1
|
Vernail VL, Lucas L, Miller AJ, Arnold AC. Angiotensin-(1-7) and Central Control of Cardiometabolic Outcomes: Implications for Obesity Hypertension. Int J Mol Sci 2024; 25:13320. [PMID: 39769086 PMCID: PMC11677932 DOI: 10.3390/ijms252413320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension is a leading independent risk factor for the development of cardiovascular disease, the leading cause of death globally. Importantly, the prevalence of hypertension is positively correlated with obesity, with obesity-related hypertension being difficult to treat due to a lack of current guidelines in this population as well as limited efficacy and adverse off-target effects of currently available antihypertensive therapeutics. This highlights the need to better understand the mechanisms linking hypertension with obesity to develop optimal therapeutic approaches. In this regard, the renin-angiotensin system, which is dysregulated in both hypertension and obesity, is a prime therapeutic target. While research and therapies have typically focused on the deleterious angiotensin II axis of the renin-angiotensin system, emerging evidence shows that targeting the protective angiotensin-(1-7) axis also improves cardiovascular and metabolic functions in animal models of obesity hypertension. While the precise mechanisms involved remain under investigation, in addition to peripheral actions, evidence exists to support a role for the central nervous system in the beneficial cardiometabolic effects of angiotensin-(1-7). This review will highlight emerging translational studies exploring the cardiovascular and metabolic regulatory actions of angiotensin-(1-7), with an emphasis on its central actions in brain regions including the brainstem and hypothalamus. An improved understanding of the central mechanisms engaged by angiotensin-(1-7) to regulate cardiovascular and metabolic functions may provide insight into the potential of targeting this hormone as a novel therapeutic approach for obesity-related hypertension.
Collapse
Affiliation(s)
- Victoria L. Vernail
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.L.V.); or (A.J.M.)
| | - Lillia Lucas
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.L.V.); or (A.J.M.)
| | - Amanda J. Miller
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.L.V.); or (A.J.M.)
- Department of Physical Therapy, Lebanon Valley College, Annville, PA 17003, USA
| | - Amy C. Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.L.V.); or (A.J.M.)
| |
Collapse
|
2
|
Tiwari C, Khan H, Grewal AK, Dhankhar S, Chauhan S, Dua K, Gupta G, Singh TG. Opiorphin: an endogenous human peptide with intriguing application in diverse range of pathologies. Inflammopharmacology 2024; 32:3037-3056. [PMID: 39164607 DOI: 10.1007/s10787-024-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Mammalian zinc ectopeptidases have significant functions in deactivating neurological and hormonal peptide signals on the cell surface. The identification of Opiorphin, a physiological inhibitor of zinc ectopeptidases that inactivate enkephalin, has revealed its strong analgesic effects in both chemical and mechanical pain models. Opiorphin achieves this by increasing the transmission of endogenous opioids, which are dependent on the body's own opioid system. The function of opiorphin is closely linked to the rat sialorphin peptide, which inhibits pain perception by enhancing the activity of naturally occurring enkephalinergic pathways that depend on μ- and δ-opioid receptors. Opiorphin is highly intriguing in terms of its physiological implications within the endogenous opioidergic pathways, particularly in its ability to regulate mood-related states and pain perception. Opiorphin can induce antidepressant-like effects by influencing the levels of naturally occurring enkephalin, which are released in response to specific physical and/or psychological stimuli. This effect is achieved through the modulation of delta-opioid receptor-dependent pathways. Furthermore, research has demonstrated that opiorphin's impact on the cardiovascular system is facilitated by the renin-angiotensin system (RAS), sympathetic ganglia, and adrenal medulla, rather than the opioid system. Hence, opiorphin shows great potential as a solitary candidate for the treatment of several illnesses such as neurodegeneration, pain, and mood disorders.
Collapse
Affiliation(s)
- Chanchal Tiwari
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur Grewal
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Sanchit Dhankhar
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Thakur Gurjeet Singh
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Shvachiy L, Amaro-Leal Â, Machado F, Rocha I, Outeiro TF, Geraldes V. Gender-Specific Effects on the Cardiorespiratory System and Neurotoxicity of Intermittent and Permanent Low-Level Lead Exposures. Biomedicines 2024; 12:711. [PMID: 38672068 PMCID: PMC11048361 DOI: 10.3390/biomedicines12040711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Lead exposure is a significant health concern, ranking among the top 10 most harmful substances for humans. There are no safe levels of lead exposure, and it affects multiple body systems, especially the cardiovascular and neurological systems, leading to problems such as hypertension, heart disease, cognitive deficits, and developmental delays, particularly in children. Gender differences are a crucial factor, with women's reproductive systems being especially vulnerable, resulting in fertility issues, pregnancy complications, miscarriages, and premature births. The globalization of lead exposure presents new challenges in managing this issue. Therefore, understanding the gender-specific implications is essential for developing effective treatments and public health strategies to mitigate the impact of lead-related health problems. This study examined the effects of intermittent and permanent lead exposure on both male and female animals, assessing behaviours like anxiety, locomotor activity, and long-term memory, as well as molecular changes related to astrogliosis. Additionally, physiological and autonomic evaluations were performed, focusing on baro- and chemoreceptor reflexes. The study's findings revealed that permanent lead exposure has more severe health consequences, including hypertension, anxiety, and reactive astrogliosis, affecting both genders. However, males exhibit greater cognitive, behavioural, and respiratory changes, while females are more susceptible to chemoreflex hypersensitivity. In contrast, intermittent lead exposure leads to hypertension and reactive astrogliosis in both genders. Still, females are more vulnerable to cognitive impairment, increased respiratory frequency, and chemoreflex hypersensitivity, while males show more reactive astrocytes in the hippocampus. Overall, this research emphasizes the importance of not only investigating different types of lead exposure but also considering gender differences in toxicity when addressing this public health concern.
Collapse
Affiliation(s)
- Liana Shvachiy
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany; (L.S.); (T.F.O.)
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Ângela Amaro-Leal
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Filipa Machado
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Tiago F. Outeiro
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany; (L.S.); (T.F.O.)
- Max Planck Institute for Natural Science, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37073 Göttingen, Germany
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| |
Collapse
|
4
|
From Molecular to Functional Effects of Different Environmental Lead Exposure Paradigms. BIOLOGY 2022; 11:biology11081164. [PMID: 36009791 PMCID: PMC9405384 DOI: 10.3390/biology11081164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Our comparative study brings new insights regarding the effects of environmental lead exposure on the cardiorespiratory and nervous systems. We show how various kinds of exposure can lead to different toxicities, with various degrees of nefarious effects. The developmental period is of utmost importance to the toxicity of environmental lead; however, we found that the duration of exposure is the prime reason for stronger effects, even though the dual effect of intermittent exposure causes greater molecular neuronal alterations. Abstract Lead is a heavy metal whose widespread use has resulted in environmental contamination and significant health problems, particularly if the exposure occurs during developmental stages. It is a cumulative toxicant that affects multiple systems of the body, including the cardiovascular and nervous systems. Chronic lead exposure has been defined as a cause of behavioral changes, inflammation, hypertension, and autonomic dysfunction. However, different environmental lead exposure paradigms can occur, and the different effects of these have not been described in a broad comparative study. In the present study, rats of both sexes were exposed to water containing lead acetate (0.2% w/v), from the fetal period until adulthood. Developmental Pb-exposed (DevPb) pups were exposed to lead until 12 weeks of age (n = 13); intermittent Pb exposure (IntPb) pups drank leaded water until 12 weeks of age, tap water until 20 weeks, and leaded water for a second time from 20 to 28 weeks of age (n = 14); and the permanent (PerPb) exposure group were exposed to lead until 28 weeks of age (n = 14). A control group (without exposure, Ctrl), matched in age and sex was used. After exposure protocols, at 28 weeks of age, behavioral tests were performed for assessment of anxiety (elevated plus maze test), locomotor activity (open-field test), and memory (novel object recognition test). Metabolic parameters were evaluated for 24 h, and the acute experiment was carried out. Blood pressure (BP), electrocardiogram, and heart (HR) and respiratory (RF) rates were recorded. Baroreflex gain, chemoreflex sensitivity, and sympathovagal balance were calculated. Immunohistochemistry protocol for NeuN, Syn, Iba-1, and GFAP staining was performed. All Pb-exposed groups showed hypertension, concomitant with a decrease in baroreflex gain and chemoreceptor hypersensitivity, without significant changes in HR and RF. Long-term memory impairment associated with reactive astrogliosis and microgliosis in the dentate gyrus of the hippocampus, indicating the presence of neuroinflammation, was also observed. However, these alterations seemed to reverse after lead abstinence for a certain period (DevPb) and were enhanced when a second exposure occurred (IntPb), along with a synaptic loss. These results suggest that the duration of Pb exposure is more relevant than the timing of exposure, since the PerPb group presented more pronounced effects and a significant increase in the LF and HF bands and anxiety levels. In summary, this is the first study with the characterization and comparison of physiological, autonomic, behavioral, and molecular changes caused by different low-level environmental lead exposures, from the fetal period to adulthood, where the duration of exposure was the main factor for stronger adverse effects. These kinds of studies are of immense importance, showing the importance of the surrounding environment in health from childhood until adulthood, leading to the creation of new policies for toxicant usage control.
Collapse
|
5
|
Kumar V, Goyal A, Gupta JK. Role of ACE and ACE-2 in abrogated cardioprotective effect of ischemic preconditioning in ovariectomized rat heart. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Řezáčová L, Vaněčková I, Hojná S, Vavřínová A, Valovič P, Rauchová H, Behuliak M, Zicha J. Both central sympathoexcitation and peripheral angiotensin II-dependent vasoconstriction contribute to hypertension development in immature heterozygous Ren-2 transgenic rats. Hypertens Res 2021; 45:414-423. [PMID: 34621032 DOI: 10.1038/s41440-021-00775-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 11/09/2022]
Abstract
Recently, we demonstrated that chronic blockade of the renin-angiotensin system (RAS) lowered the blood pressure (BP) of adult Ren-2 transgenic rats (TGR) mainly through the attenuation of central sympathoexcitation. However, the participation of central and peripheral mechanisms in the development of high BP in immature TGR remains unclear. In the present study, 6-week-old heterozygous TGR males were chronically treated with intracerebroventricular (ICV) or intraperitoneal (IP) infusions of the AT1 receptor inhibitor losartan (1 or 2 mg/kg/day) for 4 weeks. The influence of these treatments on sympathetic- and angiotensin II-dependent BP components (BP response to pentolinium or captopril, respectively) as well as on BP response to exogenous angiotensin II were determined to evaluate the participation of central and peripheral RAS in hypertension development. Chronic IP losartan administration (1 or 2 mg/kg/day) lowered the BP of immature TGR by reducing both sympathetic and angiotensin II-dependent BP components. The central action of IP-administered losartan was indicated by a reduced BP response to acute ICV angiotensin II injection. Chronic ICV administration of a lower losartan dose (1 mg/kg/day) reduced only the sympathetic BP component, whereas a higher ICV administered dose (2 mg/kg/day) was required to influence the angiotensin II-dependent BP component. Accordingly, chronic ICV losartan administration of 2 mg/kg/day (but not 1 mg/kg/day) attenuated the BP response to acute intravenous angiotensin II application. In conclusion, central sympathoexcitation seems to play an important role in hypertension development in immature TGR. Central sympathoexcitation is highly susceptible to inhibition by low doses of RAS-blocking agents, whereas higher doses also affect peripheral angiotensin II-dependent vasoconstriction.
