1
|
Manickasamy MK, Daimary UD, Sajeev A, Abbas M, Alqahtani MS, Abdulhammed A, Kunnumakkara AB. Comprehensive review of leonurine: harnessing its therapeutic potential for chronic diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04087-x. [PMID: 40202674 DOI: 10.1007/s00210-025-04087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
Chronic diseases (CD) pose a significant global health challenge, affecting millions of individuals and contributing to substantial morbidity, mortality, and healthcare burden. Therapeutic approaches primarily aim at symptom management through pharmacotherapy, lifestyle modifications, dietary interventions, and regular physical activity. Given the persistent challenge of limited treatment options, scientific research has increasingly focused on exploring natural compounds for their therapeutic potential. Leonurine, a natural compound first isolated from the plant Herba leonuri in 1930, has garnered significant attention due to its extensive pharmacological properties relevant to the treatment of CDs. Extensive studies over the past have revealed that leonurine exhibits anticancer, antidiabetic, anti-inflammatory, and antioxidant activities. These effects are mediated through the modulation of various signaling pathways, including the TGF-β/Smad2, Nrf-2, JNK, NF-κB, BDNF/TrkB/CREB, TLR4/NF-κB/TNF-α, ATF4/CHOP/ASCL4, Akt, HIF-1, SHH/GLI, and mTOR/ERK, whose dysregulation is implicated in the pathogenesis of various CDs. Furthermore, leonurine regulates the levels of multiple pro-inflammatory cytokines, including numerous interleukins and TNF-α, indicating its potential in treating a wide range of chronic conditions, including cardiovascular, neurological, skeletal, and renal diseases. This review seeks to present an in-depth analysis of leonurine's therapeutic potential, emphasizing its promise in the management of various CDs. It also outlines potential avenues for future research to fully harness its pharmacological advantages in treating these conditions.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Ayman Abdulhammed
- Department of Biochemistry and Hormone, King Fahad Central Hospital, 82666, Gizan, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Guerrero-Orriach JL, Carmona-Luque MD, Rodriguez-Capitan MJ, Quesada-Muñoz G. MicroRNA-197-3p Transfection: Variations in Cardiomyocyte Gene Expression with Anaesthetics Drugs in a Model of Hypoxia/Reperfusion. Pharmaceuticals (Basel) 2025; 18:146. [PMID: 40005961 PMCID: PMC11858145 DOI: 10.3390/ph18020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Our research team analyzed the microRNA (miRNA)-197-3p involved in cardioprotection, and we demonstrated that the overexpression of miRNA-197-3p could be linked to a higher risk of cardiac damage. Recent research indicated that miRNA-197-3p inhibits the effector proteins of the anaesthetic preconditioning mechanism of halogenated drugs. In this scenario, we proposed to determine the role of miRNA-197-3p in cardiac injury and its effects on myocardial conditioning under halogenated exposure. Hypothesis: Patients having myocardial revascularization surgery have increased heart damage due to postoperative miRNA-197-3p upregulation. Methods: Human cardiac myocytes (HCMs) were used in an in vitro hypoxia/reperfusion (H/R) model. The miRNA-197-3p-MIMIC was transfected into the HCMs. Three H/R-induced HCM groups were performed: negative MIMIC-control transfected, MIMIC transfected, and non-transfected. Each H/R cell group was exposed to Propofol (P), Sevoflurane (S), or non-exposed. Healthy cell cultures were the control group. ELISA assays were used to assess the Akt1 and p53 cell secretion capacity, and the Next Generation Sequencing assay was used to measure the differential expression of miRNA targets. Results: The secretion capacity of H/R-induced HCMs transfected with the MIMIC was higher under sevoflurane exposure regarding Akt-1 cytokine (I/R + S: 0.80 ± 0.06 ng/mL; I/R + P: 0.45 ± 0.28 ng/mL; p > 0.05), and lower regarding p53 cytokine (I/R + S: 38.62 ± 6.93 ng/mL; I/R + P: 43.34 ± 15.20 ng/mL; p > 0.05) compared to propofol. In addition, a significant gene overexpression of five miRNAs, in the sevoflurane group, was linked to cardioprotection: miRNA-29-3p, 24-3p, 21-3p, 532, and miRNA-335-5p. Conclusions: miRNA-197-3p inhibits the cardioprotection induced by halogenated exposure and can be considered a biomarker of cardiac damage. Additional research is required to validate our findings in other clinical settings.
