1
|
Wang Q, Hao W, Guo C, Cao H, Wang B, Li X, Yu R, Xu L, Li J. The regenerative wound healing effects and molecular mechanism of Isaria cicadae Miquel rice fermentation extract. Appl Microbiol Biotechnol 2025; 109:40. [PMID: 39928145 PMCID: PMC11811436 DOI: 10.1007/s00253-025-13412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/16/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Human skin wounds primarily heal through reparative wound healing without pilosebaceous units or other appendages, rather than regenerative wound healing. Hair follicle (HF) regeneration is a significant challenge for skin wound healing. The effects and underlying mechanisms of Isaria cicadae Miquel rice fermentation extract (IMFRE) remain unclear, although it has anti-inflammatory, antioxidant, and reparative effects on oxidative damage in keratinocytes. We assessed the regenerative wound healing ability of IMFRE and its related molecular mechanisms through experimental validation and network pharmacology analysis. Our findings suggest that IMFRE could be an important potential solution for regenerative wound healing of skin hair follicle by utilizing the Hippo pathway regulatory mechanism. KEY POINTS: • IMFRE was found to significantly enhance the wound healing rate of mouse skin. • CK15 and CD34 were significantly increased by high-dose IMFRE intervention. • IMFRE could inhibit EGFR, GPCR, and Integrin expression.
Collapse
Affiliation(s)
- Qin Wang
- Wuxi Institute of Inspection, Testing and Certification, Wuxi, Jiangsu, China
| | - Wenwen Hao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chao Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Beiqi Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingyang Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruilian Yu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Li Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Li
- Wuxi Institute of Inspection, Testing and Certification, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Kundu D, Min X, Wang S, Peng L, Tian X, Wang M, Kim KM. Transactivation of the EGF receptor as a novel desensitization mechanism for G protein-coupled receptors, illustrated by dopamine D2-like and β 2 adrenergic receptors. Cell Mol Biol Lett 2024; 29:132. [PMID: 39468452 PMCID: PMC11514929 DOI: 10.1186/s11658-024-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Transactivation of epidermal growth factor receptors (EGFR) provides intricate control over multiple regulatory cellular processes that merge the diversity of G protein-coupled receptors (GPCRs) with the robust signaling capacities of receptor tyrosine kinases. Contrary to the typical assertions, our findings demonstrate that EGFR transactivation contributes to the desensitization of GPCRs. Repeated agonist stimulation of certain GPCRs enhanced EGFR transactivation, triggering a series of cellular events associated with GPCR desensitization. This effect was observed in receptors undergoing desensitization (D3R, K149C-D2R, β2AR) but not in those resistant to desensitization (D2R, C147K-D3R, D4R, β2AR mutants lacking GRK2 or GRK6 phosphorylation sites). The EGFR inhibitor AG1478 prevented both desensitization and the associated cellular events. Similarly, these cellular events were also observed when cells were treated with EGF, but only in GPCRs that undergo desensitization. These findings suggest that EGFR transactivation diversifies pathways involved in ERK activation through the EGFR signaling system and also mediates GPCR desensitization. Alongside the widely accepted steric hindrance model, these findings offer new insights into understanding the mechanisms of GPCR desensitization, which occurs through complex cellular processes.
Collapse
Affiliation(s)
- Dooti Kundu
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Xiao Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Lulu Peng
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Xinru Tian
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Mengling Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea.
| |
Collapse
|
3
|
Gekle M, Eckenstaler R, Braun H, Olgac A, Robaa D, Mildenberger S, Dubourg V, Schreier B, Sippl W, Benndorf R. Direct GPCR-EGFR interaction enables synergistic membrane-to-nucleus information transfer. Cell Mol Life Sci 2024; 81:272. [PMID: 38900158 PMCID: PMC11335197 DOI: 10.1007/s00018-024-05281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
We addressed the heteromerization of the epidermal growth factor receptor (EGFR) with G-protein coupled receptors (GPCR) on the basis of angiotensin-II-receptor-subtype-1(AT1R)-EGFR interaction as proof-of-concept and show its functional relevance during synergistic nuclear information transfer, beyond ligand-dependent EGFR transactivation. Following in silico modelling, we generated EGFR-interaction deficient AT1R-mutants and compared them to AT1R-wildtype. Receptor interaction was assessed by co-immunoprecipitation (CoIP), Förster resonance energy transfer (FRET) and fluorescence-lifetime imaging microscopy (FLIM). Changes in cell morphology, ERK1/2-phosphorylation (ppERK1/2), serum response factor (SRF)-activation and cFOS protein expression were determined by digital high content microscopy at the single cell level. FRET, FLIM and CoIP confirmed the physical interaction of AT1R-wildtype with EGFR that was strongly reduced for the AT1R-mutants. Responsiveness of cells transfected with AT1R-WT or -mutants to angiotensin II or EGF was similar regarding changes in cell circularity, ppERK1/2 (direct and by ligand-dependent EGFR-transactivation), cFOS-expression and SRF-activity. By contrast, the EGFR-AT1R-synergism regarding these parameters was completely absent for in the interaction-deficient AT1R mutants. The results show that AT1R-EGFR heteromerisation enables AT1R-EGFR-synergism on downstream gene expression regulation, modulating the intensity and the temporal pattern of nuclear AT1R/EGFR-information transfer. Furthermore, remote EGFR transactivation, via ligand release or cytosolic tyrosine kinases, is not sufficient for the complete synergistic control of gene expression.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany.