Collapse
Affiliation(s)
- Lenka Řezáčová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - Silvie Hojná
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Vavřínová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavol Valovič
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Rauchová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Řezáčová L, Hojná S, Kopkan L, Rauchová H, Kadlecová M, Zicha J, Vaněčková I. Role of angiotensin II in chronic blood pressure control of heterozygous Ren-2 transgenic rats: Peripheral vasoconstriction versus central sympathoexcitation. Biomed Pharmacother 2019; 116:108996. [PMID: 31132670 DOI: 10.1016/j.biopha.2019.108996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 11/17/2022] Open
Abstract
Our previous studies demonstrated that chronic systemic blockade of renin-angiotensin system (RAS) lowered blood pressure (BP) of Ren-2 transgenic rats (TGR) by the attenuation of both angiotensin II-dependent and sympathetic vasoconstriction. Since systemic RAS blockade also inhibits brain RAS, we were interested which effects on these two types of vasoconstriction will have the central RAS blockade in hypertensive TGR rats. Adult male heterozygous TGR rats and their Hannover Sprague Dawley (HanSD) controls were subjected to chronic systemic or intracerebroventricular administration of either angiotensin type 1 receptor blocker losartan or direct renin inhibitor aliskiren for 4 weeks. Additional groups of TGR and HanSD rats were used for the evaluation of acute peripheral and brain effects of angiotensin II. Both chronic systemic and intracerebroventricular administrations of losartan or aliskiren normalized BP of TGR animals. BP effect of brain RAS blockade was based solely on the reduced sympathetic vasoconstriction, while systemic RAS blockade attenuated both angiotensin II-dependent and sympathetic vasoconstriction. Surprisingly, neither peripheral nor central pressor effects of acute angiotensin II administration were enhanced in TGR compared to HanSD rats. In conclusion, sympathoinhibition represents the main mechanism of BP reduction in heterozygous TGR rats subjected to chronic brain or systemic RAS blockade, while peripheral attenuation of angiotensin II-dependent vasoconstriction during systemic RAS blockade is less important. Our data suggest that the participation of angiotensin II in BP control of adult heterozygous TGR rats is shifted from peripheral vasoconstriction to central sympathoexcitation. Similar mechanisms cannot be excluded in human essential hypertension.
Collapse
Affiliation(s)
- Lenka Řezáčová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Silvie Hojná
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Kopkan
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Hana Rauchová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Kadlecová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
8
|
Intermittent low-level lead exposure provokes anxiety, hypertension, autonomic dysfunction and neuroinflammation. Neurotoxicology 2018; 69:307-319. [PMID: 30098355 DOI: 10.1016/j.neuro.2018.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Exposures to lead (Pb) during developmental phases can alter the normal course of development, with lifelong health consequences. Permanent Pb exposure leads to behavioral changes, cognitive impairment, sympathoexcitation, tachycardia, hypertension and autonomic dysfunction. However, the effects of an intermittent lead exposure are not yet studied. This pattern of exposure has been recently increasing due to migrations, implementation of school exchange programs and/or residential changes. OBJECTIVE To determine and compare lead effects on mammal's behavior and physiology, using a rat model of intermittent and permanent Pb exposures. METHODS Fetuses were intermittently (PbI) or permanently (PbP) exposed to water containing lead acetate (0.2% w/v) throughout life until adulthood (28 weeks of age). A control group (CTL) without any exposure to lead was also used. Anxiety was assessed by elevated plus maze (EPM) and locomotor activity and exploration by open field test (OFT). Blood pressure (BP), electrocardiogram (ECG), heart rate (HR), respiratory frequency (RF), sympathetic and parasympathetic activity and baro- and chemoreceptor reflex profiles were evaluated. Immunohistochemistry protocol for the assessment of neuroinflammation, neuronal loss (NeuN), gliosis and synaptic alterations (Iba-1, GFAP, Syn), were performed at the hippocampus. One-way ANOVA with Tukey's multiple comparison between means were used (significance p < 0.05) for statistical analysis. RESULTS The intermittent lead exposure produced a significant increase in diastolic and mean BP values, concomitant with a tendency to sympathetic overactivity (estimated by increased low-frequency power) and without significant changes in systolic BP, HR and RF. A chemoreceptor hypersensitivity and a baroreflex impairment were also observed, however, less pronounced when compared to the permanent exposure. Regarding behavioral changes, both lead exposure profiles showed an anxiety-like behavior without changes in locomotor and exploratory activity. Increase in GFAP and Iba-1 positive cells, without changes in NeuN positive cells were found in both exposed groups. Syn staining suffered a significant decrease in PbI group and a significant increase in PbP group. CONCLUSION This study is the first to show that developmental Pb exposure since fetal period can cause lasting impairments in physiological parameters. The intermittent lead exposure causes adverse health effects, i.e, hypertension, increased respiratory frequency and chemoreflex sensitivity, baroreflex impairment, anxiety, decreased synaptic activity, neuroinflammation and reactive gliosis, in some ways similar to a permanent exposure, however some are lower-grade, due to the shorter duration of exposure. This study brings new insights on the environmental factors that influence autonomic and cardiovascular systems during development, which can help in creating public policy strategies to prevent and control the adverse effects of Pb toxicity.
Collapse
|
9
|
O’Connor AT, Clark MA. Astrocytes and the Renin Angiotensin System: Relevance in Disease Pathogenesis. Neurochem Res 2018; 43:1297-1307. [DOI: 10.1007/s11064-018-2557-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/21/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
|
10
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 774] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
11
|
Farag E, Sessler DI, Ebrahim Z, Kurz A, Morgan J, Ahuja S, Maheshwari K, John Doyle D. The renin angiotensin system and the brain: New developments. J Clin Neurosci 2017; 46:1-8. [PMID: 28890045 DOI: 10.1016/j.jocn.2017.08.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022]
Abstract
The traditional renin-angiotensin system (RAS) is indispensable system in adjusting sodium homeostasis, body fluid volume, and controlling arterial blood pressure. The key elements are renin splitting inactive angiotensinogen to yield angiotensin (Ang-I). Ang-1 is then changed by angiotensin-1 converting enzyme (ACE) into angiotensin II (Ang-II). Using PubMed, Google Scholar, and other means, we searched the peer-reviewed literature from 1990 to 2013 for articles on newly discovered findings related to the RAS, especially focusing on how the system influences the central nervous system (CNS). The classical RAS is now considered to be only part of the picture; the discovery of additional RAS pathways in the brain and elsewhere has yielded a vastly improved understanding of how the RAS influences the CNS. Newly discovered effects of the RAS on brain tissue include neuroprotection, cognition, and cerebral vasodilation. A number of brain biochemical pathways are influenced by the brain RAS. Within various pathways, there are potential opportunities for classical pharmacologic interventions as well as the possibility of controlling gene expression.
Collapse
Affiliation(s)
- Ehab Farag
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA. http://www.OR.org/
| | - Daniel I Sessler
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zeyd Ebrahim
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrea Kurz
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph Morgan
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sanchit Ahuja
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kamal Maheshwari
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - D John Doyle
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
12
|
Huber G, Schuster F, Raasch W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 2017; 125:72-90. [PMID: 28687340 DOI: 10.1016/j.phrs.2017.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVD) are among the main causes of death globally and in this context hypertension represents one of the key risk factors for developing a CVD. It is well established that the peripheral renin-angiotensin system (RAS) plays an important role in regulating blood pressure (BP). All components of the classic RAS can also be found in the brain but, in contrast to the peripheral RAS, how the endogenous RAS is involved in modulating cardiovascular effects in the brain is not fully understood yet. It is a complex system that may work differently in diverse areas of the brain and is linked to the peripheral system by the circumventricular organs (CVO), which do not have a blood brain barrier (BBB). In this review, we focus on the brain angiotensin peptides, their interactions with each other, and the consequences in the central nervous system (CNS) concerning cardiovascular control. Additionally, we present potential drug targets in the brain RAS for the treatment of hypertension.
Collapse
Affiliation(s)
- Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Franziska Schuster
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
13
|
Affiliation(s)
- Pablo Nakagawa
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
14
|
Schaich CL, Grabenauer M, Thomas BF, Shaltout HA, Gallagher PE, Howlett AC, Diz DI. Medullary Endocannabinoids Contribute to the Differential Resting Baroreflex Sensitivity in Rats with Altered Brain Renin-Angiotensin System Expression. Front Physiol 2016; 7:207. [PMID: 27375489 PMCID: PMC4899471 DOI: 10.3389/fphys.2016.00207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/22/2016] [Indexed: 11/13/2022] Open
Abstract
CB1 cannabinoid receptors are expressed on vagal afferent fibers and neurons within the solitary tract nucleus (NTS), providing anatomical evidence for their role in arterial baroreflex modulation. To better understand the relationship between the brain renin-angiotensin system (RAS) and endocannabinoid expression within the NTS, we measured dorsal medullary endocannabinoid tissue content and the effects of CB1 receptor blockade at this brain site on cardiac baroreflex sensitivity (BRS) in ASrAOGEN rats with low glial angiotensinogen, normal Sprague-Dawley rats and (mRen2)27 rats with upregulated brain RAS expression. Mass spectrometry revealed higher levels of the endocannabinoid 2-arachidonoylglycerol in (mRen2)27 compared to ASrAOGEN rats (2.70 ± 0.28 vs. 1.17 ± 0.09 ng/mg tissue; P < 0.01), while Sprague-Dawley rats had intermediate content (1.85 ± 0.27 ng/mg tissue). Microinjection of the CB1receptor antagonist SR141716A (36 pmol) into the NTS did not change cardiac BRS in anesthetized Sprague-Dawley rats (1.04 ± 0.05 ms/mmHg baseline vs. 1.17 ± 0.11 ms/mmHg after 10 min). However, SR141716A in (mRen2)27 rats dose-dependently improved BRS in this strain: 0.36 pmol of SR141716A increased BRS from 0.43 ± 0.03 to 0.71 ± 0.04 ms/mmHg (P < 0.001), and 36 pmol of SR141716A increased BRS from 0.47 ± 0.02 to 0.94 ± 0.10 ms/mmHg (P < 0.01). In contrast, 0.36 pmol (1.50 ± 0.12 vs. 0.86 ± 0.08 ms/mmHg; P < 0.05) and 36 pmol (1.38 ± 0.16 vs. 0.46 ± 0.003 ms/mmHg; P < 0.01) of SR141716A significantly reduced BRS in ASrAOGEN rats. These observations reveal differential dose-related effects of the brain endocannabinoid system that influence cardiovagal BRS in animals with genetic alterations in the brain RAS.