Collapse
Affiliation(s)
- Jose Luis Guerrero-Orriach
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain;
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | | | | | - Guillermo Quesada-Muñoz
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain;
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
| |
Collapse
|
3
|
Ma W, Zhao X, Wang Q, Wu X, Yang T, Chen Y, Zhu Y, Wang X. SCM-198 ameliorates the quality of postovulatory and maternally aged oocytes by reducing oxidative stress. J Ovarian Res 2024; 17:178. [PMID: 39217393 PMCID: PMC11365136 DOI: 10.1186/s13048-024-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Oocyte aging is a key constraint on oocyte quality, leading to fertilization failure and abnormal embryonic development. In addition, it is likely to generate unfavorable assisted reproductive technology (ART) outcomes. SCM-198, a synthetic form of leonurine, was found to rescue the rate of oocyte fragmentation caused by postovulatory aging. Therefore, the aim of this study was to conduct a more in-depth investigation of SCM-198 by exploring its relationship with aged oocytes after ovulation or maternal aging and clarifying whether it affects cell quality. The results indicate that, compared to the postovulatory aged group, the 50 µM SCM-198 group significantly improved sperm-egg binding and increased fertilization of aged oocytes, restoring the spindle apparatus/chromosome structure, cortical granule distribution, and ovastacin and Juno protein distribution. The 50 µM SCM-198 group showed significantly normal mitochondrial distribution, low levels of reactive oxygen species (ROS), and a small quantity of early oocyte apoptosis compared to the postovulatory aged group. Above all, in vivo supplementation with SCM-198 effectively eliminated excess ROS and reduced the spindle/chromosome structural defects in aged mouse oocytes. In summary, these findings indicate that SCM-198 inhibits excessive oxidative stress in oocytes and alters oocyte quality both in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Ma
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Xi Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Qingxin Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xue Wu
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Tingting Yang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Yuqi Chen
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China.
| | - Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| |
Collapse
|
4
|
Xing X, Rodeo SA. Emerging roles of non-coding RNAs in fibroblast to myofibroblast transition and fibrotic diseases. Front Pharmacol 2024; 15:1423045. [PMID: 39114349 PMCID: PMC11303237 DOI: 10.3389/fphar.2024.1423045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The transition of fibroblasts to myofibroblasts (FMT) represents a pivotal process in wound healing, tissue repair, and fibrotic diseases. This intricate transformation involves dynamic changes in cellular morphology, gene expression, and extracellular matrix remodeling. While extensively studied at the molecular level, recent research has illuminated the regulatory roles of non-coding RNAs (ncRNAs) in orchestrating FMT. This review explores the emerging roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating this intricate process. NcRNAs interface with key signaling pathways, transcription factors, and epigenetic mechanisms to fine-tune gene expression during FMT. Their functions are critical in maintaining tissue homeostasis, and disruptions in these regulatory networks have been linked to pathological fibrosis across various tissues. Understanding the dynamic roles of ncRNAs in FMT bears therapeutic promise. Targeting specific ncRNAs holds potential to mitigate exaggerated myofibroblast activation and tissue fibrosis. However, challenges in delivery and specificity of ncRNA-based therapies remain. In summary, ncRNAs emerge as integral regulators in the symphony of FMT, orchestrating the balance between quiescent fibroblasts and activated myofibroblasts. As research advances, these ncRNAs appear to be prospects for innovative therapeutic strategies, offering hope in taming the complexities of fibrosis and restoring tissue equilibrium.