| | - Robert Eckenstaler
- Institute of Pharmacy, Department of Clinical Pharmacy and Pharmacotherapy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Heike Braun
- Institute of Pharmacy, Department of Clinical Pharmacy and Pharmacotherapy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Abdurrahman Olgac
- Institute of Pharmacy, Department of Medical Chemistry, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dina Robaa
- Institute of Pharmacy, Department of Medical Chemistry, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medical Chemistry, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ralf Benndorf
- Institute of Pharmacy, Department of Clinical Pharmacy and Pharmacotherapy, Martin Luther University Halle-Wittenberg, Halle, Germany
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany
| |
Collapse
|
4
|
Xie C, Zhang Y, Zhu B, Yang L, Ren J, Lang N. Exploring the pathways of drug repurposing and Panax ginseng treatment mechanisms in chronic heart failure: a disease module analysis perspective. Sci Rep 2024; 14:12109. [PMID: 38802411 PMCID: PMC11130340 DOI: 10.1038/s41598-024-61926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic Heart Failure (CHF) is a significant global public health issue, with high mortality and morbidity rates and associated costs. Disease modules, which are collections of disease-related genes, offer an effective approach to understanding diseases from a biological network perspective. We employed the multi-Steiner tree algorithm within the NeDRex platform to extract CHF disease modules, and subsequently utilized the Trustrank algorithm to rank potential drugs for repurposing. The constructed disease module was then used to investigate the mechanism by which Panax ginseng ameliorates CHF. The active constituents of Panax ginseng were identified through a comprehensive review of the TCMSP database and relevant literature. The Swiss target prediction database was utilized to determine the action targets of these components. These targets were then cross-referenced with the CHF disease module in the STRING database to establish protein-protein interaction (PPI) relationships. Potential action pathways were uncovered through Gene Ontology (GO) and KEGG pathway enrichment analyses on the DAVID platform. Molecular docking, the determination of the interaction of biological macromolecules with their ligands, and visualization were conducted using Autodock Vina, PLIP, and PyMOL, respectively. The findings suggest that drugs such as dasatinib and mitoxantrone, which have low docking scores with key disease proteins and are reported in the literature as effective against CHF, could be promising. Key components of Panax ginseng, including ginsenoside rh4 and ginsenoside rg5, may exert their effects by targeting key proteins such as AKT1, TNF, NFKB1, among others, thereby influencing the PI3K-Akt and calcium signaling pathways. In conclusion, drugs like dasatinib and midostaurin may be suitable for CHF treatment, and Panax ginseng could potentially mitigate the progression of CHF through a multi-component-multi-target-multi-pathway approach. Disease module analysis emerges as an effective strategy for exploring drug repurposing and the mechanisms of traditional Chinese medicine in disease treatment.
Collapse
Affiliation(s)
- Chengzhi Xie
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ying Zhang
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Baochen Zhu
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Lin Yang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jianxun Ren
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Na Lang
- Department of Education, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
5
|
Xu J, Xiao H, He K, Zhang Y. Crosstalk between adrenergic receptors and catalytic receptors. CURRENT OPINION IN PHYSIOLOGY 2023; 36:100718. [DOI: 10.1016/j.cophys.2023.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Gekle M, Dubourg V, Schwerdt G, Benndorf RA, Schreier B. The role of EGFR in vascular AT1R signaling: From cellular mechanisms to systemic relevance. Biochem Pharmacol 2023; 217:115837. [PMID: 37777161 DOI: 10.1016/j.bcp.2023.115837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| |
Collapse
|
7
|
Okyere AD, Nayak TK, Patwa V, Teplitsky D, McEachern E, Carter RL, Xu H, Gao E, Zhou Y, Tilley DG. Myeloid cell-specific deletion of epidermal growth factor receptor aggravates acute cardiac injury. Clin Sci (Lond) 2023; 137:1513-1531. [PMID: 37728308 PMCID: PMC10758753 DOI: 10.1042/cs20230804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Myeloid cells, including macrophages, play important roles as first responders to cardiac injury and stress. Epidermal growth factor receptor (EGFR) has been identified as a mediator of macrophage responsiveness to select diseases, though its impact on cardiac function or remodeling following acute ischemic injury is unknown. We aimed to define the role of myeloid cell-specific EGFR in the regulation of cardiac function and remodeling following acute myocardial infarction (MI)-induced injury. Floxed EGFR mice were bred with homozygous LysM-Cre (LMC) transgenic mice to yield myeloid-specific EGFR knockout (mKO) mice. Via echocardiography, immunohistochemistry, RNA sequencing and flow cytometry, the impact of myeloid cell-specific EGFR deletion on cardiac structure and function was assessed at baseline and following injury. Compared with LMC controls, myeloid cell-specific EGFR deletion led to an increase in cardiomyocyte hypertrophy at baseline. Bulk RNASeq analysis of isolated cardiac Cd11b+ myeloid cells revealed substantial changes in mKO cell transcripts at baseline, particularly in relation to predicted decreases in neovascularization. In response to myocardial infarction, mKO mice experienced a hastened decline in cardiac function with isolated cardiac Cd11b+ myeloid cells expressing decreased levels of the pro-reparative mediators Vegfa and Il10, which coincided with enhanced cardiac hypertrophy and decreased capillary density. Overall, loss of EGFR qualitatively alters cardiac resident macrophages that promotes a low level of basal stress and a more rapid decrease in cardiac function along with worsened repair following acute ischemic injury.
Collapse
Affiliation(s)
- Ama D. Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Tapas K. Nayak
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Viren Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - David Teplitsky
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Erin McEachern
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Rhonda L. Carter
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Heli Xu
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A
| | - Douglas G. Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| |
Collapse
|
8
|
Cimmino TP, Pagano E, Stornaiuolo M, Esposito G, Ammendola R, Cattaneo F. Formyl-peptide receptor 2 signalling triggers aerobic metabolism of glucose through Nox2-dependent modulation of pyruvate dehydrogenase activity. Open Biol 2023; 13:230336. [PMID: 37875162 PMCID: PMC10597678 DOI: 10.1098/rsob.230336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
The human formyl-peptide receptor 2 (FPR2) is activated by an array of ligands. By phospho-proteomic analysis we proved that FPR2 stimulation induces redox-regulated phosphorylation of many proteins involved in cellular metabolic processes. In this study, we investigated metabolic pathways activated in FPR2-stimulated CaLu-6 cells. The results showed an increased concentration of metabolites involved in glucose metabolism, and an enhanced uptake of glucose mediated by GLUT4, the insulin-regulated member of GLUT family. Accordingly, we observed that FPR2 transactivated IGF-IRβ/IRβ through a molecular mechanism that requires Nox2 activity. Since cancer cells support their metabolism via glycolysis, we analysed glucose oxidation and proved that FPR2 signalling promoted kinase activity of the bifunctional enzyme PFKFB2 through FGFR1/FRS2- and Akt-dependent phosphorylation. Furthermore, FPR2 stimulation induced IGF-IRβ/IRβ-, PI3K/Akt- and Nox-dependent inhibition of pyruvate dehydrogenase activity, thus preventing the entry of pyruvate in the tricarboxylic acid cycle. Consequently, we observed an enhanced FGFR-dependent lactate dehydrogenase (LDH) activity and lactate production in FPR2-stimulated cells. As LDH expression is transcriptionally regulated by c-Myc and HIF-1, we demonstrated that FPR2 signalling promoted c-Myc phosphorylation and Nox-dependent HIF-1α stabilization. These results strongly indicate that FPR2-dependent signalling can be explored as a new therapeutic target in treatment of human cancers.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
9
|
Grisanti LA. TRAIL and its receptors in cardiac diseases. Front Physiol 2023; 14:1256852. [PMID: 37621762 PMCID: PMC10445540 DOI: 10.3389/fphys.2023.1256852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Loss of cardiomyocytes that occurs during many types of damage to the heart such as ischemic injury and stress caused by pressure overload, diminishes cardiac function due to their limited regenerative capacity and promotes remodeling, which further damages the heart. Cardiomyocyte death occurs through two primary mechanisms, necrosis and apoptosis. Apoptosis is a highly regulated form of cell death that can occur through intrinsic (mitochondrial) or extrinsic (receptor mediated) pathways. Extrinsic apoptosis occurs through a subset of Tumor Necrosis Receptor (TNF) family receptors termed "Death Receptors." While some ligands for death receptors have been extensively studied in the heart, such as TNF-α, others have been virtually unstudied. One poorly characterized cardiac TNF related ligand is TNF-Related Apoptosis Inducing Ligand (TRAIL). TRAIL binds to two apoptosis-inducing receptors, Death Receptor (DR) 4 and DR5. There are also three decoy TRAIL receptors, Decoy Receptor (DcR) 1, DcR2 and osteoprotegerin (OPG). While TRAIL has been extensively studied in the cancer field due to its ability to selectively induce apoptosis in transformed cell types, emerging clinical evidence points towards a role for TRAIL and its receptors in cardiac pathology. This article will highlight our current understanding of TRAIL and its receptors in normal and pathological conditions in the heart.