Collapse
Affiliation(s)
- Chris L Schaich
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Megan Grabenauer
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of MedicineWinston-Salem, NC, USA; Analytical Chemistry and Pharmaceutics, RTI InternationalResearch Triangle Park, NC, USA
| | - Brian F Thomas
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of MedicineWinston-Salem, NC, USA; Analytical Chemistry and Pharmaceutics, RTI InternationalResearch Triangle Park, NC, USA
| | - Hossam A Shaltout
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of MedicineWinston-Salem, NC, USA; Department of Obstetrics and Gynecology, Wake Forest School of MedicineWinston-Salem, NC, USA
| | - Patricia E Gallagher
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Debra I Diz
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
15
|
Geraldes V, Carvalho M, Goncalves-Rosa N, Tavares C, Laranjo S, Rocha I. Lead toxicity promotes autonomic dysfunction with increased chemoreceptor sensitivity. Neurotoxicology 2016; 54:170-177. [PMID: 27133440 DOI: 10.1016/j.neuro.2016.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/11/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
Mortality and morbidity by toxic metals is an important issue of occupational health. Lead is an ubiquitous heavy metal in our environment despite having no physiological role in biological systems. Being an homeostatic controller is expected that the autonomic nervous system would show a degree of impairment in lead toxicity. In fact, sympathoexcitation associated to high blood pressure and tachypnea has been described together with baroreflex dysfunction. However, the mechanisms underlying the autonomic dysfunction and the interplay between baro- and chemoreflex are not yet fully clarified. The angiotensinogenic PVN-NTS axis (paraventricular nucleus of the hypothalamus - nucleus tractus solitarius axis) is a particularly important neuronal pathway that could be responsible for the autonomic dysfunction and the cardiorespiratory impairment in lead toxicity. Within the current work, we addressed in vivo, baro- and chemoreceptor reflex behaviour, before and after central angiotensin inhibition, in order to better understand the cardiorespiratory autonomic mechanisms underlying the toxic effects of long-term lead exposure. For that, arterial pressure, heart rate, respiratory rate, sympathetic and parasympathetic activity and baro- and chemoreceptor reflex profiles of anaesthetized young adult rats exposed to lead, from foetal period to adulthood, were evaluated. Results showed increased chemosensitivity together with baroreceptor reflex impairment, sympathetic over-excitation, hypertension and tachypnea. Chemosensitivity and sympathetic overexcitation were reversed towards normality values by NTS treatment with A-779, an angiotensin (1-7) antagonist. No parasympathetic changes were observed before and after A-799 treatment. In conclusion, angiotensin (1-7) at NTS level is involved in the autonomic dysfunction observed in lead toxicity. The increased sensitivity of chemoreceptor reflex expresses the clear impairment of autonomic outflow to the cardiovascular and respiratory systems induced by putative persistent, long duration, alert reaction evoked by the long term exposure to lead toxic effects. The present study brings new insights on the central mechanisms implicated in the autonomic dysfunction induced by lead exposure which are relevant for the development of additional therapeutic options to tackle lead toxicity symptoms.
Collapse
Affiliation(s)
- Vera Geraldes
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal; Cardiovascular Centre of the University of Lisbon, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Mafalda Carvalho
- Cardiovascular Centre of the University of Lisbon, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Nataniel Goncalves-Rosa
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal; Cardiovascular Centre of the University of Lisbon, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Cristiano Tavares
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal; Cardiovascular Centre of the University of Lisbon, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Sérgio Laranjo
- Cardiovascular Centre of the University of Lisbon, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Isabel Rocha
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal; Cardiovascular Centre of the University of Lisbon, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal.
| |
Collapse
|
16
|
Alterations in the Medullary Endocannabinoid System Contribute to Age-related Impairment of Baroreflex Sensitivity. J Cardiovasc Pharmacol 2016; 65:473-9. [PMID: 25636077 DOI: 10.1097/fjc.0000000000000216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
As they age, Sprague-Dawley (SD) rats develop elevated systolic blood pressure associated with impaired baroreflex sensitivity (BRS) for control of heart rate. We previously demonstrated in young hypertensive (mRen2)27 rats that impaired BRS is restored by CB1 cannabinoid receptor blockade in the solitary tract nucleus (NTS), consistent with elevated content of the endocannabinoid 2-arachidonoylglycerol (2-AG) in dorsal medulla relative to normotensive SD rats. There is no effect of CB1 receptor blockade in young SD rats. We now report in older SD rats that dorsal medullary 2-AG levels are 2-fold higher at 70 versus 15 weeks of age (4.22 ± 0.61 vs. 1.93 ± 0.22 ng/mg tissue; P < 0.05). Furthermore, relative expression of CB1 receptor messenger RNA is significantly lower in aged rats, whereas CB2 receptor messenger RNA is significantly higher. In contrast to young adult SD rats, microinjection of the CB1 receptor antagonist SR141716A (36 pmole) into the NTS of older SD rats normalized BRS in animals exhibiting impaired baseline BRS (0.56 ± 0.06 baseline vs. 1.06 ± 0.05 ms/mm Hg after 60 minutes; P < 0.05). Therefore, this study provides evidence for alterations in the endocannabinoid system within the NTS of older SD rats that contribute to age-related impairment of BRS.
Collapse
|
17
|
The PI3K signaling-mediated nitric oxide contributes to cardiovascular effects of angiotensin-(1-7) in the nucleus tractus solitarii of rats. Nitric Oxide 2016; 52:56-65. [DOI: 10.1016/j.niox.2015.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/11/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023]
|
18
|
Kangussu LM, Guimaraes PS, Nadu AP, Melo MB, Santos RAS, Campagnole-Santos MJ. Activation of angiotensin-(1-7)/Mas axis in the brain lowers blood pressure and attenuates cardiac remodeling in hypertensive transgenic (mRen2)27 rats. Neuropharmacology 2015; 97:58-66. [PMID: 25983274 DOI: 10.1016/j.neuropharm.2015.04.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/20/2015] [Accepted: 04/30/2015] [Indexed: 11/27/2022]
Abstract
Activation of the peripheral angiotensin-(1-7)/Mas axis of the renin-angiotensin system produces important cardioprotective actions, counterbalancing the deleterious actions of an overactivity of Ang II/AT1 axis. In the present study we evaluated whether the chronic increase in Ang-(1-7) levels in the brain could ameliorate cardiac disorders observed in transgenic (mRen2)27 hypertensive rats through actions on Mas receptor. Sprague Dawley (SD) and transgenic (mRen2)27 hypertensive rats, instrumented with telemetry probe for arterial pressure (AP) measurement were subjected to 14 days of ICV infusion of Ang-(1-7) (200 ng/h) or Ang-(1-7) associated with Mas receptor antagonist (A779, 1 μg/h) or 0.9% sterile saline (0.5 μl/h) through osmotic mini-pumps. Ang-(1-7) infusion in (mRen2)27 rats reduced blood pressure, normalized the baroreflex control of HR, restored cardiac autonomic balance, reduced cardiac hypertrophy and pre-fibrotic alterations and decreased the altered imbalance of Ang II/Ang-(1-7) in the heart. In addition, there was an attenuation of the increased levels of atrial natriuretic peptide, brain natriuretic peptide, collagen I, fibronectin and TGF-β in the heart of (mRen2)27 rats. Furthermore, most of these effects were mediated in the brain by Mas receptor, since were blocked by its selective antagonist, A779. These data indicate that increasing Ang-(1-7) levels in the brain can attenuate cardiovascular disorders observed in (mRen2)27 hypertensive rats, probably by improving the autonomic balance to the heart due to centrally-mediated actions on Mas receptor.
Collapse
Affiliation(s)
- Lucas M Kangussu
- Laboratory of Hypertension, Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Priscila S Guimaraes
- Laboratory of Hypertension, Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Nadu
- Laboratory of Hypertension, Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcos B Melo
- Laboratory of Hypertension, Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Robson A S Santos
- Laboratory of Hypertension, Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Jose Campagnole-Santos
- Laboratory of Hypertension, Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
19
|
Abstract
The RAS (renin-angiotensin system) is composed of two arms: the pressor arm containing AngII (angiotensin II)/ACE (angiotensin-converting enzyme)/AT1Rs (AngII type 1 receptors), and the depressor arm represented by Ang-(1-7) [angiotensin-(1-7)]/ACE2/Mas receptors. All of the components of the RAS are present in the brain. Within the brain, Ang-(1-7) contributes to the regulation of BP (blood pressure) by acting at regions that control cardiovascular function such that, when Ang-(1-7) is injected into the nucleus of the solitary tract, caudal ventrolateral medulla, paraventricular nucleus or anterior hypothalamic area, a reduction in BP occurs; however, when injected into the rostral ventrolateral medulla, Ang-(1-7) stimulates an increase in BP. In contrast with AngII, Ang-(1-7) improves baroreflex sensitivity and has an inhibitory neuromodulatory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to BP regulation, but also acts as a cerebroprotective component of the RAS by reducing cerebral infarct size and neuronal apoptosis. In the present review, we provide an overview of effects elicited by Ang-(1-7) in the brain, which suggest a potential role for Ang-(1-7) in controlling the central development of hypertension.
Collapse
|
20
|
Zucker IH, Xiao L, Haack KKV. The central renin-angiotensin system and sympathetic nerve activity in chronic heart failure. Clin Sci (Lond) 2014; 126:695-706. [PMID: 24490814 PMCID: PMC4053944 DOI: 10.1042/cs20130294] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CHF (chronic heart failure) is a multifactorial disease process that is characterized by overactivation of the RAAS (renin-angiotensin-aldosterone system) and the sympathetic nervous system. Both of these systems are chronically activated in CHF. The RAAS consists of an excitatory arm involving AngII (angiotensin II), ACE (angiotensin-converting enzyme) and the AT1R (AngII type 1 receptor). The RAAS also consists of a protective arm consisting of Ang-(1-7) [angiotensin-(1-7)], the AT2R (AngII type 2 receptor), ACE2 and the Mas receptor. Sympatho-excitation in CHF is driven, in large part, by an imbalance of these two arms, with an increase in the AngII/AT1R/ACE arm and a decrease in the AT2R/ACE2 arm. This imbalance is manifested in cardiovascular-control regions of the brain such as the rostral ventrolateral medulla and paraventricular nucleus in the hypothalamus. The present review focuses on the current literature that describes the components of these two arms of the RAAS and their imbalance in the CHF state. Moreover, the present review provides additional evidence for the relevance of ACE2 and Ang-(1-7) as key players in the regulation of central sympathetic outflow in CHF. Finally, we also examine the effects of exercise training as a therapeutic strategy and the molecular mechanisms at play in CHF, in part, because of the ability of exercise training to restore the balance of the RAAS axis and sympathetic outflow.