Collapse
Affiliation(s)
- Xuewu Xing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| | - Scott A. Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| |
Collapse
|
5
|
Yuan L, Wang T, Duan J, Zhou J, Li N, Li G, Zhou H. Expression Profiles and Bioinformatic Analysis of Circular RNAs in Db/Db Mice with Cardiac Fibrosis. Diabetes Metab Syndr Obes 2024; 17:2107-2120. [PMID: 38799279 PMCID: PMC11128257 DOI: 10.2147/dmso.s465588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Cardiac fibrosis is one of the important causes of heart failure and death in diabetic cardiomyopathy (DCM) patients. Circular RNAs (circRNAs) are covalently closed RNA molecules in eukaryotes and have high stability. Their role in myocardial fibrosis with diabetic cardiomyopathy (DCM) remain to be fully elucidated. This study aimed to understand the expression profiles of circRNAs in myocardial fibrosis with DCM, exploring the possible biomarkers and therapeutic targets for DCM. Methods At 21 weeks of age, db/db mice established the type 2 DCM model measured by echocardiography, and the cardiac tissue was extracted for Hematoxylin-eosin, Masson's trichrome staining, and transmission electron microscopy. Subsequently, the expression profile of circRNAs in myocardial fibrosis of db/db mice was constructed using microarray hybridization and verified by real-time quantitative polymerase chain reaction. A circRNA-microRNA-messenger RNA coexpression network was constructed, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were done. Results Compared with normal control mice, db/db mice had 77 upregulated circRNAs and 135 downregulated circRNAs in their chromosomes (fold change ≥1.5, P ≤ 0.05). Moreover, the enrichment analysis of circRNA host genes showed that these differentially expressed circRNAs were mainly involved in mitogen-activated protein kinase signaling pathways. CircPHF20L1, circCLASP1, and circSLC8A1 were the key circRNAs. Moreover, circCLASP1/miR-182-5p/Wnt7a, circSLC8A1/miR-29b-1-5p/Col12a1, and most especially circPHF20L1/miR-29a-3p/Col6a2 might be three novel axes in the development of myocardial fibrosis in DCM. Conclusion The findings will provide some novel circRNAs and molecular pathways for the prevention or clinical treatment of DCM through intervention with specific circRNAs.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Ting Wang
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Jinsheng Duan
- Department of Cardiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Jing Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Na Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Guizhi Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| |
Collapse
|
6
|
Wang M, Yan M, Tan L, Zhao X, Liu G, Zhang Z, Zhang J, Gao H, Qin W. Non-coding RNAs: targets for Chinese herbal medicine in treating myocardial fibrosis. Front Pharmacol 2024; 15:1337623. [PMID: 38476331 PMCID: PMC10928947 DOI: 10.3389/fphar.2024.1337623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases have become the leading cause of death in urban and rural areas. Myocardial fibrosis is a common pathological manifestation at the adaptive and repair stage of cardiovascular diseases, easily predisposing to cardiac death. Non-coding RNAs (ncRNAs), RNA molecules with no coding potential, can regulate gene expression in the occurrence and development of myocardial fibrosis. Recent studies have suggested that Chinese herbal medicine can relieve myocardial fibrosis through targeting various ncRNAs, mainly including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Thus, ncRNAs are novel drug targets for Chinese herbal medicine. Herein, we summarized the current understanding of ncRNAs in the pathogenesis of myocardial fibrosis, and highlighted the contribution of ncRNAs to the therapeutic effect of Chinese herbal medicine on myocardial fibrosis. Further, we discussed the future directions regarding the potential applications of ncRNA-based drug screening platform to screen drugs for myocardial fibrosis.
