), master regulator of mitochondrial biogenesis. APPROACH AND RESULTS Contents of PGC-1α and its downstream targets as well as markers of mitochondrial mass (voltage-dependent anion channel and citrate synthase) were diminished in human PAH PASMCs. These cells and platelet-derived growth factor-stimulated rat PASMCs demonstrated a shift in cellular acetylated/deacetylated state, as evidenced by the increase of the acetylated forms of SIRT1 targets: histone H1 and Forkhead box protein O1. Rat and human PASMC proliferation was potentiated by SIRT1 pharmacological inhibition or specific downregulation via short-interfering RNA. Moreover, after chronic hypoxia exposure, SIRT1 inducible knock out mice displayed a more intense vascular remodeling compared with their control littermates, which was associated with an increase in right ventricle pressure and hypertrophy. SIRT1 activator Stac-3 decreased the acetylation of histone H1 and Forkhead box protein O1 and strongly inhibited rat and human PASMC proliferation without affecting cell mortality. This effect was associated with the activation of mitochondrial biogenesis evidenced by higher expression of mitochondrial markers and downstream targets of PGC-1α. CONCLUSION Altered acetylation/deacetylation balance as the result of SIRT1 inactivation is involved in the pathogenesis of PAH, and this enzyme could be a promising therapeutic target for PAH treatment.
Collapse
|
11
|
Mahobiya A, Singh TU, Rungsung S, Kumar T, Chandrasekaran G, Parida S, Kumar D. Kaempferol-induces vasorelaxation via endothelium-independent pathways in rat isolated pulmonary artery. Pharmacol Rep 2018; 70:863-874. [DOI: 10.1016/j.pharep.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/17/2017] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
|
12
|
Kim KH, Kim HK, Chan SY, Kim YJ, Sohn DW. Hemodynamic and Histopathologic Benefits of Early Treatment with Macitentan in a Rat Model of Pulmonary Arterial Hypertension. Korean Circ J 2018; 48:839-853. [PMID: 30088353 PMCID: PMC6110709 DOI: 10.4070/kcj.2017.0394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Macitentan (MAC) reduces morbidity and mortality among advanced-stage pulmonary arterial hypertension (PAH) patients. However, data regarding the histopathologic and hemodynamic benefits of MAC treatment at an early stage of PAH is lacking. METHODS One week after monocrotaline (MCT) injection, rats were randomly assigned to MAC (n=16), MAC combined with sildenafil (SIL) (MAC+SIL, n=16), or normal saline (MCT, n=16). Twelve sham rats (Sham) were included for comparison. Right ventricular (RV) systolic function was assessed via echocardiography as the RV fractional area change (RV-FAC). An invasive pressure-volume analysis using a Millar conductance catheter was performed 7 weeks after MCT injection. Rats were subsequently euthanized for histopathologic analysis. RESULTS RV-right atrial pressure gradient on echocardiography was significantly increased 3 weeks after MCT injection, but was maintained in the Sham. RV-FAC was less deteriorated in the MAC, compared to that in the MCT (44±3% vs. 25±7%, p<0.05), and the co-administration of SIL showed no additional benefit (45±8%, p>0.05 vs. the MAC). On invasive hemodynamic analyses, RV end-systolic (196±78 μL) and end-diastolic volumes (310±86 μL), pulmonary artery systolic pressure (89±7.2 mmHg), and end-systolic pressure-volume relationship (-254±25.1) were significantly worse in the MCT vs. in the MAC (101±45 μL, 235±55 μL, 40±10.5 mmHg, and -145±42.1, respectively) and MAC+SIL (109±47 μL, 242±46 μL, 38±9.2 mmHg, and -151±39.2, respectively) (all p<0.05). However, the MAC and MAC+SIL did not differ (all p>0.05). On histopathology, both RV and lung fibrosis were significantly reduced in the MAC and MAC+SIL vs. in the MCT (all p<0.05); the 2 treatment groups did not differ. CONCLUSIONS MAC treatment at an earlier stage significantly attenuated experimental PAH progression hemodynamically and histopathologically.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Division of Cardiology, Department of Internal Medicine, Sejong General Hospital, Bucheon, Korea.,Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Kwan Kim
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yong Jin Kim
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Won Sohn
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Nicoll R, Henein MY. Caloric Restriction and Its Effect on Blood Pressure, Heart Rate Variability and Arterial Stiffness and Dilatation: A Review of the Evidence. Int J Mol Sci 2018; 19:E751. [PMID: 29518898 PMCID: PMC5877612 DOI: 10.3390/ijms19030751] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
Abstract
Essential hypertension, fast heart rate, low heart rate variability, sympathetic nervous system dominance over parasympathetic, arterial stiffness, endothelial dysfunction and poor flow-mediated arterial dilatation are all associated with cardiovascular mortality and morbidity. This review of randomised controlled trials and other studies demonstrates that caloric restriction (CR) is capable of significantly improving all these parameters, normalising blood pressure (BP) and allowing patients to discontinue antihypertensive medication, while never becoming hypotensive. CR appears to be effective regardless of age, gender, ethnicity, weight, body mass index (BMI) or a diagnosis of metabolic syndrome or type 2 diabetes, but the greatest benefit is usually observed in the sickest subjects and BP may continue to improve during the refeeding period. Exercise enhances the effects of CR only in hypertensive subjects. There is as yet no consensus on the mechanism of effect of CR and it may be multifactorial. Several studies have suggested that improvement in BP is related to improvement in insulin sensitivity, as well as increased nitric oxide production through improved endothelial function. In addition, CR is known to induce SIRT1, a nutrient sensor, which is linked to a number of beneficial effects in the body.