Collapse
Affiliation(s)
- Irving H Zucker
- *Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Liang Xiao
- *Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Karla K V Haack
- *Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| |
Collapse
|
21
|
Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. Evidence for an angiotensin-(1-7) neuropeptidase expressed in the brain medulla and CSF of sheep. J Neurochem 2014; 130:313-23. [PMID: 24661079 DOI: 10.1111/jnc.12720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is an alternative product of the brain renin-angiotensin system that exhibits central actions to lower blood pressure and improve baroreflex sensitivity. We previously identified a peptidase that metabolizes Ang-(1-7) to the inactive metabolite product Ang-(1-4) in CSF of adult sheep. This study purified the peptidase 1445-fold from sheep brain medulla and characterized this activity. The peptidase was sensitive to the chelating agents o-phenanthroline and EDTA, as well as the mercury compound p-chloromercuribenzoic acid (PCMB). Selective inhibitors to angiotensin-converting enzyme, neprilysin, neurolysin, and thimet oligopeptidase did not attenuate activity; however, the metallopeptidase agent JMV-390 was a potent inhibitor of Ang-(1-7) hydrolysis (Ki = 0.8 nM). Kinetic studies using (125) I-labeled Ang-(1-7), Ang II, and Ang I revealed comparable apparent Km values (2.6, 2.8, and 4.3 μM, respectively), but a higher apparent Vmax for Ang-(1-7) (72 vs. 30 and 6 nmol/min/mg, respectively; p < 0.01). HPLC analysis of the activity confirmed the processing of unlabeled Ang-(1-7) to Ang-(1-4) by the peptidase, but revealed < 5% hydrolysis of Ang II or Ang I, and no hydrolysis of neurotensin, bradykinin or apelin-13. The unique characteristics of the purified neuropeptidase may portend a novel pathway to influence actions of Ang-(1-7) within the brain. Angiotensin-(1-7) actions are mediated by the AT7 /Mas receptor and include reduced blood pressure, decreased oxidative stress, enhanced baroreflex sensitivity, and increased nitric oxide (NO). Ang-(1-7) is directly formed from Ang I by neprilysin (NEP). We identify a new pathway for Ang-(1-7) metabolism in the brain distinct from angiotensin-converting enzyme-dependent hydrolysis. The Ang-(1-7) endopeptidase (A7-EP) degrades the peptide to Ang-(1-4) and may influence central Ang-(1-7) tone.
Collapse
Affiliation(s)
- Allyson C Marshall
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | | | |
Collapse
|
22
|
Kawabe T, Kawabe K, Sapru HN. Cardiovascular effect of angiotensin-(1-12) in the caudal ventrolateral medullary depressor area of the rat. Am J Physiol Heart Circ Physiol 2013; 306:H438-49. [PMID: 24285114 DOI: 10.1152/ajpheart.00628.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin (ANG)-(1-12) excites neurons via ANG II type 1 receptors (AT1Rs), which are present in the caudal ventrolateral medullary depressor area (CVLM). We hypothesized that microinjections of ANG-(1-12) into the CVLM may elicit decreases in mean arterial pressure (MAP), heart rate (HR), and sympathetic nerve activity. This hypothesis was tested in urethane-anesthetized adult male Wistar rats. Microinjections of ANG-(1-12) into the CVLM elicited decreases in MAP, HR, and greater splanchnic nerve activity (GSNA). ANG-(1-12)-induced responses consisted of initial (first 1-8 min) and delayed (8-24 min) phases. Prior microinjections of losartan, A-779, and captopril into the CVLM blocked initial, delayed, and both phases of ANG-(1-12) responses, respectively. Blockade of GABA receptors in the rostral ventrolateral medullary pressor area (RVLM) attenuated cardiovascular responses elicited by microinjections of ANG-(1-12) into the ipsilateral CVLM. Microinjections of ANG-(1-12) into the CVLM potentiated the reflex decreases and attenuated the reflex increases in GSNA elicited by intravenous injections of phenylephrine and sodium nitroprusside, respectively. These results indicate that microinjections of ANG-(1-12) into the CVLM elicit decreases in MAP, HR, and GSNA. Initial and delayed phases of these responses are mediated via ANG II and ANG-(1-7), respectively; the effects of ANG II and ANG-(1-7) are mediated via AT1Rs and Mas receptors, respectively. Captopril blocked both phases of ANG-(1-12) responses, indicating that angiotensin-converting enzyme is important in mediating these responses. GABA receptors in the RVLM partly mediate the cardiovascular responses to microinjections of ANG-(1-12) into the CVLM. Microinjections of ANG-(1-12) into the CVLM modulate baroreflex responses.
Collapse
Affiliation(s)
- Tetsuya Kawabe
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | | | | |
Collapse
|
23
|
Mugabo P, Raji IA. Effects of aqueous leaf extract of Asystasia gangetica on the blood pressure and heart rate in male spontaneously hypertensive Wistar rats. Altern Ther Health Med 2013; 13:283. [PMID: 24160568 PMCID: PMC3815069 DOI: 10.1186/1472-6882-13-283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/24/2013] [Indexed: 12/19/2022]
Abstract
Background Asystasia gangentica (A. gangetica) belongs to the family Acanthaceae. It is used to treat hypertension, rheumatism, asthma, diabetes mellitus, and as an anthelmintic in South Africa, India, Cameroun, Nigeria, and Kenya respectively. It has also been reported to inhibit the angiotensin I converting enzyme (ACE) in-vitro. Therefore, the aim of this study is to investigate the in-vivo effect of aqueous leaf extract (ALE) of A. gangetica on the blood pressure (BP) and heart rate (HR) in anaesthetized male spontaneously hypertensive rats (SHR); and to elucidate possible mechanism(s) by which it acts. Methods The ALE of A. gangetica (10–400 mg/kg), angiotensin I human acetate salt hydrate (ANG I, 3.1–100 μg/kg) and angiotensin II human (ANG II, 3.1–50 μg/kg) were administered intravenously. The BP and HR were measured via a pressure transducer connecting the femoral artery to a Powerlab and a computer for recording. Results A. gangetica significantly (p<0.05), and dose-dependently reduced the systolic, diastolic, and mean arterial BP. The significant (p<0.05) reductions in HR were not dose-dependent. Both ANG I and ANG II increased the BP dose-dependently. Co-infusion of A. gangetica (200 mg/kg) with either ANG I or ANG II significantly (p<0.05) suppressed the hypertensive effect of both ANG I and ANG II respectively, and was associated with reductions in HR. Conclusions A. gangetica ALE reduced BP and HR in the SHR. The reduction in BP may be a result of actions of the ALE on the ACE, the ANG II receptors and the heart rate.
Collapse
|
24
|
In vivo expression of angiotensin-(1-7) lowers blood pressure and improves baroreflex function in transgenic (mRen2)27 rats. J Cardiovasc Pharmacol 2012; 60:150-7. [PMID: 22526299 DOI: 10.1097/fjc.0b013e3182588b32] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transgenic (mRen2)27 rats are hypertensive with impaired baroreflex sensitivity for control of heart rate compared with Hannover Sprague-Dawley rats. We assessed blood pressure and baroreflex function in male hemizygous (mRen2)27 rats (30-40 weeks of age) instrumented for arterial pressure recordings and receiving into the cisterna magna either an Ang-(1-7) fusion protein or a control fusion protein (CTL-FP). The maximum reduction in mean arterial pressure achieved was -38 ± 7 mm Hg on day 3, accompanied by a 55% enhancement in baroreflex sensitivity in Ang-(1-7) fusion protein-treated rats. Both the high-frequency alpha index (HF-α) and heart rate variability increased, suggesting increased parasympathetic tone for cardiac control. The mRNA levels of several components of the renin-angiotensin system in the dorsal medulla were markedly reduced including renin (-80%), neprilysin (-40%), and the AT1a receptor (-40%). However, there was a 2-fold to 3-fold increase in the mRNA levels of the phosphatases PTP-1b and dual-specificity phosphatase 1 in the medulla of Ang-(1-7) fusion protein-treated rats. Our finding that replacement of Ang-(1-7) in the brain of (mRen2)27 rats reverses in part the hypertension and baroreflex impairment is consistent with a functional deficit of Ang-(1-7) in this hypertensive strain. We conclude that the increased mRNA expression of phosphatases known to counteract the phosphoinositol 3 kinase and mitogen-activated protein kinases, and the reduction of renin and AT1a receptor mRNA levels may contribute to the reduction in arterial pressure and improvement in baroreflex sensitivity in response to Ang-(1-7).
Collapse
|
25
|
Abstract
Aging is associated with an imbalance in sympathetic and parasympathetic outflow to cardiovascular effector organs. This autonomic imbalance contributes to the decline in cardiovagal baroreceptor reflex function during aging, which allows for unrestrained activation of the sympathetic nervous system to negatively impact resting systolic blood pressure and its variability. Further, impaired baroreflex function can contribute to the development of insulin resistance and other features of the metabolic syndrome during aging through overlap in autonomic neural pathways that regulate both cardiovascular and metabolic functions. Increasing evidence supports a widespread influence of the renin-angiotensin system (RAS) on both sympathetic and parasympathetic activity through receptors distributed to peripheral and central sites of action. Indeed, therapeutic interventions to block the RAS are well established for the treatment of hypertension in elderly patients, and reduce the incidence of new-onset diabetes in clinical trials. Further, RAS blockade increases lifespan and improves numerous age-related pathologies in rodents, often independent of blood pressure. The beneficial effects of these interventions are at least in part attributed to suppression of angiotensin II formed locally within the brain. In particular, recent insights from transgenic rodents provide evidence that long-term alteration in the brain RAS modulates the balance between angiotensin II and angiotensin-(1-7), and related intracellular signaling pathways, to influence cardiovascular and metabolic function in the context of hypertension and aging.
Collapse
|
26
|
Nautiyal M, Shaltout HA, de Lima DC, do Nascimento K, Chappell MC, Diz DI. Central angiotensin-(1-7) improves vagal function independent of blood pressure in hypertensive (mRen2)27 rats. Hypertension 2012; 60:1257-65. [PMID: 23045456 DOI: 10.1161/hypertensionaha.112.196782] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertensive transgenic (mRen2)27 rats with overexpression of the mRen2 gene have impaired baroreflex sensitivity for heart rate control and high nicotinamide adenine dinucleotide phosphate oxidase and kinase-to-phosphatase signaling activity in medullary tissue compared with normotensive Hannover Sprague-Dawley control rats. They also exhibit insulin resistance at a young age. To determine whether blocking angiotensin II actions, supplementing angiotensin-(1-7), or scavenging reactive oxygen species in brain differentially alters mean arterial pressure, baroreflex sensitivity, or metabolic function, while altering medullary signaling pathways in these animals, we compared intracerebroventricular infusions of the angiotensin II type 1 receptor antagonist candesartan (4 μg/5 μL/h), angiotensin-(1-7) (0.1 μg/5 μL/h), a reactive oxygen species scavenger tempol (25 μg/5 μL/h), or artificial cerebrospinal fluid (5 μL/h) for 2 weeks. Mean arterial pressure was reduced in candesartan-treated rats without significantly improving the vagal components of baroreflex function or heart rate variability. In contrast, angiotensin-(1-7) treatment significantly improved the vagal components of baroreflex function and heart rate variability at a dose that did not significantly lower mean arterial pressure. Tempol significantly reduced nicotinamide adenine dinucleotide phosphate oxidase activity in brain dorsal medullary tissue but had no effect on mean arterial pressure or autonomic function. Candesartan tended to reduce fat mass, but none of the treatments significantly altered indices of metabolic function or mitogen-activated protein kinase signaling pathways in dorsal medulla. Although additional dose response studies are necessary to determine the potential maximal effectiveness of each treatment, the current findings demonstrate that blood pressure and baroreflex function can be essentially normalized independently of medullary nicotinamide adenine dinucleotide phosphate oxidase or mitogen-activated protein kinase in hypertensive (mRen2)27 rats.