Collapse
Affiliation(s)
- Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
7
|
Meng Y, Xi T, Fan J, Yang Q, Ouyang J, Yang J. The inhibition of FTO attenuates the antifibrotic effect of leonurine in rat cardiac fibroblasts. Biochem Biophys Res Commun 2024; 693:149375. [PMID: 38128243 DOI: 10.1016/j.bbrc.2023.149375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Myocardial fibrosis (MF) is a common pathological condition in cardiovascular diseases that often causes severe cardiac dysfunction. MF is characterized by changes in cardiomyocytes, cardiac fibroblasts (CFs), levels of collagen (Col) -1, -3, and overdeposition of the extracellular matrix. Our previous research showed that leonurine (LE) effectively inhibits collagen synthesis and differentiation of CFs, but the mechanism is not fully elucidated. Recent evidence indicates that fat mass and obesity-associated proteins (FTO) regulates the occurrence and development of MF. This study aimed to explore the role of FTO in the antifibrotic effects of LE. METHODS Neonatal rat CFs were isolated, and induced using angiotensin II (Ang II) to establish a cell model of MF. Cell viability, wound healing and transwell assays were used to detect cell activity and migration ability. The protein and mRNA levels of MF-related factors were measured following stimulation with Ang II and LE under normal conditions or after FTO knockdown. The RNA methylation level was measured by dot blot assay. RESULTS The results showed that LE (20, 40 μM) was not toxic to normal CFs. LE reduced the proliferation, migration and collagen synthesis of Ang II-induced CFs. Further investigation showed that FTO was downregulated by Ang II stimulation, whereas LE reversed this effect. FTO knockdown facilitated the migration of CFs, upregulated the protein levels of Col-3, α-SMA and Col-1 in Ang II and LE-stimulated CFs, and enhanced the fluorescence intensity of α-SMA. Furthermore, LE reduced N6-methyladenosine (m6A) RNA methylation, which was partially blocked by FTO knockdown. FTO knockdown also reduced the expression levels of p53 protein in Ang II and LE-stimulated CFs. CONCLUSIONS Our findings suggest that the inhibition of FTO may attenuate the antifibrotic effect of LE in CFs, suggesting that FTO may serve as a key protein for anti-MF of LE.
Collapse
Affiliation(s)
- Yuwei Meng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Tianlan Xi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Chen T, Chen H, Fu Y, Liu X, Huang H, Li Z, Li S. The eNOS-induced leonurine's new role in improving the survival of random skin flap. Int Immunopharmacol 2023; 124:111037. [PMID: 37827057 DOI: 10.1016/j.intimp.2023.111037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
In reconstructive and plastic surgery, random skin flaps are commonly utilized to treat skin abnormalities produced by a variety of factors. Flap delay procedure is commonly used to reduce flap necrosis. Due to the limitations of various conditions, the traditional surgical improvement can't effectively alleviate the skin flap necrosis. And leonurine (Leo) has antioxidant and anti-inflammatory effects. In this study, we researched the mechanism underlying the influences of varied Leo concentrations on the survival rate of random skin flaps. Our results showed that after Leo treatment, tissue edema and necrosis of the flap were significantly reduced, while angiogenesis and flap perfusion were significantly increased. Through immunohistochemistry and Western blot, we proved that Leo treatment can upregulate the level of angiogenesis, while Leo treatment significantly reduced the expression levels of oxidative stress, apoptosis and inflammation. As a result, it can significantly improve the overall viability of the random skin flaps through the increase of angiogenesis, restriction of inflammation, attenuation of oxidative stress, and reduction of apoptosis. And this protective function was inhibited by LY294002 (a broad-spectrum inhibitor of PI3K) and L-NAME (NG- nitro-L-arginine methyl ester, a non-selective NOS inhibitor). All in all, Leo is an effective drug that can activate the eNOS via the PI3K/Akt pathway. By encouraging angiogenesis, preventing inflammation, minimizing oxidative stress, and lowering apoptosis, Leo can raise the survival rate of random skin flaps. The recommended concentration of Leo in this study was 30 mg/kg.