Collapse
Affiliation(s)
- Laurel A. Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
10
|
Liu M, Li Z, Ouyang Y, Chen M, Guo X, Mazhar M, Kang J, Zhou H, Wu Q, Yang S. Material basis and integrative pharmacology of danshen decoction in the treatment of cardiovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154503. [PMID: 36332387 DOI: 10.1016/j.phymed.2022.154503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are among the primary and predominant threats to human health with increasing incidence. Danshen Decoction (DSD) as an adjuvant therapy can benefit CVDs patients by improving clinical efficacy. PURPOSE The purpose of this study was to identify the active components and potential pharmacological mechanisms of DSD by combining mass spectrometry with a network pharmacology strategy and to review the use of DSD in the treatment of CVDs. METHOD First, the composition of DSD was analyzed by ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). Second, the network pharmacology method was used to elucidate the underlying material basis and possible pharmacological mechanism of DSD for the treatment of CVDs. Finally, clinical and experimental studies on DSD in the past ten years were retrieved from the PubMed and CNKI database, and the content of these studies was used to summarize the latest progress in DSD treatment of CVDs. OUTCOME A total of 35 compounds were found in DSD by manual identification from the analysis of MS, which may be the material basis for the therapeutic effect of DSD. After taking the intersection of 2086 targets related to CVDs, these 35 compounds are considered to play a role in the treatment of CVDs through 210 targets including signal transducer and activator of transcription 3 (STAT3), sarcoma (SRC) and phosphoinositide-3-kinase regulatory subunit (PIK3R), and a total of 168 signaling pathways were involved in the regulation of CVDs by DSD, including PI3K-AKT signaling pathway, Alzheimer disease, and Rap1 signaling pathway. A total of 29 clinical studies using DSD in the treatment of CVDs were included in the literature review, and these studies showed the positive significance of DSD as adjuvant therapy, while 14 experimental studies included in the literature review also demonstrated the effectiveness of DSD in the treatment of CVDs. CONCLUSION DSD plays a role in the treatment of CVDs through a variety of active ingredients. Large-scale clinical research and more in-depth experimental research will help to further reveal the mechanism of DSD in the treatment of CVDs.
Collapse
Affiliation(s)
- Mengnan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Ziyi Li
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Yue Ouyang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| | - Mingtai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, PR China
| | - Xin Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| | - Maryam Mazhar
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Junli Kang
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510000, PR China.
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China.
| | - Sijin Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
11
|
Zhang Y, Zhang T, Xu L, Zhu Y, Zhao LL, Li XD, Yang WW, Chen J, Gu M, Gu XS, Yang J. Evolution of the ErbB gene family and analysis of regulators of Egfr expression during development of the rat spinal cord. Neural Regen Res 2022; 17:2484-2490. [PMID: 35535900 PMCID: PMC9120683 DOI: 10.4103/1673-5374.339010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Egfr, a member of the ErbB gene family, plays a critical role in tissue development and homeostasis, wound healing, and disease. However, expression and regulators of Egfr during spinal cord development remain poorly understood. In this study, we investigated ErbB evolution and analyzed co-expression modules, miRNAs, and transcription factors that may regulate Egfr expression in rats. We found that ErbB family members formed via Egfr duplication in the ancient vertebrates but diverged after speciation of gnathostomes. We identified a module that was co-expressed with Egfr, which involved cell proliferation and blood vessel development. We predicted 25 miRNAs and nine transcription factors that may regulate Egfr expression. Dual-luciferase reporter assays showed six out of nine transcription factors significantly affected Egfr promoter reporter activity. Two of these transcription factors (KLF1 and STAT3) inhibited the Egfr promoter reporter, whereas four transcription factors (including FOXA2) activated the Egfr promoter reporter. Real-time PCR and immunofluorescence experiments showed high expression of FOXA2 during the embryonic period and FOXA2 was expressed in the floor plate of the spinal cord, suggesting the importance of FOXA2 during embryonic spinal cord development. Considering the importance of Egfr in embryonic spinal cord development, wound healing, and disease (specifically in cancer), regulatory elements identified in this study may provide candidate targets for nerve regeneration and disease treatment in the future.