Collapse
Affiliation(s)
- Manisha Nautiyal
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1032, USA
| | | | | | | | | | | |
Collapse
|
27
|
Protein phosphatase 1b in the solitary tract nucleus is necessary for normal baroreflex function. J Cardiovasc Pharmacol 2012; 59:472-8. [PMID: 22569287 DOI: 10.1097/fjc.0b013e31824ba490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite positive metabolic effects, genetic deletion of protein phosphatase 1b (PTP1b) results in sympathetically mediated elevations in arterial pressure (AP) in mice. Because several PTP1b-regulated peptides also impair the baroreflex sensitivity (BRS) for control of heart rate (HR), we hypothesized that PTP1b in the solitary tract nucleus (NTS) participates in the maintenance of resting baroreflex function. To test this hypothesis, we performed acute bilateral microinjection of an allosteric PTP1b inhibitor (100 nM/120 nL) in the NTS of urethane/chloralose anesthetized Sprague-Dawley rats and assessed the BRS, responses to cardiac vagal chemosensitive fiber activation, and resting AP and HR before and after the injection. PTP1b inhibition impaired the BRS for bradycardia (n = 6; 0.93 ± 0.14 baseline vs. 0.48 ± 0.04 at 10 minutes vs. 0.49 ± 0.04 millisecond/mm Hg at 60 minutes; P < 0.01), with no significant effect on the BRS for tachycardia (0.30 ± 0.16 baseline vs. 0.24 ± 0.08 at 10 minutes vs. 0.24 ± 0.12 millisecond/mm Hg at 60 minutes). The reduced BRS for bradycardia was associated with a significant decrease in alpha-adrenergic responsiveness to phenylephrine at 60 minutes after PTP1b inhibition. Injection of the PTP1b inhibitor in the NTS elicited transient decreases in AP and HR in these animals. However, there was no effect of the inhibitor on depressor or bradycardic responses elicited by activation of cardiac vagal chemosensitive fibers, which converge with baroreceptor afferents in the NTS. These results suggest that PTP1b within the NTS may be a novel molecular mechanism for preservation of resting baroreflex function and provides further evidence for deleterious cardiovascular effects associated with PTP1b inhibition.
Collapse
|
28
|
Arnold AC, Sakima A, Kasper SO, Vinsant S, Garcia-Espinosa MA, Diz DI. The brain renin-angiotensin system and cardiovascular responses to stress: insights from transgenic rats with low brain angiotensinogen. J Appl Physiol (1985) 2012; 113:1929-36. [PMID: 22984245 DOI: 10.1152/japplphysiol.00569.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin system (RAS) has been identified as an attractive target for the treatment of stress-induced cardiovascular disorders. The effects of angiotensin (ANG) peptides during stress responses likely result from an integration of actions by circulating peptides and brain peptides derived from neuronal and glial sources. The present review focuses on the contribution of endogenous brain ANG peptides to pathways involved in cardiovascular responses to stressors. During a variety of forms of stress, neuronal pathways in forebrain areas containing ANG II or ANG-(1-7) are activated to stimulate descending angiotensinergic pathways that increase sympathetic outflow to increase blood pressure. We provide evidence that glia-derived ANG peptides influence brain AT(1) receptors. This appears to result in modulation of the responsiveness of the neuronal pathways activated during stressors that elevate circulating ANG peptides to activate brain pathways involving descending hypothalamic projections. It is well established that increased cardiovascular reactivity to stress is a significant predictor of hypertension and other cardiovascular diseases. This review highlights the importance of understanding the impact of RAS components from the circulation, neurons, and glia on the integration of cardiovascular responses to stressors.
Collapse
Affiliation(s)
- Amy C Arnold
- The Hypertension & Vascular Research Center and the Departments of General Surgery and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | | | | | | | |
Collapse
|
29
|
Nautiyal M, Katakam PVG, Busija DW, Gallagher PE, Tallant EA, Chappell MC, Diz DI. Differences in oxidative stress status and expression of MKP-1 in dorsal medulla of transgenic rats with altered brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2012; 303:R799-806. [PMID: 22914751 DOI: 10.1152/ajpregu.00566.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ANG II-stimulated production of reactive oxygen species (ROS) through NADPH oxidase is suggested to activate MAPK pathways, which are implicated in neurally mediated pressor effects of ANG II. Emerging evidence suggests that ANG-(1-7) up regulates MAPK phosphatases to reduce MAPK signaling and attenuate actions of ANG II. Whether angiotensin peptides participate in long-term regulation of these systems in the brain is not known. Therefore, we determined tissue and mitochondrial ROS, as well as expression and activity of MAPK phosphatase-1 (MKP-1) in brain dorsal medullary tissue of hypertensive transgenic (mRen2)27 rats exhibiting higher ANG II/ANG-(1-7) tone or hypotensive transgenic rats with targeted decreased glial expression of angiotensinogen, ASrAOGEN (AS) exhibiting lower ANG II/ANG-(1-7) tone compared with normotensive Sprague-Dawley (SD) rats that serve as the control strain. Transgenic (mRen2)27 rats showed higher medullary tissue NADPH oxidase activity and dihydroethidium fluorescence in isolated mitochondria vs. SD or AS rats. Mitochondrial uncoupling protein 2 was lower in AS and unchanged in (mRen2)27 compared with SD rats. MKP-1 mRNA and protein expression were higher in AS and unchanged in (mRen2)27 compared with SD rats. AS rats also had lower phosphorylated ERK1/2 and JNK consistent with higher MKP-1 activity. Thus, an altered brain renin-angiotensin system influences oxidative stress status and regulates MKP-1 expression. However, there is a dissociation between these effects and the hemodynamic profiles. Higher ROS was associated with hypertension in (mRen2)27 and normal MKP-1, whereas the higher MKP-1 was associated with hypotension in AS, where ROS was normal relative to SD rats.
Collapse
Affiliation(s)
- Manisha Nautiyal
- The Hypertension and Vascular Research Center, Wake Forest Univ. School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1032, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Nalivaeva NN, Belyaev ND, Zhuravin IA, Turner AJ. The Alzheimer's amyloid-degrading peptidase, neprilysin: can we control it? Int J Alzheimers Dis 2012; 2012:383796. [PMID: 22900228 PMCID: PMC3412116 DOI: 10.1155/2012/383796] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/01/2012] [Indexed: 02/07/2023] Open
Abstract
The amyloid cascade hypothesis of Alzheimer's disease (AD) postulates that accumulation in the brain of amyloid β-peptide (Aβ) is the primary trigger for neuronal loss specific to this pathology. In healthy brain, Aβ levels are regulated by a dynamic equilibrium between Aβ release from the amyloid precursor protein (APP) and its removal by perivascular drainage or by amyloid-degrading enzymes (ADEs). During the last decade, the ADE family was fast growing, and currently it embraces more than 20 members. There are solid data supporting involvement of each of them in Aβ clearance but a zinc metallopeptidase neprilysin (NEP) is considered as a major ADE. NEP plays an important role in brain function due to its role in terminating neuropeptide signalling and its decrease during ageing or after such pathologies as hypoxia or ischemia contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP by the APP intracellular domain (AICD) opens new avenues for its therapeutic manipulation and raises hope for developing preventive strategies in AD. However, consideration needs to be given to the diverse physiological roles of NEP. This paper critically evaluates general biochemical and physiological functions of NEP and their therapeutic relevance.
Collapse
Affiliation(s)
- N. N. Nalivaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg 194223, Russia
| | - N. D. Belyaev
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - I. A. Zhuravin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg 194223, Russia
| | - A. J. Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
31
|
Raji IA, Mugabo P, Obikeze K. Effect of Tulbaghia violacea on the blood pressure and heart rate in male spontaneously hypertensive Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:98-106. [PMID: 22222281 DOI: 10.1016/j.jep.2011.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tulbaghia violacea Harv. (Alliaceae) is a small bulbous herb which belongs to the family Alliaceae, most commonly associated with onions and garlic. In South Africa, this herb has been traditionally used in the treatment of various ailments, including fever, colds, asthma, paralysis, hypertension and stomach problems. The aim of this study was to evaluate the effect of methanol leaf extracts (MLE) of Tulbaghia violacea on the blood pressure (BP) and heart rate (HR) in anaesthetized male spontaneously hypertensive rats; and to find out the mechanism(s) by which it acts. MATERIALS AND METHODS The MLE of Tulbaghia violacea (5-150mg/kg), angiotensin I human acetate salt hydrate (ang I, 3.1-100μg/kg), angiotensin II human (ang II, 3.1-50μg/kg), phenylephrine hydrochloride (phenylephrine, 0.01-0.16mg/kg) and dobutamine hydrochloride (dobutamine, 0.2-10.0μg/kg) were infused intravenously, while the BP and HR were measured via a pressure transducer connecting the femoral artery and the Powerlab. RESULTS Tulbaghia violacea significantly (p<0.01) reduced the systolic, diastolic, and mean arterial BP; and HR dose-dependently. Ang I, ang II, phenylephrine and dobutamine all increased the BP dose-dependently. The hypertensive effect of ang I and the HR-increasing effect of dobutamine were significantly (p<0.01) decreased by their co-infusion with Tulbaghia violacea (60mg/kg). However, the co-infusion of ang II or phenylephrine with Tulbaghia violacea (60mg/kg) did not produce any significant change in BP or HR when compared to the infusion of either agent alone in the same animal. CONCLUSIONS Tulbaghia violacea reduced BP and HR in the SHR. The reduction in BP may be due to actions of the MLE on the ang I converting enzyme (ACE) and β(1) adrenoceptors.
Collapse
Affiliation(s)
- Ismaila A Raji
- Discipline of Pharmacology, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa.
| | | | | |
Collapse
|
32
|
Murça TM, Almeida TCS, Raizada MK, Ferreira AJ. Chronic activation of endogenous angiotensin-converting enzyme 2 protects diabetic rats from cardiovascular autonomic dysfunction. Exp Physiol 2012; 97:699-709. [PMID: 22286369 DOI: 10.1113/expphysiol.2011.063461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we evaluated whether the activation of endogenous angiotensin-converting enzyme 2 (ACE2) would improve the cardiovascular autonomic dysfunction of diabetic rats. Ten days after induction of type 1 diabetes (streptozotocin, 50 mg kg(-1) i.v.), the rats were treated orally with 1-[(2-dimethylamino)ethylamino]-4-(hydroxymethyl)-7-[(4-methylphenyl) sulfonyl oxy]-9H-xanthene-9-one (XNT), a newly discovered ACE2 activator (1 mg kg(-1) day(-1)), or saline (equivalent volume) for 30 days. Autonomic cardiovascular parameters were evaluated in conscious animals, and an isolated heart preparation was used to analyse cardiac function. Diabetes induced a significant decrease in the baroreflex bradycardia sensitivity, as well as in the chemoreflex chronotropic response and parasympathetic tone. The XNT treatment improved these parameters by ≈ 76% [0.82 ± 0.09 versus 1.44 ± 0.17 Ratio between changes in pulse interval and changes in mean arterial pressure (ΔPI/ΔmmHg)], ∼85% (-57 ± 9 versus -105 ± 10 beats min(-1)) and ≈ 205% (22 ± 2 versus 66 ± 12 beats min(-1)), respectively. Also, XNT administration enhanced the bradycardia induced by the chemoreflex activation by v 74% in non-diabetic animals (-98 ± 16 versus -170 ± 9 Δbeats min(-1)). No significant changes were observed in the mean arterial pressure, baroreflex tachycardia sensitivity, chemoreflex pressor response and sympathetic tone among any of the groups. Furthermore, chronic XNT treatment ameliorated the cardiac function of diabetic animals. However, the coronary vasoconstriction observed in diabetic rats was unchanged by ACE2 activation. These findings indicate that XNT protects against the autonomic and cardiac dysfunction induced by diabetes. Thus, our results provide evidence for the viability and effectiveness of oral administration of an ACE2 activator for the treatment of the cardiovascular autonomic dysfunction caused by diabetes.