Collapse
Affiliation(s)
- Tingxiang Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Hongyu Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yuedong Fu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xuao Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Haosheng Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhijie Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Shi Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Cao Q, Wang Q, Wu X, Zhang Q, Huang J, Chen Y, You Y, Qiang Y, Huang X, Qin R, Cao G. A literature review: mechanisms of antitumor pharmacological action of leonurine alkaloid. Front Pharmacol 2023; 14:1272546. [PMID: 37818195 PMCID: PMC10560730 DOI: 10.3389/fphar.2023.1272546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
Leonurine refers to the desiccated aerial portion of a plant in the Labiatae family. The primary bioactive constituent of Leonurine is an alkaloid, Leonurine alkaloid (Leo), renowned for its substantial therapeutic efficacy in the treatment of gynecological disorders, in addition to its broad-spectrum antineoplastic capabilities. Over recent years, the pharmacodynamic mechanisms of Leo have garnered escalating scholarly interest. Leo exhibits its anticancer potential by means of an array of mechanisms, encompassing the inhibition of neoplastic cell proliferation, induction of both apoptosis and autophagy, and the containment of oncogenic cell invasion and migration. The key signal transduction pathways implicated in these processes include the Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL), the Phosphoinositide3-Kinase/Serine/Threonine Protein Kinase (PI3K/AKT), the Signal Transducer and Activator of Transcription 3 (STAT3), and the Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase (MAP/ERK). This paper commences with an exploration of the principal oncogenic cellular behaviors influenced by Leo and the associated signal transduction pathways, thereby scrutinizing the mechanisms of Leo in the antineoplastic sequence of events. The intention is to offer theoretical reinforcement for the elucidation of more profound mechanisms underpinning Leo's anticancer potential and correlating pharmaceutical development.
Collapse
Affiliation(s)
- Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Macau University of Science and Technology, Taipa, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xinyan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian, China
| | - Jinghan Huang
- Undergraduate Department, Sichuan Conservatory of Music, Chengdu, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yi Qiang
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ronggao Qin
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Guangzhu Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
10
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Xi T, Wang R, Pi D, Ouyang J, Yang J. The p53/miR-29a-3p axis mediates the antifibrotic effect of leonurine on angiotensin II-stimulated rat cardiac fibroblasts. Exp Cell Res 2023; 426:113556. [PMID: 36933858 DOI: 10.1016/j.yexcr.2023.113556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Overactivation of cardiac fibroblasts (CFs) is one of the main causes of myocardial fibrosis (MF), and inhibition of CF activation is a crucial strategy for MF therapy. A previous study by our group demonstrated that leonurine (LE) effectively inhibits collagen synthesis and myofibroblast generation originated from CFs, and eventually mitigates the progression of MF (where miR-29a-3p is likely to be a vital mediator). However, the underlying mechanisms involved in this process remain unknown. Thus, the present study aimed to investigate the precise role of miR-29a-3p in LE-treated CFs, and to elucidate the pharmacological effects of LE on MF. Neonatal rat CFs were isolated and stimulated by angiotensin II (Ang II) to mimic the pathological process of MF in vitro. The results show that LE distinctly inhibits collagen synthesis, as well as the proliferation, differentiation and migration of CFs, all of which could be induced by Ang II. In addition, LE promotes apoptosis in CFs under Ang II stimulation. During this process, the down-regulated expressions of miR-29a-3p and p53 are partly restored by LE. Either knockdown of miR-29a-3p or inhibition of p53 by PFT-α (a p53 inhibitor) blocks the antifibrotic effect of LE. Notably, PFT-α suppresses miR-29a-3p levels in CFs under both normal and Ang II-treated conditions. Furthermore, ChIP analysis confirmed that p53 is bound to the promoter region of miR-29a-3p, and directly regulates its expression. Overall, our study demonstrates that LE upregulates p53 and miR-29a-3p expression, and subsequently inhibits CF overactivation, suggesting that the p53/miR-29a-3p axis may play a crucial role in mediating the antifibrotic effect of LE against MF.
