1
|
Danielak A, Magierowski M. Obesity and mitochondrial uncoupling - an opportunity for the carbon monoxide-based pharmacology of metabolic diseases. Pharmacol Res 2025; 215:107741. [PMID: 40252782 DOI: 10.1016/j.phrs.2025.107741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Obesity, a chronic and progressive disease with a complex etiology, remains a significant global health challenge. Despite advancements in lifestyle interventions, pharmacological therapies, and bariatric surgery, substantial barriers to effective and sustained obesity management persist. Resistance to weight loss and gradual weight regain are commonly reported, limiting the long-term success of both non-pharmacological and pharmacological strategies. A possible contributor is metabolic adaptation, a phenomenon characterized by reduced metabolic rate and energy expenditure following weight loss, which hinders therapeutic efficacy. To address these challenges, increasing attention has been directed toward strategies that counteract maladaptive mechanisms by modulating metabolic rate and enhancing energy expenditure. One promising approach involves mitochondrial uncoupling, where electron transport and oxygen consumption are disconnected from ATP synthesis, promoting energy dissipation. Preclinical studies have demonstrated the potential of various chemical compounds with uncoupling activity as anti-obesity agents. Additionally, carbon monoxide (CO) has emerged as a significant gaseous signaling molecule in human physiology, with anti-inflammatory, antioxidative, and cytoprotective properties. Advances in CO-based pharmacology have led to the development of controlled-release CO donors, enabling precise therapeutic application. Experimental studies suggest that CO modulates mitochondrial bioenergetics, induces mild mitochondrial uncoupling, and regulates mitochondrial biogenesis. By integrating these findings, this review uniquely connects scientific threads, offering a comprehensive synthesis of current knowledge while proposing innovative directions in mitochondrial, metabolic and CO-based pharmacological research. It highlights the potential of CO-based pharmacology to regulate metabolic rate, support weight loss, and address obesity-related dysfunctions, thus suggesting novel pathways for advancing obesity treatment.
Collapse
Affiliation(s)
- Aleksandra Danielak
- Center for Biomedicine and Interdisciplinary Sciences, Jagiellonian University - Medical College, Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University - Medical College, Krakow, Poland
| | - Marcin Magierowski
- Center for Biomedicine and Interdisciplinary Sciences, Jagiellonian University - Medical College, Krakow, Poland.
| |
Collapse
|
2
|
Abdel-Zaher AO, Bakr MH, Gad YH, Abdelhafez AT. Novel mechanistic insights of the potential role of gasotransmitters and autophagy in the protective effect of metformin against hepatic ischemia/reperfusion injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03837-1. [PMID: 39912902 DOI: 10.1007/s00210-025-03837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
Metformin exerts antidiabetic and pleiotropic effects. This study investigated the function and mechanisms of gasotransmitters and autophagy in the metformin-induced protection against ischemia/reperfusion injury (I/RI). According to measurements of serum hepatic function indicators and histopathological evaluation, metformin protected against hepatic I/RI-induced impairment of liver function and structure. In addition, metformin inhibited hepatic I/RI-induced hepatic oxidative stress, nitrosative stress, inflammation, and apoptosis. Also, it suppressed hepatic I/RI-induced decrease in hepatic heme oxygenase-1 (HO-1) and hydrogen sulfide (H2S) levels and increase in nitric oxide (NO) production. Furthermore, metformin inhibited hepatic I/RI-induced decrease in protein expressions of endothelial NO synthase (eNOS), HO-1, cystathionine γ-lyase (CSE), and Beclin-1 and increase in the protein expression of inducible NO synthase (iNOS) in the liver tissue. Co-administration of the NO biosynthesis inhibitor, L-NAME, carbon monoxide(CO)-releasing molecule-A1 (CORM-A1), the H2S donor, NaHS, or the autophagy stimulator, rapamycin (RAPA), enhanced all effects of metformin. The NO donor, L-arginine, the CO biosynthesis inhibitor, zinc protoporphyrin, the H2S biosynthesis inhibitor, DL-propargylglycine, or the autophagy inhibitor, chloroquine (CQ), antagonized the effects of metformin. These findings reveal, for the first time, that increasing CO, H2S, and autophagy levels with subsequent decreasing NO level play a critical role in metformin's protective action against hepatic I/RI. The ability of L-NAME, CORM-A1, NaHS, and RAPA to boost metformin's protective effect in hepatic I/RI may positively be attributed to their ability to lower hepatic oxidative stress, nitrosative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Ahmed O Abdel-Zaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Science, Badr University, Assiut, Egypt
| | - Yomna H Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Alaa T Abdelhafez
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Pagliaro P, Weber NC, Femminò S, Alloatti G, Penna C. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol 2024; 119:509-544. [PMID: 38878210 PMCID: PMC11319428 DOI: 10.1007/s00395-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy.
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy.
| | - Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science (ACS), Amsterdam, The Netherlands
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy
| |
Collapse
|
4
|
Min Q, Ji X. Strategies toward Metal-Free Carbon Monoxide Prodrugs: An Update. ChemMedChem 2023; 18:e202200500. [PMID: 36251749 DOI: 10.1002/cmdc.202200500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Indexed: 01/24/2023]
Abstract
Carbon monoxide is an important gasotransmitter in mammals, with pleiotropic therapeutic potential against a wide range of human diseases. However, clinical translation of CO is severely hampered by the lack of a reliable CO delivery form. The development of metal-free CO prodrugs is the key to resolving such delivery issues. Over the past three years, some new exciting progress has been made in this field. In this review, we highlight these advances and discuss related issues.