Collapse
Affiliation(s)
- Tatiane M Murça
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
33
|
Shaltout HA, Rose JC, Chappell MC, Diz DI. Angiotensin-(1-7) deficiency and baroreflex impairment precede the antenatal Betamethasone exposure-induced elevation in blood pressure. Hypertension 2012; 59:453-8. [PMID: 22215705 DOI: 10.1161/hypertensionaha.111.185876] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Betamethasone is administered to accelerate lung development and improve survival of premature infants but may be associated with hypertension later in life. In a sheep model of fetal programming resulting from exposure at day 80 of gestation to Betamethasone (Beta-exposed), adult sheep at 6 to 9 months or 1.8 years of age have elevated mean arterial pressure (MAP) and attenuated spontaneous baroreflex sensitivity (sBRS) for control of heart rate compared to age-matched controls associated with imbalances in angiotensin (Ang) II vs Ang-(1-7) tone. At 6 weeks of age, evoked BRS is already low in the Beta-exposed animals. In this study, we assessed the potential contribution of the renin-angiotensin system to the impaired sBRS. Female lambs (6 weeks old) with Beta exposure in utero had similar MAP to control lambs (78±2 vs 77±2 mm Hg, n=4-5 per group), but lower sBRS (8±1 vs 16±3 ms/mm Hg; P<0.05) and impaired heart rate variability. Peripheral AT1 receptor blockade using candesartan lowered MAP in both groups (≈10 mm Hg) and improved sBRS and heart rate variability in Beta-exposed lambs to a level similar to control. AT7 receptor blockade by infusion of D-ala Ang-(1-7) (700 ng/kg/min for 45 minutes) reduced sBRS 46%±10% in Beta-exposed vs in control lambs (P<0.15) and increased MAP in both groups (≈6±2 mm Hg). Our data reveal that Beta exposure impairs sBRS and heart rate variability at a time point preceding the elevation in MAP via mechanisms involving an imbalance in the Ang II/Ang-(1-7) ratio consistent with a progressive loss in Ang-(1-7) function.
Collapse
Affiliation(s)
- Hossam A Shaltout
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Hanes Building, 6th floor, Medical Center Boulevard, Winston-Salem, NC 27157-1032, USA.
| | | | | | | |
Collapse
|
34
|
Isa K, Arnold AC, Westwood BM, Chappell MC, Diz DI. Angiotensin-converting enzyme inhibition, but not AT(1) receptor blockade, in the solitary tract nucleus improves baroreflex sensitivity in anesthetized transgenic hypertensive (mRen2)27 rats. Hypertens Res 2011; 34:1257-62. [PMID: 21937997 PMCID: PMC4160904 DOI: 10.1038/hr.2011.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transgenic hypertensive (mRen2)27 rats overexpress the murine Ren2 gene and have impaired baroreflex sensitivity (BRS) for control of the heart rate. Removal of endogenous angiotensin (Ang)-(1-7) tone using a receptor blocker does not further lower BRS. Therefore, we assessed whether blockade of Ang II with a receptor antagonist or combined reduction in Ang II and restoration of endogenous Ang-(1-7) levels with Ang-converting enzyme (ACE) inhibition will improve BRS in these animals. Bilateral solitary tract nucleus (nTS) microinjections of the AT(1) receptor blocker, candesartan (CAN, 24 pmol in 120 nl, n=9), or a peptidic ACE inhibitor, bradykinin (BK) potentiating nonapeptide (Pyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro; BPP9α, 9 nmol in 60 nl, n=12), in anesthetized male (mRen2)27 rats (15-25 weeks of age) show that AT(1) receptor blockade had no significant effect on BRS, whereas microinjection of BPP9α improved BRS over 60-120 min. To determine whether Ang-(1-7) or BK contribute to the increase in BRS, separate experiments using the Ang-(1-7) receptor antagonist D-Ala(7)-Ang-(1-7) or the BK antagonist HOE-140 showed that only the Ang-(1-7) receptor blocker completely reversed the BRS improvement. Thus, acute AT(1) blockade is unable to reverse the effects of long-term Ang II overexpression on BRS, whereas ACE inhibition restores BRS over this same time frame. As the BPP9α potentiation of BK actions is a rapid phenomenon, the likely mechanism for the observed delayed increase in BRS is through ACE inhibition and elevation of endogenous Ang-(1-7).
Collapse
Affiliation(s)
- Katsunori Isa
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | | | | | |
Collapse
|
35
|
Logan EM, Aileru AA, Shaltout HA, Averill DB, Diz DI. The functional role of PI3K in maintenance of blood pressure and baroreflex suppression in (mRen2)27 and mRen2.Lewis rat. J Cardiovasc Pharmacol 2011; 58:367-73. [PMID: 21697727 PMCID: PMC3188661 DOI: 10.1097/fjc.0b013e31822555ca] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathway in brain of spontaneously hypertensive rats, but not Wistar-Kyoto (WKY) rats, contributes to elevated mean arterial pressure (MAP). The role of PI3K in the regulation of blood pressure or autonomic function in the nucleus tractus solitarii (NTS) is yet to be established in other Ang II-dependent models of hypertension. Thus, we microinjected PI3K inhibitors, wortmannin or LY294002, into the NTS, and measured MAP, baroreflex sensitivity (BRS) for heart rate (HR) control, and HR variability (HRV) in mRen2.Lewis congenic and (mRen2)27 transgenic rats. Bilateral NTS microinjections of wortmannin (100 nmol/L; 50 nL) reduced MAP in (mRen2)27 and mRen2.Lewis rats (33 ± 5 mm Hg, n = 7, and 32 ± 6 mm Hg, n = 9, respectively) for approximately 90 minutes. Spectral and sequence analysis showed improvements in spontaneous BRS and HRV (50%-100%) after treatment in both hypertensive strains. Injections of wortmannin into NTS of Hannover Sprague-Dawley or Lewis control rats failed to alter MAP, BRS, or HRV. In mRen2.Lewis, but not in control Lewis rats, LY294002 (50 μmole/L) reduced MAP and increased BRS and HRV similar to wortmannin. Thus, the pharmacologic blockade of the PI3K signaling pathway in NTS reveals an important contribution to resting MAP and BRS in rats with overexpression of the Ren2 gene.
Collapse
Affiliation(s)
- Exazevia M Logan
- Department of Life Sciences and Biomedical Research Infrastructure Center, Winston-Salem State University, Winston-Salem, NC, USA
| | | | | | | | | |
Collapse
|
36
|
Kar S, Gao L, Belatti DA, Curry PL, Zucker IH. Central angiotensin (1-7) enhances baroreflex gain in conscious rabbits with heart failure. Hypertension 2011; 58:627-34. [PMID: 21844487 DOI: 10.1161/hypertensionaha.111.177600] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In chronic heart failure (CHF), arterial baroreflex function is impaired, in part, by activation of the central renin-angiotensin system. A metabolite of angiotensin (Ang) II, Ang-(1-7), has been shown to exhibit cardiovascular effects that are in opposition to that of Ang II. However, the action of Ang-(1-7) on sympathetic outflow and baroreflex function is not well understood, especially in CHF. The aim of this study was to determine the effect of intracerebroventricular infusion of Ang-(1-7) on baroreflex control of heart rate and renal sympathetic nerve activity in conscious rabbits with CHF. We hypothesized that central Ang-(1-7) would improve baroreflex function in CHF. Ang-(1-7) (2 nmol/1 μL per hour) or artificial cerebrospinal fluid (1 μL per hour) was infused by an osmotic minipump for 4 days in sham and pacing-induced CHF rabbits (n=3 to 6 per group). Ang-(1-7) treatment had no effects in sham rabbits but reduced heart rate and increased baroreflex gain (7.4±1.5 versus 2.5±0.4 bpm/mm Hg; P<0.05) in CHF rabbits. The Ang-(1-7) antagonist A779 (8 nmol/1 μL per hour) blocked the improvement in baroreflex gain in CHF. Baroreflex gain increased in CHF+Ang-(1-7) animals when only the vagus was allowed to modulate baroreflex control by acute treatment with the β-1 antagonist metoprolol, indicating increased vagal tone. Baseline renal sympathetic nerve activity was significantly lower, and baroreflex control of renal sympathetic nerve activity was enhanced in CHF rabbits receiving Ang-(1-7). These data suggest that augmentation of central Ang-(1-7) inhibits sympathetic outflow and increases vagal outflow in CHF, thus contributing to enhanced baroreflex gain in this disease state.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | | | |
Collapse
|
37
|
Johnson MS, DeMarco VG, Heesch CM, Whaley-Connell AT, Schneider RI, Rehmer NT, Tilmon RD, Ferrario CM, Sowers JR. Sex differences in baroreflex sensitivity, heart rate variability, and end organ damage in the TGR(mRen2)27 rat. Am J Physiol Heart Circ Physiol 2011; 301:H1540-50. [PMID: 21821781 DOI: 10.1152/ajpheart.00593.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this investigation was to evaluate sex differences in baroreflex and heart rate variability (HRV) dysfunction and indexes of end-organ damage in the TG(mRen2)27 (Ren2) rat, a model of renin overexpression and tissue renin-angiotensin-aldosterone system overactivation. Blood pressure (via telemetric monitoring), blood pressure variability [BPV; SD of systolic blood pressure (SBP)], spontaneous baroreflex sensitivity, HRV [HRV Triangular Index (HRV-TI), standard deviation of the average NN interval (SDNN), low and high frequency power (LF and HF, respectively), and Poincaré plot analysis (SD1, SD2)], and cardiovascular function (pressure-volume loop analysis and proteinuria) were evaluated in male and female 10-wk-old Ren2 and Sprague Dawley rats. The severity of hypertension was greater in Ren2 males (R2-M) than in Ren2 females (R2-F). Increased BPV, suppression of baroreflex gain, decreased HRV, and associated end-organ damage manifested as cardiac dysfunction, myocardial remodeling, elevated proteinuria, and tissue oxidative stress were more pronounced in R2-M compared with R2-F. During the dark cycle, HRV-TI and SDNN were negatively correlated with SBP within R2-M and positively correlated within R2-F; within R2-M, these indexes were also negatively correlated with end-organ damage [left ventricular hypertrophy (LVH)]. Furthermore, within R2-M only, LVH was strongly correlated with indexes of HRV representing predominantly vagal (HF, SD1), but not sympathetic (LF, SD2), variability. These data demonstrated relative protection in females from autonomic dysfunction and end-organ damage associated with elevated blood pressure in the Ren2 model of hypertension.