Collapse
Affiliation(s)
- Tianlan Xi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ruiyu Wang
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Damao Pi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
The Role of ncRNAs in Cardiac Infarction and Regeneration. J Cardiovasc Dev Dis 2023; 10:jcdd10030123. [PMID: 36975887 PMCID: PMC10052289 DOI: 10.3390/jcdd10030123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Myocardial infarction is the most prevalent cardiovascular disease worldwide, and it is defined as cardiomyocyte cell death due to a lack of oxygen supply. Such a temporary absence of oxygen supply, or ischemia, leads to extensive cardiomyocyte cell death in the affected myocardium. Notably, reactive oxygen species are generated during the reperfusion process, driving a novel wave of cell death. Consequently, the inflammatory process starts, followed by fibrotic scar formation. Limiting inflammation and resolving the fibrotic scar are essential biological processes with respect to providing a favorable environment for cardiac regeneration that is only achieved in a limited number of species. Distinct inductive signals and transcriptional regulatory factors are key components that modulate cardiac injury and regeneration. Over the last decade, the impact of non-coding RNAs has begun to be addressed in many cellular and pathological processes including myocardial infarction and regeneration. Herein, we provide a state-of-the-art review of the current functional role of diverse non-coding RNAs, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in different biological processes involved in cardiac injury as well as in distinct experimental models of cardiac regeneration.
Collapse
|
13
|
Ma CX, Wei ZR, Sun T, Yang MH, Sun YQ, Kai KL, Shi JC, Zhou MJ, Wang ZW, Chen J, Li W, Wang TQ, Zhang SF, Xue L, Zhang M, Yin Q, Zang MX. Circ-sh3rf3/GATA-4/miR-29a regulatory axis in fibroblast-myofibroblast differentiation and myocardial fibrosis. Cell Mol Life Sci 2023; 80:50. [PMID: 36694058 PMCID: PMC11072806 DOI: 10.1007/s00018-023-04699-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
The transdifferentiation from cardiac fibroblasts to myofibroblasts is an important event in the initiation of cardiac fibrosis. However, the underlying mechanism is not fully understood. Circ-sh3rf3 (circular RNA SH3 domain containing Ring Finger 3) is a novel circular RNA which was induced in hypertrophied ventricles by isoproterenol hydrochloride, and our work has established that it is a potential regulator in cardiac hypertrophy, but whether circ-sh3rf3 plays a role in cardiac fibrosis remains unclear, especially in the conversion of cardiac fibroblasts into myofibroblasts. Here, we found that circ-sh3rf3 was down-regulated in isoproterenol-treated rat cardiac fibroblasts and cardiomyocytes as well as during fibroblast differentiation into myofibroblasts. We further confirmed that circ-sh3rf3 could interact with GATA-4 proteins and reduce the expression of GATA-4, which in turn abolishes GATA-4 repression of miR-29a expression and thus up-regulates miR-29a expression, thereby inhibiting fibroblast-myofibroblast differentiation and myocardial fibrosis. Our work has established a novel Circ-sh3rf3/GATA-4/miR-29a regulatory cascade in fibroblast-myofibroblast differentiation and myocardial fibrosis, which provides a new therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Cai-Xia Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Ming-Hui Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Yu-Qie Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Kun-Lun Kai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Jia-Chen Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Zi-Wei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Wei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Tian-Qi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Shan-Feng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China
| | - Min Zhang
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Qianqian Yin
- Medical Research Center, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China.
| | - Ming-Xi Zang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China.