Collapse
Affiliation(s)
- Yu Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Tao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Ye Zhu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li-Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Di Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wei-Wei Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Miao Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xiao-Song Gu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
12
|
Serodolin, a β-arrestin-biased ligand of 5-HT 7 receptor, attenuates pain-related behaviors. Proc Natl Acad Sci U S A 2022; 119:e2118847119. [PMID: 35594393 PMCID: PMC9173812 DOI: 10.1073/pnas.2118847119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmembrane signaling through G protein–coupled receptors (GPCRs), originally described as requiring coupling to intracellular G proteins, also uses G protein–independent pathways through β-arrestin recruitment. Biased ligands, by favoring one of the multiple bioactive conformations of GPCRs, allow selective signaling through either of these pathways. Here, we identified Serodolin as the first β-arrestin–biased agonist of the serotonin 5-HT7 receptor. This new ligand, while acting as an inverse agonist on Gs signaling, selectively induces ERK activation in a β-arrestin–dependent way. Importantly, we report that Serodolin decreases pain intensity caused by thermal, mechanical, or inflammatory stimuli. Our findings suggest that targeting the 5-HT7R with β-arrestin–biased ligand could be a valid alternative strategy to the use of opioids for the relief of pain. G protein–coupled receptors (GPCRs) are involved in regulation of manifold physiological processes through coupling to heterotrimeric G proteins upon ligand stimulation. Classical therapeutically active drugs simultaneously initiate several downstream signaling pathways, whereas biased ligands, which stabilize subsets of receptor conformations, elicit more selective signaling. This concept of functional selectivity of a ligand has emerged as an interesting property for the development of new therapeutic molecules. Biased ligands are expected to have superior efficacy and/or reduced side effects by regulating biological functions of GPCRs in a more precise way. In the last decade, 5-HT7 receptor (5-HT7R) has become a promising target for the treatment of neuropsychiatric disorders, sleep and circadian rhythm disorders, and pathological pain. In this study, we showed that Serodolin is unique among a number of agonists and antagonists tested: it behaves as an antagonist/inverse agonist on Gs signaling while inducing ERK activation through a β-arrestin–dependent signaling mechanism that requires c-SRC activation. Moreover, we showed that Serodolin clearly decreases hyperalgesia and pain sensation in response to inflammatory, thermal, and mechanical stimulation. This antinociceptive effect could not be observed in 5-HT7R knockout (KO) mice and was fully blocked by administration of SB269-970, a specific 5-HT7R antagonist, demonstrating the specificity of action of Serodolin. Physiological effects of 5-HT7R stimulation have been classically shown to result from Gs-dependent adenylyl cyclase activation. In this study, using a β-arrestin–biased agonist, we provided insight into the molecular mechanism triggered by 5-HT7R and revealed its therapeutic potential in the modulation of pain response.
Collapse
|
13
|
Park YL, Kim HP, Ock CY, Min DW, Kang JK, Lim YJ, Song SH, Han SW, Kim TY. EMT-mediated regulation of CXCL1/5 for resistance to anti-EGFR therapy in colorectal cancer. Oncogene 2022; 41:2026-2038. [PMID: 35173310 DOI: 10.1038/s41388-021-01920-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 05/08/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The emergence of RAS/RAF mutant clone is the main feature of EGFR inhibitor resistance in KRAS wild-type colon cancer. However, its molecular mechanism is thought to be multifactorial, mainly due to cellular heterogeneity. In order to better understand the resistance mechanism in a single clone level, we successfully isolated nine cells with cetuximab-resistant (CR) clonality from in vitro system. All CR cells harbored either KRAS or BRAF mutations. Characteristically, these cells showed a higher EMT (Epithelial to mesenchymal transition) signature, showing increased EMT markers such as SNAI2. Moreover, the expression level of CXCL1/5, a secreted protein, was significantly higher in CR cells compared to the parental cells. In these CR cells, CXCL1/5 expression was coordinately regulated by SNAI2/NFKB and transactivated EGFR through CXCR/MMPI/EGF axis via autocrine singling. We also observed that combined cetuximab/MEK inhibitor not only showed growth inhibition but also reduced the secreted amounts of CXCL1/5. We further found that serum CXCL1/5 level was positively correlated with the presence of RAS/RAF mutation in colon cancer patients during cetuximab therapy, suggesting its role as a biomarker. These data indicated that the application of serum CXCL1/5 could be a potential serologic biomarker for predicting resistance to EGFR therapy in colorectal cancer.
Collapse
Affiliation(s)
- Ye-Lim Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea.
| | - Hwang-Phill Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea.,IMBDx Inc, Seoul, Korea
| | - Chan-Young Ock
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dong-Wook Min
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jun Kyu Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yoo Joo Lim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Tae-You Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
14
|
Palanisamy S, Xue C, Ishiyama S, Naga Prasad SV, Gabrielson K. GPCR-ErbB transactivation pathways and clinical implications. Cell Signal 2021; 86:110092. [PMID: 34303814 DOI: 10.1016/j.cellsig.2021.110092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
Cell surface receptors including the epidermal growth factor receptor (EGFR) family and G-protein coupled receptors (GPCRs) play quintessential roles in physiology, and in diseases, including cardiovascular diseases. While downstream signaling from these individual receptor families has been well studied, the cross-talk between EGF and GPCR receptor families is still incompletely understood. Including members of both receptor families, the number of receptor and ligand combinations for unique interactions is vast, offering a frontier of pharmacologic targets to explore for preventing and treating disease. This molecular cross-talk, called receptor transactivation, is reviewed here with a focus on the cardiovascular system featuring the well-studied GPCR receptors, but also discussing less-studied receptors from both families for a broad understanding of context of expansile interactions, repertoire of cellular signaling, and disease consequences. Attention is given to cell type, level of chronicity, and disease context given that transactivation and comorbidities, including diabetes, hypertension, coronavirus infection, impact cardiovascular disease and health outcomes.
Collapse
Affiliation(s)
| | - Carolyn Xue
- University of California, Los Angeles, 101 Hershey Hall, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | - Shun Ishiyama
- Sidney Kimmel Cancer Center, Department of Surgery, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Coloproctological Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | - Sathyamangla Venkata Naga Prasad
- NB50, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, 1, Cleveland, OH 44195, USA.