Collapse
Affiliation(s)
- Megan S Johnson
- Department of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Diz DI, Arnold AC, Nautiyal M, Isa K, Shaltout HA, Tallant EA. Angiotensin peptides and central autonomic regulation. Curr Opin Pharmacol 2011; 11:131-7. [PMID: 21367658 PMCID: PMC3120135 DOI: 10.1016/j.coph.2011.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
Abstract
Aging, hypertension, and fetal-programmed cardiovascular disease are associated with a functional deficiency of angiotensin (Ang)-(1-7) in the brain dorsomedial medulla. The resulting unrestrained activity of Ang II in brainstem regions negatively impacts resting mean arterial pressure, sympathovagal balance, and baroreflex sensitivity for control of heart rate. The differential effects of Ang II and Ang-(1-7) may be related to the cellular sources of these peptides as well as different precursor pathways. Long-term alterations of the brain renin-angiotensin system may influence signaling pathways including phosphoinositol-3-kinase and mitogen-activated protein kinase and their downstream mediators, and as a consequence may influence metabolic function. Differential regulation of signaling pathways in aging and hypertension by Ang II versus Ang-(1-7) may contribute to the autonomic dysfunction accompanying these states.
Collapse
Affiliation(s)
- Debra I Diz
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Arnold AC, Shaltout HA, Gilliam-Davis S, Kock ND, Diz DI. Autonomic control of the heart is altered in Sprague-Dawley rats with spontaneous hydronephrosis. Am J Physiol Heart Circ Physiol 2011; 300:H2206-13. [PMID: 21460193 DOI: 10.1152/ajpheart.01263.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The renal medulla plays an important role in cardiovascular regulation, through interactions with the autonomic nervous system. Hydronephrosis is characterized by substantial loss of renal medullary tissue. However, whether alterations in autonomic control of the heart are observed in this condition is unknown. Thus we assessed resting hemodynamics and baroreflex sensitivity (BRS) for control of heart rate in urethane/chloralose-anesthetized Sprague-Dawley rats with normal or hydronephrotic kidneys. While resting arterial pressure was similar, heart rate was higher in rats with hydronephrosis (290 ± 12 normal vs. 344 ± 11 mild/moderate vs. 355 ± 13 beats/min severe; P < 0.05). The evoked BRS to increases, but not decreases, in pressure was lower in hydronephrotic rats (1.06 ± 0.06 normal vs. 0.72 ± 0.10 mild/moderate vs. 0.63 ± 0.07 ms/mmHg severe; P < 0.05). Spectral analysis methods confirmed reduced parasympathetic function in hydronephrosis, with no differences in measures of indirect sympathetic activity among conditions. As a secondary aim, we investigated whether autonomic dysfunction in hydronephrosis is associated with activation of the renin-angiotensin system (RAS). There were no differences in circulating angiotensin peptides among conditions, suggesting that the impaired autonomic function in hydronephrosis is independent of peripheral RAS activation. A possible site for angiotensin II-mediated BRS impairment is the solitary tract nucleus (NTS). In normal and mild/moderate hydronephrotic rats, NTS administration of the angiotensin II type 1 receptor antagonist candesartan significantly improved the BRS, suggesting that angiotensin II provides tonic suppression to the baroreflex. In contrast, angiotensin II blockade produced no significant effect in severe hydronephrosis, indicating that at least within the NTS baroreflex suppression in these animals is independent of angiotensin II.
Collapse
Affiliation(s)
- Amy C Arnold
- The Hypertension & Vascular Research Center, Wake Forest Univ. School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1032, USA.
| | | | | | | | | |
Collapse
|
40
|
de Moura MM, dos Santos RAS, Campagnole-Santos MJ, Todiras M, Bader M, Alenina N, Haibara AS. Altered cardiovascular reflexes responses in conscious Angiotensin-(1-7) receptor Mas-knockout mice. Peptides 2010; 31:1934-9. [PMID: 20603170 DOI: 10.1016/j.peptides.2010.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 11/21/2022]
Abstract
This study evaluated the physiological importance of Angiotensin-(1-7) receptor Mas on reflex control of circulation. Experiments were performed in male Mas-knockout (Mas-KO) and Wild Type (WT) conscious mice (12-20 wk of age). Baroreceptor reflex was evaluated by the bradycardic response induced by phenylephrine (0.25 μg/5 μl, i.v.). Bezold-Jarisch reflex was evaluated by phenylbiguanide (0.5 μg/5 μl, i.v.) and chemoreflex by potassium cyanide (2.5 μg/5 μl, i.v.). Baseline mean arterial pressure was higher in Mas-KO (n=14) as compared with WT mice (n=18) (118±1 mmHg vs. 109±2 mmHg); however, heart rate was similar in both strains (615±30 bpm vs. 648±13 bpm). Baroreflex bradycardia was lower (0.78±0.44 ms/mmHg vs. 1.30±0.14 ms/mmHg) in Mas-KO compared with WT mice. The depressor (-17±5 mmHg vs. -45±6 mmHg) and bradycardic (-212±36 bpm vs. -391±29 bpm) components of the Bezold-Jarisch reflex were also lower in Mas-KO mice. In addition, chemoreflex pressor response (+20±3 mmHg vs. +12±0.8 mmHg) and bradycardic response (-250±74 bpm vs. -52±26 bpm) were significantly higher in Mas-KO. These results further advances previous studies by showing that the lack of Mas receptor induced important imbalance in the neural control of blood pressure, altering not only the baroreflex but also the chemo- and Bezold-Jarisch reflexes.
Collapse
|
41
|
Arnold AC, Isa K, Shaltout HA, Nautiyal M, Ferrario CM, Chappell MC, Diz DI. Angiotensin-(1-12) requires angiotensin converting enzyme and AT1 receptors for cardiovascular actions within the solitary tract nucleus. Am J Physiol Heart Circ Physiol 2010; 299:H763-71. [PMID: 20562338 DOI: 10.1152/ajpheart.00345.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The novel peptide, angiotensin (ANG)-(1-12), elicits a systemic pressor response and vasoconstriction. These effects are blocked by ANG converting enzyme (ACE) inhibitors or AT(1) receptor antagonists, suggesting a role as an ANG II precursor. However, ANG-(1-12) can serve as a substrate for either ANG II or ANG-(1-7) formation, depending on the local tissue enzymes. Although levels of ANG-(1-12) are higher than ANG I or ANG II in brain, the role and processing of this peptide for autonomic control of heart rate (HR) has yet to be considered. Thus we examined the effects of nucleus tractus solitarii (NTS) microinjection of ANG-(1-12) on baroreflex sensitivity for control of HR, resting arterial pressure (AP) and HR, and indexes of sympathovagal balance in urethane/chloralose anesthetized Sprague-Dawley rats. NTS injection of ANG-(1-12) (144 fmol/120 nl) significantly impaired the evoked baroreflex sensitivity to increases in AP [n = 7; 1.06 +/- 0.06 baseline vs. 0.44 +/- 0.07 ms/mmHg after ANG-(1-12)], reduced the vagal component of spontaneous baroreflex sensitivity and HR variability, and elicited a transient depressor response (P < 0.05). NTS pretreatment with an AT(1) receptor antagonist or ACE inhibitor prevented ANG-(1-12)-mediated autonomic and depressor responses. ANG-(1-12) immunostaining was observed in cells within the NTS of Sprague-Dawley rats, providing a potential intracellular source for the peptide. However, acute NTS injection of an ANG-(1-12) antibody did not alter resting baroreflex sensitivity, AP, or HR in these animals. Collectively, these findings suggest that exogenous ANG-(1-12) is processed to ANG II for cardiovascular actions at AT(1) receptors within the NTS. The lack of acute endogenous ANG-(1-12) tone for cardiovascular regulation in Sprague-Dawley rats contrasts with chronic immunoneutralization in hypertensive rats, suggesting that ANG-(1-12) may be activated only under hypertensive conditions.
Collapse
Affiliation(s)
- Amy C Arnold
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1032, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Kar S, Gao L, Zucker IH. Exercise training normalizes ACE and ACE2 in the brain of rabbits with pacing-induced heart failure. J Appl Physiol (1985) 2010; 108:923-32. [PMID: 20093667 DOI: 10.1152/japplphysiol.00840.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exercise training (EX) normalizes sympathetic outflow and plasma ANG II in chronic heart failure (CHF). The central mechanisms by which EX reduces this sympathoexcitatory state are unclear, but EX may alter components of the brain renin-angiotensin system (RAS). Angiotensin-converting enzyme (ACE) may mediate an increase in sympathetic nerve activity (SNA). ACE2 metabolizes ANG II to ANG-(1-7), which may have antagonistic effects to ANG II. Little is known concerning the regulation of ACE and ACE2 in the brain and the effect of EX on these enzymes, especially in the CHF state. This study aimed to investigate the effects of EX on the regulation of ACE and ACE2 in the brain in an animal model of CHF. We hypothesized that the ratio of ACE to ACE2 would increase in CHF and would be reduced by EX. Experiments were performed on New Zealand White rabbits divided into the following groups: sham, sham + EX, CHF, and CHF + EX (n = 5 rabbits/group). The cortex, cerebellum, medulla, hypothalamus, paraventricular nucleus (PVN), nucleus tractus solitarii (NTS), and rostral ventrolateral medulla (RVLM) were analyzed. ACE protein and mRNA expression in the cerebellum, medulla, hypothalamus, PVN, NTS, and RVLM were significantly upregulated in CHF rabbits (ratio of ACE to GAPDH: 0.3 +/- 0.03 to 0.8 +/- 0.10 in the RVLM, P < 0.05). EX normalized this upregulation compared with CHF (0.8 +/- 0.1 to 0.4 +/- 0.1 in the RVLM). ACE2 protein and mRNA expression decreased in CHF (ratio of ACE2 to GAPDH: 0.3 +/- 0.02 to 0.1 +/- 0.01 in the RVLM). EX increased ACE2 expression compared with CHF (0.1 +/- 0.01 to 0.8 +/- 0.1 in the RVLM). ACE2 was present in the cytoplasm of neurons and ACE in endothelial cells. These data suggest that the activation of the central RAS in animals with CHF involves an imbalance of ACE and ACE2 in regions of the brain that regulate autonomic function and that EX can reverse this imbalance.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5850, USA
| | | | | |
Collapse
|
43
|
Garcia-Espinosa MA, Shaltout HA, Olson J, Westwood BM, Robbins ME, Link K, Diz DI. Proton magnetic resonance spectroscopy detection of neurotransmitters in dorsomedial medulla correlate with spontaneous baroreceptor reflex function. Hypertension 2010; 55:487-93. [PMID: 20065146 DOI: 10.1161/hypertensionaha.109.145722] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Control of heart rate variability via modulation of sympathovagal balance is a key function of nucleus tractus solitarii and the dorsal motor nucleus of the vagus localized in the dorsomedial medulla oblongata. Normal blood pressure regulation involves precise balance of glutamate (Glu)-glutamine-gamma-aminobutyric acid transmitter systems, and angiotensin II modulates these transmitters to produce tonic suppression of reflex function. It is not known, however, whether other brain transmitters/metabolites are indicators of baroreflex function. This study establishes the concept that comprehensive baseline transmitter/metabolite profiles obtained using in vivo (1)H magnetic resonance spectroscopy in rats with well-characterized differences in resting blood pressure and baroreflex function can be used as indices of autonomic balance or baroreflex sensitivity. Transgenic rats with over-expression of renin [m(Ren2)27] or under-expression of glial-angiotensinogen (ASrAogen) were compared with Sprague-Dawley rats. Glu concentration in the dorsal medulla is significantly higher in ASrAogen rats compared with either Sprague-Dawley or (mRen2)27 rats. Glu levels and the ratio of Glu:glutamine correlated positively with indices of higher vagal tone consistent with the importance of these neurotransmitters in baroreflex function. Interestingly, the levels of choline-containing metabolites showed a significant positive correlation with spontaneous baroreflex sensitivity and a negative correlation with sympathetic tone. Thus, we demonstrate the concept that noninvasive assessment of neurochemical biomarkers may be used as an index of baroreflex sensitivity.