Collapse
Affiliation(s)
- Rachel Nicoll
- Department of Public Health and Clinical Medicine and Heart Centre, Umea University, 901 87 Umea, Sweden.
| | - Michael Y Henein
- Department of Public Health and Clinical Medicine and Heart Centre, Umea University, 901 87 Umea, Sweden.
| |
Collapse
|
14
|
Ding M, Dong Q, Liu Z, Liu Z, Qu Y, Li X, Huo C, Jia X, Fu F, Wang X. Inhibition of dynamin-related protein 1 protects against myocardial ischemia-reperfusion injury in diabetic mice. Cardiovasc Diabetol 2017; 16:19. [PMID: 28173848 PMCID: PMC5297196 DOI: 10.1186/s12933-017-0501-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/31/2017] [Indexed: 01/05/2023] Open
Abstract
Background Many cardioprotective pharmacological agents failed to exert their protective effects in diabetic hearts subjected to myocardial ischemia/reperfusion (MI/R). Identify the molecular basis linking diabetes with MI/R injury is scientifically important and may provide effective therapeutic approaches. Dynamin-related protein 1 (Drp1)-mediated mitochondrial fission plays an important role in MI/R injury under non-diabetic conditions. Importantly, recent studies indicated that Drp1-mediated mitochondrial fission is enhanced in the myocardium of diabetic mice. The above evidences suggested that Drp1 may be one critical molecule linking diabetes with MI/R injury. We hypothesized that inhibition of Drp1 may be effective to reduce MI/R injury in diabetic hearts. Methods High-fat diet and streptozotocin-induced diabetic mice were subjected to MI/R or sham operation. Mdivi-1 (1.2 mg/kg), a small molecule inhibitor of Drp1 or vehicle was administrated 15 min before the onset of reperfusion. Outcome measures included mitochondrial morphology, mitochondrial function, myocardial injury, cardiac function and oxidative stress. Results Mitochondrial fission was significantly increased following MI/R as evidenced by enhanced translocation of Drp1 to mitochondria and decreased mitochondrial size. Delivery of Mdivi-1 into diabetic mice markedly inhibited Drp1 translocation to the mitochondria and reduced mitochondrial fission following MI/R. Inhibition of Drp1 in diabetic hearts improved mitochondrial function and cardiac function following MI/R. Moreover, inhibition of Drp1 reduced myocardial infarct size and serum cardiac troponin I and lactate dehydrogenase activities. These cardioprotective effects were associated with decreased cardiomyocyte apoptosis and malondialdehyde production and increased activities of antioxidant enzyme manganese superoxide dismutase. Conclusions Pharmacological inhibition of Drp1 prevents mitochondrial fission and reduces MI/R injury in diabetic mice. The findings suggest Drp1 may be a potential novel therapeutic target for diabetic cardiac complications.
Collapse
Affiliation(s)
- Mingge Ding
- Department of Geriatrics, Xi'an Central Hospital, Xi'an, 710003, China.,Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China
| | - Qianqian Dong
- Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhenghua Liu
- Department of Physiology, Fourth Military Medical University, 169 Changlexi Road, Xi'an, 710032, China
| | - Zheng Liu
- Department of Physiology, Fourth Military Medical University, 169 Changlexi Road, Xi'an, 710032, China
| | - Yinxian Qu
- Department of Geriatrics, Xi'an Central Hospital, Xi'an, 710003, China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China
| | - Feng Fu
- Department of Physiology, Fourth Military Medical University, 169 Changlexi Road, Xi'an, 710032, China.