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, 733 North Broadway, Miller Research Building, Room 807, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
15
|
Li F, Du M, Yang Y, Wang Z, Zhang H, Wang X, Li Q. Zinc finger and BTB domain-containing protein 20 aggravates angiotensin II-induced cardiac remodeling via the EGFR-AKT pathway. J Mol Med (Berl) 2021; 100:427-438. [PMID: 34232352 DOI: 10.1007/s00109-021-02103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
Zinc finger and BTB domain-containing protein 20 (ZBTB20) play an important role in glucose and lipid homeostasis. ZBTB20 was shown to be a crucial protein for the maintenance of cardiac contractile function. However, the role of ZBTB20 in cardiac response remodeling has not been elucidated. Thus, this study aimed to explore the role of ZBTB20 in cardiac remodeling following angiotensin II insult. Mice were subjected to angiotensin II infusion to induce a cardiac adverse remodeling model. An adeno-associated virus (AAV) 9 system was used to deliver ZBTB20 to the mouse heart. Here, we demonstrate that ZBTB20 expression is elevated in angiotensin II-induced cardiac remodeling and in response to cardiomyocyte insults. Furthermore, AAV9-mediated overexpression of ZBTB20 caused cardiac wall hypertrophy, chamber dilation, increased fibrosis, and reduced ejection fraction. Additionally, ZBTB20 siRNA protected cardiomyocytes from angiotensin II-induced hypertrophy. Mechanistically, ZBTB20 interferes with EGFR and Akt signaling and modulates the remodeling response. Overexpression of constitutively active Akt counteracts ZBTB20 knockdown-mediated protection of adverse cardiac remodeling. These findings illustrate the role of ZBTB20 in the transition of adverse cardiac remodeling toward heart failure and provide evidence for the molecular programs inducing adverse cardiac remodeling. KEY MESSAGES: ZBTB20 is a transcription factor from the POK family. ZBTB20 is upregulated in heart tissue treated with angiotensin II. ZBTB20 influences cardiomyocyte hypertrophy via the EGFR-Akt pathway. Akt continuous activation leads to similar results to ZBTB20 overexpression.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Miaomiao Du
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Yiming Yang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Zhu Wang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Hu Zhang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Xiaoyu Wang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Qing Li
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China.
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
16
|
Vang A, da Silva Gonçalves Bos D, Fernandez-Nicolas A, Zhang P, Morrison AR, Mancini TJ, Clements RT, Polina I, Cypress MW, Jhun BS, Hawrot E, Mende U, O-Uchi J, Choudhary G. α7 Nicotinic acetylcholine receptor mediates right ventricular fibrosis and diastolic dysfunction in pulmonary hypertension. JCI Insight 2021; 6:142945. [PMID: 33974567 PMCID: PMC8262476 DOI: 10.1172/jci.insight.142945] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Right ventricular (RV) fibrosis is a key feature of maladaptive RV hypertrophy and dysfunction and is associated with poor outcomes in pulmonary hypertension (PH). However, mechanisms and therapeutic strategies to mitigate RV fibrosis remain unrealized. Previously, we identified that cardiac fibroblast α7 nicotinic acetylcholine receptor (α7 nAChR) drives smoking-induced RV fibrosis. Here, we sought to define the role of α7 nAChR in RV dysfunction and fibrosis in the settings of RV pressure overload as seen in PH. We show that RV tissue from PH patients has increased collagen content and ACh expression. Using an experimental rat model of PH, we demonstrate that RV fibrosis and dysfunction are associated with increases in ACh and α7 nAChR expression in the RV but not in the left ventricle (LV). In vitro studies show that α7 nAChR activation leads to an increase in adult ventricular fibroblast proliferation and collagen content mediated by a Ca2+/epidermal growth factor receptor (EGFR) signaling mechanism. Pharmacological antagonism of nAChR decreases RV collagen content and improves RV function in the PH model. Furthermore, mice lacking α7 nAChR exhibit improved RV diastolic function and have lower RV collagen content in response to persistently increased RV afterload, compared with WT controls. These finding indicate that enhanced α7 nAChR signaling is an important mechanism underlying RV fibrosis and dysfunction, and targeted inhibition of α7 nAChR is a potentially novel therapeutic strategy in the setting of increased RV afterload.
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Denielli da Silva Gonçalves Bos
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ana Fernandez-Nicolas
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peng Zhang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Thomas J. Mancini
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Richard T. Clements
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Iuliia Polina
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael W. Cypress
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bong Sook Jhun
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ulrike Mende
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Jin O-Uchi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Guo S, Okyere AD, McEachern E, Strong JL, Carter RL, Patwa VC, Thomas TP, Landy M, Song J, Lucchese AM, Martin TG, Gao E, Rajan S, Kirk JA, Koch WJ, Cheung JY, Tilley DG. Epidermal growth factor receptor-dependent maintenance of cardiac contractility. Cardiovasc Res 2021; 118:1276-1288. [PMID: 33892492 DOI: 10.1093/cvr/cvab149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/16/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023] Open
Abstract
AIMS Epidermal growth factor receptor (EGFR) is essential to the development of multiple tissues and organs and is a target of cancer therapeutics. Due to the embryonic lethality of global EGFR deletion and conflicting reports of cardiac-overexpressed EGFR mutants, its specific impact on the adult heart, normally or in response to chronic stress, has not been established. Using complimentary genetic strategies to modulate cardiomyocyte-specific EGFR expression, we aim to define its role in the regulation of cardiac function and remodeling. METHODS AND RESULTS A floxed EGFR mouse model with α-myosin heavy chain-Cre-mediated cardiomyocyte-specific EGFR downregulation (CM-EGFR-KD mice) developed contractile dysfunction by 9 weeks of age, marked by impaired diastolic relaxation, as monitored via echocardiographic, hemodynamic and isolated cardiomyocyte contractility analyses. This contractile defect was maintained over time without overt cardiac remodeling until 10 months of age, after which the mice ultimately developed severe heart failure and reduced lifespan. Acute downregulation of EGFR in adult floxed EGFR mice with adeno-associated virus 9 (AAV9)-encoded Cre with a cardiac troponin T promoter (AAV9-cTnT-Cre) recapitulated the CM-EGFR-KD phenotype, while AAV9-cTnT-EGFR treatment of adult CM-EGFR-KD mice rescued the phenotype. Notably, chronic administration of the β-adrenergic receptor (βAR) agonist isoproterenol effectively and reversibly compensated for the contractile dysfunction in the absence of cardiomyocyte hypertrophy in CM-EGFR-KD mice. Mechanistically, EGFR downregulation reduced the expression of protein phosphatase 2 A (PP2A) regulatory subunit Ppp2r3a/PR72, which was associated with decreased phosphorylation of phospholamban (PLB) and Ca2+ clearance, and whose re-expression via AAV9-cTnT-PR72 rescued the CM-EGFR-KD phenotype. CONCLUSIONS Altogether our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72 expression. TRANSLATIONAL PERSPECTIVE Our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72, a PP2A regulatory subunit with an unknown impact on cardiac function. Further, we have shown that cardiomyocyte-expressed EGFR is required for the promotion of cardiac hypertrophy under conditions of chronic catecholamine stress. Altogether, our study provides new insight into the dynamic nature of cardiomyocyte-specific EGFR.