Collapse
Affiliation(s)
- Maria A Garcia-Espinosa
- Department of Radiation Oncology, Wake Forest University School of Medicine, Hypertension and Vascular Research Center, Winston-Salem, NC 27157-1032, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ferrario CM, Ahmad S, Joyner J, Varagic J. Advances in the renin angiotensin system focus on angiotensin-converting enzyme 2 and angiotensin-(1-7). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:197-233. [PMID: 20933203 PMCID: PMC5863743 DOI: 10.1016/s1054-3589(10)59007-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The contribution of the renin angiotensin system to physiology and pathology is undergoing a rapid reconsideration of its mechanisms from emerging new concepts implicating angiotensin-converting enzyme 2 and angiotensin-(1-7) as new elements negatively influencing the vasoconstrictor, trophic, and pro-inflammatory actions of angiotensin II. This component of the system acts to oppose the vasoconstrictor and proliferative effects on angiotensin II through signaling mechanisms mediated by the mas receptor. In addition, a reduced expression of the vasodepressor axis composed by angiotensin-converting enzyme 2 and angiotensin-(1-7) may contribute to the expression of essential hypertension, the remodeling of heart and renal function associated with this disease, and even the physiology of pregnancy and the development of eclampsia.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | |
Collapse
|
45
|
Gayen JR, Gu Y, O'Connor DT, Mahata SK. Global disturbances in autonomic function yield cardiovascular instability and hypertension in the chromogranin a null mouse. Endocrinology 2009; 150:5027-35. [PMID: 19819970 PMCID: PMC2775982 DOI: 10.1210/en.2009-0429] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We reported previously that chromogranin A (Chga) knockout (KO) mice are hypertensive and hyperadrenergic. Here we sought to determine the basis of such alterations by probing physiological, biochemical, and pharmacological responses to perturbations of the autonomic nervous system. In the conscious state, KO mice had substantially elevated basal high blood pressure (BP) and heart rate (HR); immobilization stress caused increments in systolic BP and HR in both wild-type (WT) and KO mice, with higher maxima but blunted increments in the KO state. Catestatin (CST; CHGA(352-372)) selectively diminished stress-induced increments in BP and HR in KO mice, implicating CST as an antihypertensive peptide, even in stressful conditions. Heightened plasma catecholamines in KO mice returned to WT level after CST. Stress caused further increments in catecholamines in WT mice but no change in KO mice. KO mice displayed diminished baroreflex sensitivity in response to either phenylephrine or sodium nitroprusside, accounting for exaggerated pressor and depressor responses to these compounds; baroreceptor function was normalized by CST. To probe the relative roles of endogenous/basal sympathetic vs. parasympathetic tone in control of BP and HR, we used the muscarinic-cholinergic antagonist atropine or the beta-adrenergic antagonist propranolol; HR and BP responses to each antagonist were exaggerated in KO animals. We conclude that ablation of Chga expression results in global disturbances in autonomic function, both sympathetic and parasympathetic, that can be abrogated (or rescued), at least in part, by replacement of CST. The results point to mechanisms whereby CHGA and its CST fragment act to control cardiovascular homeostasis.
Collapse
Affiliation(s)
- Jiaur R Gayen
- Department of Medicine (0838), University of California, San Diego, San Diego, School of Medicine and Veterans Affairs San Diego Healthcare System, 9500 Gilman Drive, La Jolla, California 92093-0838, USA
| | | | | | | |
Collapse
|
46
|
Cangussu LM, de Castro UGM, do Pilar Machado R, Silva ME, Ferreira PM, dos Santos RAS, Campagnole-Santos MJ, Alzamora AC. Angiotensin-(1-7) antagonist, A-779, microinjection into the caudal ventrolateral medulla of renovascular hypertensive rats restores baroreflex bradycardia. Peptides 2009; 30:1921-7. [PMID: 19577603 DOI: 10.1016/j.peptides.2009.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/24/2009] [Accepted: 06/24/2009] [Indexed: 12/17/2022]
Abstract
In the present study we evaluated the effect of caudal ventrolateral medulla (CVLM) microinjection of the main angiotensin (Ang) peptides, Ang II and Ang-(1-7), and their selective antagonists on baseline arterial pressure (AP) and on baroreceptor-mediated bradycardia in renovascular hypertensive rats (2K1C). Microinjection of Ang II and Ang-(1-7) into the CVLM of 2K1C rats produced similar decrease in AP as observed in Sham rats. In both Sham and 2K1C, the hypotensive effect of Ang II and Ang-(1-7) at the CVLM was blocked, for up to 30 min, by previous CVLM microinjection of the Ang II AT1 receptor antagonist, Losartan, and Ang-(1-7) Mas antagonist, A-779, respectively. As expected, the baroreflex bradycardia was lower in 2K1C in comparison to Sham rats. CVLM microinjection of A-779 improved the sensitivity of baroreflex bradycardia in 2K1C hypertensive rats. In contrast, Losartan had no effect on the baroreflex bradycardia in either 2K1C or Sham rats. These results suggest that Ang-(1-7) at the CVLM may contribute to the low sensitivity of the baroreflex control of heart rate in renovascular hypertensive rats.
Collapse
Affiliation(s)
- Luiza Michelle Cangussu
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Arnold AC, Shaltout HA, Gallagher PE, Diz DI. Leptin impairs cardiovagal baroreflex function at the level of the solitary tract nucleus. Hypertension 2009; 54:1001-8. [PMID: 19770402 DOI: 10.1161/hypertensionaha.109.138065] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circulating leptin is elevated in some forms of obesity-related hypertension, associated with impaired baroreflex function. Leptin receptors are present on vagal afferent fibers and neurons within the solitary tract nucleus, providing an anatomic distribution consistent with baroreflex modulation. Although solitary tract nucleus microinjection of 144 fmol/60 nL of leptin had no significant effect on baroreflex sensitivity for control of the heart rate in urethane/chloralose-anesthetized Sprague-Dawley rats, 500 fmol of leptin impaired baroreflex sensitivity for bradycardia in response to increases in pressure (1.15+/-0.04 versus 0.52+/-0.12 ms/mm Hg; P<0.01). Transgenic ASrAOGEN rats with low brain angiotensinogen have an upregulation of the leptin receptor and p85 alpha mRNA in the dorsal medulla relative to Sprague-Dawley rats. Consistent with these observations, the response to leptin was enhanced in ASrAOGEN rats, because both the 144-fmol (1.46+/-0.08 versus 0.75+/-0.10 ms/mm Hg; P<0.001) and 500-fmol (1.36+/-0.32 versus 0.44+/-0.06 ms/mm Hg; P<0.05) leptin microinjections impaired baroreflex sensitivity. At these doses, leptin microinjection had no effect on resting pressure, heart rate, or the tachycardic response to decreases in pressure in Sprague-Dawley or ASrAOGEN rats. Thus, exogenous leptin at sites within the solitary tract nucleus impairs the baroreflex sensitivity for bradycardia induced by increases in arterial pressure, consistent with a permissive role in mediating increases in arterial pressure. Baroreflex inhibition was enhanced in animals with evidence of increased leptin receptor and relevant signaling pathway mRNA.
Collapse
Affiliation(s)
- Amy C Arnold
- Hypertension and Vascular Research Center and Physiology and Pharmacology Department, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | | | |
Collapse
|
48
|
Pulgar VM, Hong JKS, Jessup JA, Massmann AG, Diz DI, Figueroa JP. Mild chronic hypoxemia modifies expression of brain stem angiotensin peptide receptors and reflex responses in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2009; 297:R446-52. [PMID: 19515988 DOI: 10.1152/ajpregu.00023.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effects of chronic mild hypoxemia on the binding of angiotensin receptors in selected brain stem nuclei and reflex responses were studied in fetal sheep. Fetal and maternal catheters were placed at 120 days' gestation, and animals received intratracheal maternal administration of nitrogen (n = 16) or compressed air in controls (n = 19). Nitrogen infusion was adjusted to reduce fetal brachial artery PO(2) by 25% during 5 days. Spontaneous baroreflex sensitivity and spectral analysis of the pulse interval were analyzed during the 5 days hypoxemia period using 90 min of daily recording. Brains of control and hypoxemic animals were collected, and brain stem angiotensin receptor binding was studied by in vitro autoradiography at 130 days of gestation. After 5 days of hypoxemia, some animals in each group were submitted to one complete umbilical cord occlusion during 5 min. [(125)I]sarthran binding showed that chronic mild hypoxemia significantly increases angiotensin type 1 receptor, angiotensin type 2 receptor, and ANG-(1-7) angiotensin receptor binding sites in the nucleus tractus solitarius and dorsal motor nucleus of the vagus (P < 0.05). Hypoxemia induced lower baroreflex sensitivity and a higher low frequency-to-high frequency ratio in the fetus, consistent with a shift from vagal to sympathetic autonomic cardiac regulation. Cord occlusion to elicit a chemoreflex response induced a greater bradycardic response in hypoxemic fetuses (slope of the initial fall in heart rate; 11.3 +/- 1.9 vs. 6.4 +/- 1.2 beats x min(-1) x s(-1), P < 0.05). In summary, chronic mild hypoxemia increased binding of angiotensin receptors in brain stem nuclei, decreased spontaneous baroreflex gain, and increased chemoreflex responses to asphyxia in the fetus. These results suggest hypoxemia-induced alterations in brain stem mechanisms for cardiovascular control.
Collapse
Affiliation(s)
- Victor M Pulgar
- Dept. of Obstetrics and Gynecology, Wake Forest Univ. School of Medicine, Winston Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|