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
15
|
Shao J, Wang P, Liu A, Du X, Bai J, Chen M. Punicalagin Prevents Hypoxic Pulmonary Hypertension via Anti-Oxidant Effects in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:785-801. [PMID: 27222062 DOI: 10.1142/s0192415x16500439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Punicalagin (PG), a major bioactive ingredient in pomegranate juice, has been proven to have anti-oxidative stress properties and to exert protective effects on acute lung injuries induced by lipopolysaccharides. This study aimed to investigate the effects of PG treatment on hypoxic pulmonary hypertension (HPH) and the underlying mechanisms responsible for the effects. Rats were exposed to 10% oxygen for 2 wk (8 h/day) to induce the HPH model. PG (5, 15, 45[Formula: see text]mg/kg) was orally administered 10[Formula: see text]min before hypoxia each day. PG treatments at the doses of 15 and 45[Formula: see text]mg/kg/d decreased the mean pulmonary arterial pressure (mPAP) and alleviated right ventricular hypertrophy and vascular remodeling in HPH rats. Meanwhile, PG treatment attenuated the hypoxia-induced endothelial dysfunction of pulmonary artery rings. The beneficial effects of PG treatment were associated with improved nitric oxide (NO)-cGMP signaling and reduced oxidative stress, as evidenced by decreased superoxide generation, gp91[Formula: see text] expression and nitrotyrosine content in the pulmonary arteries. Furthermore, tempol’s scavenging of oxidative stress also increased NO production and attenuated endothelial dysfunction and pulmonary hypertension in HPH rats. Combining tempol and PG did not exert additional beneficial effects compared to tempol alone. Our study indicated for the first time that PG treatment can protect against hypoxia-induced endothelial dysfunction and pulmonary hypertension in rats, which may be induced via its anti-oxidant actions.
Collapse
Affiliation(s)
- Jingyun Shao
- Department of Respiratory Medicine, Xi’an Central Hospital Xi’an 710003, China
- Department of Respiratory Medicine, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| | - Peng Wang
- Department of Respiratory Medicine, Xi’an Central Hospital Xi’an 710003, China
| | - An Liu
- Department of Respiratory Medicine, Xi’an Central Hospital Xi’an 710003, China
| | - Xusheng Du
- Department of Respiratory Medicine, Xi’an Central Hospital Xi’an 710003, China
| | - Jie Bai
- Department of Respiratory Medicine, Xi’an Central Hospital Xi’an 710003, China
| | - Mingwei Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
16
|
Calorie Restriction Attenuates Monocrotaline-induced Pulmonary Arterial Hypertension in Rats. J Cardiovasc Pharmacol 2015. [DOI: 10.1097/01.fjc.0000473708.71959.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
SIRT1 protects against myocardial ischemia-reperfusion injury via activating eNOS in diabetic rats. Cardiovasc Diabetol 2015; 14:143. [PMID: 26489513 PMCID: PMC4618275 DOI: 10.1186/s12933-015-0299-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022] Open
Abstract
Background Diabetic patients are more sensitive to myocardial ischemic injury than non-diabetic patients. Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent histone deacetylase making the heart more resistant to ischemic injury. As SIRT1 expression is considered to be reduced in diabetic heart, we therefore hypothesized that up-regulation of SIRT1 in the diabetic heart may overcome its increased susceptibility to ischemic injury. Methods Male Sprague–Dawley rats were fed with high-fat diet and injected with streptozotocin once to induce diabetes. Diabetic rats received injections of adenoviral vectors encoding SIRT1 (Ad-SIRT1) at five myocardial sites. Four days after adenoviral injection, the rats were subjected to myocardial ischemia and reperfusion (MI/R). Outcome measures included left ventricular function, infarct size, cellular death and oxidative stress. Results Delivery of Ad-SIRT1 into the hearts of diabetic rats markedly increased SIRT1 expression. Up-regulation of SIRT1 in diabetic hearts improved cardiac function and reduced infarct size to the extent as in non-diabetic animals following MI/R, which was associated with reduced serum creatine kinase-MB, lactate dehydrogenase activities and cardiomyocyte apoptosis. Moreover, Ad-SIRT1 reduced the increase in the superoxide generation and malonaldialdehyde content and simultaneously increased the antioxidant capability. Furthermore, Ad-SIRT1 increased eNOS phosphorylation and reduced eNOS acetylation in diabetic hearts. NOS inhibitor L-NAME inhibited SIRT1-enhanced eNOS phosphorylation, and blunted SIRT1-mediated anti-apoptotic and anti-oxidative effects and cardioprotection. Conclusions Overexpression of SIRT1 reduces diabetes-exacerbated MI/R injury and oxidative stress via activating eNOS in diabetic rats. The findings suggest SIRT1 may be a promising novel therapeutic target for diabetic cardiac complications.
Collapse
|
18
|
Calorie Restriction Attenuates Monocrotaline-induced Pulmonary Arterial Hypertension in Rats. J Cardiovasc Pharmacol 2015. [PMCID: PMC4750504 DOI: 10.1097/01.fjc.0000471663.65299.5c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|