Collapse
Affiliation(s)
- Shuchi Guo
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Erin McEachern
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Joshua L Strong
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rhonda L Carter
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Viren C Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Toby P Thomas
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Melissa Landy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jianliang Song
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ana Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Thomas G Martin
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Sudarsan Rajan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jonathan A Kirk
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Joseph Y Cheung
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
18
|
Kilpatrick LE, Hill SJ. Transactivation of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs): Recent insights using luminescence and fluorescence technologies. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 16:102-112. [PMID: 33748531 PMCID: PMC7960640 DOI: 10.1016/j.coemr.2020.10.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alterations in signalling due to bidirectional transactivation of G protein-coupled receptor (GPCRs) and receptor tyrosine kinases (RTKs) are well established. Transactivation significantly diversifies signalling networks within a cell and has been implicated in promoting both advantageous and disadvantageous physiological and pathophysiological outcomes, making the GPCR/RTK interactions attractive new targets for drug discovery programmes. Transactivation has been observed for a plethora of receptor pairings in multiple cell types; however, the precise molecular mechanisms and signalling effectors involved can vary with receptor pairings and cell type. This short review will discuss the recent applications of proximity-based assays, such as resonance energy transfer and fluorescence-based imaging in investigating the dynamics of GPCR/RTK complex formation, subsequent effector protein recruitment and the cellular locations of complexes in living cells.
Collapse
Key Words
- 5-hydroxytryptamine receptor 1A, (5-HT1A)
- Endocytosis
- Förster Resonance Energy Transfer, (FRET)
- G protein-coupled receptor
- G protein-coupled receptors, (GPCRs)
- GPCR kinases, (GRKs)
- Oligomeric complexes
- Receptor tyrosine kinase
- Resonance energy transfer
- Transactivation
- adrenoceptors, (AR)
- bioluminescence resonance energy transfer, (BRET)
- cannabinoid receptor 2, (CB2R)
- disintegrin and metalloproteinases, (ADAMs)
- epidermal growth factor receptor, (EGFR)
- epidermal growth factor, (EGF)
- fibroblast growth factor receptor, (FGFR)
- fluorescence correlation spectroscopy, (FCS)
- formyl peptide receptor, (FPR)
- free fatty acid, (FFA)
- heparin binding EGF, (Hb-EGF)
- hepatocyte growth factor, (HGF)
- human umbilical vein endothelial cells, (HUVECs)
- insulin growth factor receptor-1, (IGFR-1)
- insulin receptor, (IR)
- lysophosphatidic acid receptor 1, (LPA)
- matrix metalloproteinases, (MMPs)
- platelet-derived growth factor receptor, (PDGFR)
- proximity ligation assay, (PLA)
- reactive oxygen species, (ROS)
- receptor tyrosine kinases, (RTKs)
- sphingosine-1-phosphate receptor, (S1PR)
- tetrahydrocannabinol, (THC)
- total internal reflection fluorescence microscopy, (TIRF-M)
- vascular endothelial growth factor receptor 2, (VEGFR2)
- vascular endothelial growth factor, (VEGF)
- vasopressin 2 receptor, (V2R)
Collapse
Affiliation(s)
- Laura E. Kilpatrick
- Division of Bimolecular Sciences and Medicinal Chemistry, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, NG7 2UH, UK
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, NG7 2UH, UK
| |
Collapse
|
19
|
Khalilimeybodi A, Paap AM, Christiansen SLM, Saucerman JJ. Context-specific network modeling identifies new crosstalk in β-adrenergic cardiac hypertrophy. PLoS Comput Biol 2020; 16:e1008490. [PMID: 33338038 PMCID: PMC7781532 DOI: 10.1371/journal.pcbi.1008490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/04/2021] [Accepted: 11/05/2020] [Indexed: 11/25/2022] Open
Abstract
Cardiac hypertrophy is a context-dependent phenomenon wherein a myriad of biochemical and biomechanical factors regulate myocardial growth through a complex large-scale signaling network. Although numerous studies have investigated hypertrophic signaling pathways, less is known about hypertrophy signaling as a whole network and how this network acts in a context-dependent manner. Here, we developed a systematic approach, CLASSED (Context-specific Logic-bASed Signaling nEtwork Development), to revise a large-scale signaling model based on context-specific data and identify main reactions and new crosstalks regulating context-specific response. CLASSED involves four sequential stages with an automated validation module as a core which builds a logic-based ODE model from the interaction graph and outputs the model validation percent. The context-specific model is developed by estimation of default parameters, classified qualitative validation, hybrid Morris-Sobol global sensitivity analysis, and discovery of missing context-dependent crosstalks. Applying this pipeline to our prior-knowledge hypertrophy network with context-specific data revealed key signaling reactions which distinctly regulate cell response to isoproterenol, phenylephrine, angiotensin II and stretch. Furthermore, with CLASSED we developed a context-specific model of β-adrenergic cardiac hypertrophy. The model predicted new crosstalks between calcium/calmodulin-dependent pathways and upstream signaling of Ras in the ISO-specific context. Experiments in cardiomyocytes validated the model’s predictions on the role of CaMKII-Gβγ and CaN-Gβγ interactions in mediating hypertrophic signals in ISO-specific context and revealed a difference in the phosphorylation magnitude and translocation of ERK1/2 between cardiac myocytes and fibroblasts. CLASSED is a systematic approach for developing context-specific large-scale signaling networks, yielding insights into new-found crosstalks in β-adrenergic cardiac hypertrophy. Pathological cardiac hypertrophy is a disease in which the heart grows abnormally in response to different motivators such as high blood pressure or variations in hormones and growth factors. The shape of the heart after its growth depends on the context in which it grows. Since cell signaling in the cardiac cells plays a key role in the determination of heart shape, a thorough understanding of cardiac cells signaling in each context enlightens the mechanisms which control response of cardiac cells. However, cell signaling in cardiac hypertrophy comprises a complex web of pathways with numerous interactions, and predicting how these interactions control the hypertrophic signal in each context is not achievable by only experiments or general computational models. To address this need, we developed an approach to bring together the experimental data of each context with a signaling network curated from literature to identify the main players of cardiac cells response in each context and attain the context-specific models of cardiac hypertrophy. By utilizing our approach, we identified the main regulators of cardiac hypertrophy in four important contexts. We developed a network model of β-adrenergic cardiac hypertrophy, and predicted and validated new interactions that regulate cardiac cells response in this context.