| |
Collapse
|
14
|
Li Z, Chen K, Rose P, Zhu YZ. Natural products in drug discovery and development: Synthesis and medicinal perspective of leonurine. Front Chem 2022; 10:1036329. [PMID: 36324522 PMCID: PMC9618625 DOI: 10.3389/fchem.2022.1036329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Natural products, those molecules derived from nature, have been used by humans for thousands of years to treat ailments and diseases. More recently, these compounds have inspired chemists to use natural products as structural templates in the development of new drug molecules. One such compound is leonurine, a molecule isolated and characterized in the tissues of Herb leonuri. This molecule has received attention from scientists in recent years due to its potent anti-oxidant, anti-apoptotic, and anti-inflammatory properties. More recently researchers have shown leonurine to be useful in the treatment of cardiovascular and nervous system diseases. Like other natural products such as paclitaxel and artemisinin, the historical development of leonurine as a therapeutic is very interesting. Therefore, this review provided an overview of natural product discovery, through to the development of a potential new drug. Content will summarize known plant sources, the pathway used in the synthesis of leonurine, and descriptions of leonurine’s pharmacological properties in mammalian systems.
Collapse
Affiliation(s)
- Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Keyuan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Peter Rose
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- *Correspondence: Yi Zhun Zhu,
| |
Collapse
|
15
|
miRNA-29 aggravates myocardial infarction via inhibiting the PI3K/mTOR/HIF1α/VEGF pathway. Aging (Albany NY) 2022; 14:3129-3142. [PMID: 35378513 PMCID: PMC9037277 DOI: 10.18632/aging.203997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Introduction: MI is defined by the presence of myocardial necrosis, which is caused by acute and persistent ischemia and hypoxia of the coronary artery. In recent years, its incidence rate has been on the rise in China. Methods: GSE34198, GSE97320 and GSE141512 datasets were download for DEG analysis. KEGG pathway analysis, GO analysis, GSEA and PPI network construction were performed. Later, target genes of candidate miRNAs were predicted. Next, echocardiography was conducted to detect the effects of miR-29 on left ventricular structure and cardiac function in vivo, and H&E staining was adopted to study the effects of miR-29 on angiogenesis and fibrosis in vivo. Furthermore, Western blotting was employed to investigate the effects of miR-29 inhibition on the expressions of proteins related to the PI3K\mTOR\ HIF-1α\VEGF pathway. Results: There were 162 DEGs involved in MI. GO analysis revealed that inflammatory responses, negative regulation of apoptosis and innate immune response were the main enriched biological processes. KEGG analysis manifested that DEGs were mainly enriched in the PI3K/Akt signaling pathway, and GSEA demonstrated that they were mainly enriched in the PI3K/Akt/mTOR, HIF and VEGF pathways. Moreover, target gene prediction showed that miR-29 was lowly expressed in MI. According to Masson's trichrome staining, miR-29 inhibition promoted angiogenesis, reduced fibrosis, and increased the protein expressions of p-PI3K, p-mTOR, HIF-1α, and VEGF. Conclusions: MiR-29 may play an important role in the growth and development of MI. After inhibition of miR-29, the PI3K/mTOR/HIF-1α/VEGF pathway is activated to alleviate MI.