Collapse
Affiliation(s)
- Qingqiang Min
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| |
Collapse
|
5
|
Zhou L, Sun J, Yang T, Wang S, Shan T, Gu L, Chen J, Wei T, Zhao D, Du C, Bao Y, Wang H, Lu X, Sun H, Lv M, Yang D, Wang L. Improved methodology for efficient establishment of the myocardial ischemia-reperfusion model in pigs through the median thoracic incision. J Biomed Res 2023:1-11. [PMID: 37088562 PMCID: PMC10387751 DOI: 10.7555/jbr.36.20220189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To investigate the feasibility and effectiveness of establishing porcine ischemia-reperfusion models by ligating the left anterior descending (LAD) coronary artery, we first randomly divided 16 male Bama pigs into a sham group and a model group. After anesthesia, we separated the arteries and veins. Subsequently, we rapidly located the LAD coronary artery at the beginning of its first diagonal branch through a mid-chest incision. Then, we loosened and released the ligation line after five minutes of pre-occlusion. Finally, we ligated the LAD coronary artery in situ two minutes later and loosened the ligature 60 min after ischemia. Compared with the sham group, electrocardiogram showed multiple continuous lead ST-segment elevations, and ultrasound cardiogram showed significantly lower ejection fraction and left ventricular fractional shortening at one hour and seven days post-operation in the model group. Twenty-four hours after the operation, cardiac troponin T and creatine kinase-MB isoenzyme levels significantly increased in the model group, compared with the sham group. Hematoxylin and eosin staining showed the presence of many inflammatory cells infiltrating the interstitium of the myocardium in the model group but not in the sham group. Masson staining revealed a significant increase in infarct size in the ischemia/reperfusion group. All eight pigs in the model group recovered with normal sinus heart rates, and the survival rate was 100%. In conclusion, the method can provide an accurate and stable large animal model for preclinical research on ischemia/reperfusion with a high success rate and homogeneity of the myocardial infarction area.
Collapse
Affiliation(s)
- Liuhua Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiateng Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tongtong Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Sibo Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tiankai Shan
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingfeng Gu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiawen Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tianwen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Di Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chong Du
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yulin Bao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaohu Lu
- Department of Cardiac surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haoliang Sun
- Department of Cardiac surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Meng Lv
- Medical Experimental Animal Center, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Di Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Liansheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
6
|
Choi HI, Zeb A, Kim MS, Rana I, Khan N, Qureshi OS, Lim CW, Park JS, Gao Z, Maeng HJ, Kim JK. Controlled therapeutic delivery of CO from carbon monoxide-releasing molecules (CORMs). J Control Release 2022; 350:652-667. [PMID: 36063960 DOI: 10.1016/j.jconrel.2022.08.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/06/2023]
Abstract
Carbon monoxide (CO) has been regarded as a "silent killer" for its toxicity toward biological systems. However, a low concentration of endogenously produced CO has shown a number of therapeutic benefits such as anti-inflammatory, anti-proliferative, anti-apoptosis, and cytoprotective activities. Carbon monoxide-releasing molecules (CORMs) have been developed as alternatives to direct CO inhalation, which requires a specialized setting for strict dose control. CORMs are efficient CO donors, with central transition metals (such as ruthenium, iron, cobalt, and manganese) surrounded by CO as a ligand. CORMs can stably store and subsequently release their CO payload in the presence of certain triggers including solvent, light, temperature, and ligand substitution. However, CORMs require appropriate delivery strategies to improve short CO release half-life and target specificity. Herein, we highlighted the therapeutic potential of inhalation and CORMs-delivered CO. The applications of conjugate and nanocarrier systems for controlling CO release and improving therapeutic efficacy of CORMs are also described in detail. The review concludes with some of the hurdles that limit clinical translation of CORMs. Keeping in mind the tremendous potential and growing interest in CORMs, this review would be helpful for designing controlled CO release systems for clinical applications.
Collapse
Affiliation(s)
- Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Alam Zeb
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, Republic of Korea; Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Min-Su Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Isra Rana
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Omer Salman Qureshi
- Department of Pharmacy, Faculty of Natural Sciences, Forman Christian College University, Lahore, Pakistan
| | - Chang-Wan Lim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Jeong-Sook Park
- College of Pharmacy, Institute of Drug Research and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, Republic of Korea.
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea.
| |
Collapse
|
7
|
Bell NT, Payne CM, Sammut IA, Larsen DS. Mechanistic Studies of Carbon Monoxide Release from Norborn‐2‐en‐7‐one CORMs. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nathan T. Bell
- University of Otago - Dunedin Campus: University of Otago Chemistry NEW ZEALAND
| | | | - Ivan A Sammut
- University of Otago Pharmacology and Toxicology NEW ZEALAND
| | - David S Larsen
- University of Otago Chemistry Union Place WestPO Box 56 Dunedin 9054 9016 Dunedin NEW ZEALAND
| |
Collapse
|