Collapse
Affiliation(s)
- Ali Khalilimeybodi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alexander M. Paap
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Steven L. M. Christiansen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Patwa V, Guo S, Carter RL, Kraus L, Einspahr J, Teplitsky D, Sabri A, Tilley DG. Epidermal growth factor receptor association with β1-adrenergic receptor is mediated via its juxtamembrane domain. Cell Signal 2020; 78:109846. [PMID: 33238186 DOI: 10.1016/j.cellsig.2020.109846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/20/2023]
Abstract
β1-adrenergic receptor (β1AR)-mediated transactivation of epidermal growth factor receptor (EGFR) engages downstream signaling events that impact numerous cellular processes including growth and survival. While association of these receptors has been shown to occur basally and be important for relaying transactivation-specific intracellular events, the mechanism by which they do so is unclear and elucidation of which would aid in understanding the consequence of disrupting their interaction. Using fluorescence resonance energy transfer (FRET) and immunoprecipitation (IP) analyses, we evaluated the impact of C-terminal truncations of EGFR on its ability to associate with β1AR. While loss of the last 230 amino acid C-terminal phosphotyrosine-rich domain did not disrupt the ability of EGFR to associate with β1AR, truncation of the entire intracellular domain of EGFR resulted in almost complete loss of its interaction with β1AR, suggesting that either the kinase domain or juxtamembrane domain (JMD) may be required for this association. Treatment with the EGFR antagonist gefitinib did not prevent β1AR-EGFR association, however, treatment with a palmitoylated peptide encoding the first 20 amino acids of the JMD domain (JMD-A) disrupted β1AR-EGFR association over time and prevented β1AR-mediated ERK1/2 phosphorylation, both in general and specifically in association with EGFR. Conversely, neither a mutated JMD-A peptide nor a palmitoylated peptide fragment consisting of the subsequent 18 amino acids of the JMD domain (JMD-B) were capable of doing so. Altogether, the proximal region of the JMD of EGFR is responsible for its association with β1AR, and its disruption prevents β1AR-mediated transactivation, thus providing a new tool to study the functional consequences of disrupting β1AR-EGFR downstream signaling.
Collapse
Affiliation(s)
- Viren Patwa
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shuchi Guo
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rhonda L Carter
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Lindsay Kraus
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jeanette Einspahr
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - David Teplitsky
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Abdelkarim Sabri
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
21
|
Tanner MA, Thomas TP, Maitz CA, Grisanti LA. β2-Adrenergic Receptors Increase Cardiac Fibroblast Proliferation Through the Gαs/ERK1/2-Dependent Secretion of Interleukin-6. Int J Mol Sci 2020; 21:ijms21228507. [PMID: 33198112 PMCID: PMC7697911 DOI: 10.3390/ijms21228507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Fibroblasts are an important resident cell population in the heart involved in maintaining homeostasis and structure during normal conditions. They are also crucial in disease states for sensing signals and initiating the appropriate repair responses to maintain the structural integrity of the heart. This sentinel role of cardiac fibroblasts occurs, in part, through their ability to secrete cytokines. β-adrenergic receptors (βAR) are also critical regulators of cardiac function in the normal and diseased state and a major therapeutic target clinically. βAR are known to influence cytokine secretion in various cell types and they have been shown to be involved in cytokine production in the heart, but their role in regulating cytokine production in cardiac fibroblasts is not well understood. Thus, we hypothesized that βAR activation on cardiac fibroblasts modulates cytokine production to influence fibroblast function. Using primary fibroblast cultures from neonatal rats and adult mice, increased interleukin (IL)-6 expression and secretion occurred following β2AR activation. The use of pharmacological inhibitors and genetic manipulations showed that IL-6 elevations occurred through the Gαs-mediated activation of ERK1/2 and resulted in increased fibroblast proliferation. In vivo, a lack of β2AR resulted in increased infarct size following myocardial infarction and impaired wound closure in a murine dermal wound healing assay. These findings identify an important role for β2AR in regulating fibroblast proliferation through Gαs/ERK1/2-dependent alterations in IL-6 and may lead to the development of improved heart failure therapies through targeting fibrotic function of β2AR.
Collapse
Affiliation(s)
- Miles A. Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (M.A.T.); (T.P.T.)
| | - Toby P. Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (M.A.T.); (T.P.T.)
| | - Charles A. Maitz
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Laurel A. Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (M.A.T.); (T.P.T.)
- Correspondence: ; Tel.: +573-884-8852
| |
Collapse
|
22
|
Nozaki M, Yasui H, Ohnishi Y. Ligand-Independent EGFR Activation by Anchorage-Stimulated Src Promotes Cancer Cell Proliferation and Cetuximab Resistance via ErbB3 Phosphorylation. Cancers (Basel) 2019; 11:E1552. [PMID: 31615015 PMCID: PMC6826992 DOI: 10.3390/cancers11101552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) pathway plays an important role in the progression of cancer and is associated with a poor prognosis in patients. The monoclonal antibody cetuximab, which displays EGFR extracellular domain-specific binding, has proven effective in the treatment of locally advanced disease and relapsed/metastatic disease. However, the effects of cetuximab are weaker than those of EGFR tyrosine kinase inhibitors (TKIs). This study investigates differences in the effects on cell growth of cetuximab and EGFR TKI AG1478 at the molecular level using oral squamous cell carcinoma (OSCC) cell lines. First, we found that there were EGFR-inhibitor-sensitive (EIS) and EGFR-inhibitor-resistant cell lines. The EIS cell lines expressed not only EGFR but also ErbB3, and both were clearly phosphorylated. The levels of phosphorylated ErbB3 were unaffected by cetuximab but were reduced by AG1478. EGFR ligand treatment increased the levels of phosphorylated EGFR but not phosphorylated ErbB3. Moreover, when EIS cell lines that were only capable of anchorage-dependent growth were grown in suspension, cell growth was suppressed and the levels of phosphorylated focal adhesion kinase (FAK), Src, and ErbB3 were significantly reduced. The levels of phosphorylated ErbB3 were unaffected by the FAK inhibitor PF573228, but were reduced by Src inhibition. Finally, combining cetuximab and a Src inhibitor produced an additive effect on the inhibition of EIS cell line growth.