Collapse
|
16
|
Wang F, Zhang J, Niu G, Weng J, Zhang Q, Xie M, Li C, Sun K. Apigenin inhibits isoproterenol‐induced myocardial fibrosis and Smad pathway in mice by regulating oxidative stress and miR‐122‐5p/155‐5p expressions. Drug Dev Res 2022; 83:1003-1015. [PMID: 35277868 DOI: 10.1002/ddr.21928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
Apigenin, a flavonoid isolated from Apium graveolens, is an effective natural active ingredient that inhibits transforming growth factor-β1 (TGF-β1)-induced cardiac fibroblasts (CFs) differentiation and collagen synthesis. However, its effects on isoproterenol-induced myocardial fibrosis in mice remain unknown. This study aimed to examine the effect of apigenin in the prevention of myocardial fibrosis. A mouse model of myocardial fibrosis induced by isoproterenol was established, and the mice were given apigenin 75-300 mg/kg orally for 40 days. The results showed that the heart weight coefficient, myocardial hydroxyproline, collagen accumulation, and malondialdehyde levels in the apigenin-treated groups were significantly reduced. In contrast, the activity of myocardial superoxide dismutase and glutathione peroxidase were significantly enhanced. The results of real-time quantitative polymerase chain reaction and western blot assays showed that apigenin could significantly upregulate the expressions of myocardial microRNA-122-5p (miR-122-5p), c-Ski, and Smad7 and downregulate the expressions of myocardial miR-155-5p, α-smooth muscle actin, collagen I/III, NF-κB, TGF-β1, hypoxia-inducible factor-1α (HIF-1α), Smad2/3, and p-Smad2/3. In vitro, the differentiation and extracellular matrix production, as well as TGF-β1/Smads axis, were further reduced after treatment of miR-122-5p mimic or miR-155-5p inhibitor-transfected and TGF-β1-stimulated CFs with apigenin. These results suggested that apigenin increased the expression of miR-122-5p and decreased the expression of miR-155-5p, which subsequently downregulated and upregulated the target genes HIF-1α and c-Ski, respectively. Furthermore, apigenin administration downregulated TGF-β1-induced Smad2/3 and upregulated Smad7. In addition, it reduced the NF-κB/TGF-β1 signaling pathway axis by increasing antioxidant ability to exert the antifibrotic effects.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jun Zhang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guanghao Niu
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu, China
| | - Jiayi Weng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meilin Xie
- Department of Pharmacology, Soochow University, Suzhou, Jiangsu, China
| | - Chunjian Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
17
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
18
|
Ren S, Pan L, Yang L, Niu Z, Wang L, Feng H, Yuan M. miR-29a-3p transferred by mesenchymal stem cells-derived extracellular vesicles protects against myocardial injury after severe acute pancreatitis. Life Sci 2021; 272:119189. [PMID: 33571516 DOI: 10.1016/j.lfs.2021.119189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 02/05/2023]
Abstract
AIMS Acute pancreatitis (AP) is an inflammatory disease of the pancreas that may affect local tissues or remote organ systems, while severe acute pancreatitis (SAP) is a life-threatening disorder associated with multiple organ failure. In this investigation, we set about to determine whether microRNA-29a-3p (miR-29a-3p) carried by mesenchymal stem cell (MSCs)-derived extracellular vesicles (EVs) affects the myocardial injury during SAP. MAIN METHODS EVs were isolated from MSCs of rat bone marrow by differential centrifugation. An SAP rat model was developed and treated with MSCs-EVs and/or alteration of miR-29a-3p and HMGB1 expression, followed by assessment of the rats' cardiac function and inflammation. Next, cardiomyocytes H9C2 were co-cultured with MSC-EVs and internalization of EVs was evaluated, followed by evaluation of whether EVs could transmit miR-29a-3p cargos into H9C2 cells and affect their biological functions. KEY FINDINGS EVs derived from MSCs were observed to protect against SAP-induced myocardial injury. In SAP-induced rats, miR-29a-3p was under-expressed in myocardial tissues. In addition, we also confirmed that miR-29a-3p could be transferred into the H9C2 cardiomyocytes by MSC-derived EVs, which downregulated the expression of inflammatory markers and improve cardiac function to attenuate myocardial injury. Furthermore, miR-29a-3p inhibited the expression of HMGB1 to downregulate TLR4 expression and further inactivate the Akt signaling pathway. SIGNIFICANCE These findings support the cardioprotective action of miR-29a-3p transmitted by MSCs-derived EVs in SAP-induced myocardial injury via downregulation of the HMGB1/TLR4/Akt axis, highlighting a promising target for the EV-based therapy for SAP.
Collapse
Affiliation(s)
- Song Ren
- Department of Geriatric Digestive Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Linqing Yang
- Department of Nursing, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Zequn Niu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Liming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Miao Yuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| |
Collapse
|