Collapse
Affiliation(s)
- Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroki Yasui
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan.
| | - Yuichi Ohnishi
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan.
| |
Collapse
|
23
|
Tanner MA, Thomas TP, Grisanti LA. Death receptor 5 contributes to cardiomyocyte hypertrophy through epidermal growth factor receptor transactivation. J Mol Cell Cardiol 2019; 136:1-14. [PMID: 31473246 DOI: 10.1016/j.yjmcc.2019.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
Cardiomyocyte survival and death contributes to many cardiac diseases. A common mechanism of cardiomyocyte death is through apoptosis however, numerous death receptors (DR) have been virtually unstudied in the context of cardiovascular disease. Previous studies have identified TNF-related apoptosis inducing ligand (TRAIL) and its receptor, DR5, as being altered in a chronic catecholamine administration model of heart failure, and suggest a role of non-canonical signaling in cardiomyocytes. Furthermore, multiple clinical studies have identified TRAIL or DR5 as biomarkers in the prediction of severity and mortality following myocardial infarction and in heart failure development risk suggesting a role of DR5 signaling in the heart. While TRAIL/DR5 have been extensively studied as a potential cancer therapeutic due to their ability to selectively activate apoptosis in cancer cells, TRAIL and DR5 are highly expressed in the heart where their function is uncharacterized. However, many non-transformed cell types are resistant to TRAIL-induced apoptosis suggesting non-canonical functions in non-cancerous cell types. Our goal was to determine the role of DR5 in the heart with the hypothesis that DR5 does not induce cardiomyocyte apoptosis but initiates non-canonical signaling to promote cardiomyocyte growth and survival. Histological analysis of hearts from mice treated with a DR5 agonists showed increased hypertrophy with no differences in cardiomyocyte death, fibrosis or function. Mechanistic studies in the heart and isolated cardiomyocytes identified ERK1/2 activation with DR5 agonist treatment which contributed to hypertrophy. Furthermore, epidermal growth factor receptor (EGFR) was activated following DR5 agonist treatment through activation of MMP and HB-EGFR cleavage and specific inhibitors of MMP and EGFR prevented DR5-mediated ERK1/2 signaling and hypertrophy. Taken together, these studies identify a previously unidentified role for DR5 in the heart, which does not promote apoptosis but acts through non-canonical MMP-EGFR-ERK1/2 signaling mechanisms to contribute to cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Miles A Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Toby P Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
24
|
Parra-Mercado GK, Fuentes-Gonzalez AM, Hernandez-Aranda J, Diaz-Coranguez M, Dautzenberg FM, Catt KJ, Hauger RL, Olivares-Reyes JA. CRF 1 Receptor Signaling via the ERK1/2-MAP and Akt Kinase Cascades: Roles of Src, EGF Receptor, and PI3-Kinase Mechanisms. Front Endocrinol (Lausanne) 2019; 10:869. [PMID: 31920979 PMCID: PMC6921279 DOI: 10.3389/fendo.2019.00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Abstract
In the present study, we determined the cellular regulators of ERK1/2 and Akt signaling pathways in response to human CRF1 receptor (CRF1R) activation in transfected COS-7 cells. We found that Pertussis Toxin (PTX) treatment or sequestering Gβγ reduced CRF1R-mediated activation of ERK1/2, suggesting the involvement of a Gi-linked cascade. Neither Gs/PKA nor Gq/PKC were associated with ERK1/2 activation. Besides, CRF induced EGF receptor (EGFR) phosphorylation at Tyr1068, and selective inhibition of EGFR kinase activity by AG1478 strongly inhibited the CRF1R-mediated phosphorylation of ERK1/2, indicating the participation of EGFR transactivation. Furthermore, CRF-induced ERK1/2 phosphorylation was not altered by pretreatment with batimastat, GM6001, or an HB-EGF antibody indicating that metalloproteinase processing of HB-EGF ligands is not required for the CRF-mediated EGFR transactivation. We also observed that CRF induced Src and PYK2 phosphorylation in a Gβγ-dependent manner. Additionally, using the specific Src kinase inhibitor PP2 and the dominant-negative-SrcYF-KM, it was revealed that CRF-stimulated ERK1/2 phosphorylation depends on Src activation. PP2 also blocked the effect of CRF on Src and EGFR (Tyr845) phosphorylation, further demonstrating the centrality of Src. We identified the formation of a protein complex consisting of CRF1R, Src, and EGFR facilitates EGFR transactivation and CRF1R-mediated signaling. CRF stimulated Akt phosphorylation, which was dependent on Gi/βγ subunits, and Src activation, however, was only slightly dependent on EGFR transactivation. Moreover, PI3K inhibitors were able to inhibit not only the CRF-induced phosphorylation of Akt, as expected, but also ERK1/2 activation by CRF suggesting a PI3K dependency in the CRF1R ERK signaling. Finally, CRF-stimulated ERK1/2 activation was similar in the wild-type CRF1R and the phosphorylation-deficient CRF1R-Δ386 mutant, which has impaired agonist-dependent β-arrestin-2 recruitment; however, this situation may have resulted from the low β-arrestin expression in the COS-7 cells. When β-arrestin-2 was overexpressed in COS-7 cells, CRF-stimulated ERK1/2 phosphorylation was markedly upregulated. These findings indicate that on the base of a constitutive CRF1R/EGFR interaction, the Gi/βγ subunits upstream activation of Src, PYK2, PI3K, and transactivation of the EGFR are required for CRF1R signaling via the ERK1/2-MAP kinase pathway. In contrast, Akt activation via CRF1R is mediated by the Src/PI3K pathway with little contribution of EGFR transactivation.
Collapse
Affiliation(s)
- G. Karina Parra-Mercado
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Alma M. Fuentes-Gonzalez
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Judith Hernandez-Aranda
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Monica Diaz-Coranguez
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | | | - Kevin J. Catt
- Section on Hormonal Regulation, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Richard L. Hauger
- Center of Excellence for Stress and Mental Health, VA Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - J. Alberto Olivares-Reyes
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
- *Correspondence: J. Alberto Olivares-Reyes
| |
Collapse
|