1
|
Sallam MY, El-Gowilly SM, El-Mas MM. Central α7 and α4β2 nicotinic acetylcholine receptors offset arterial baroreceptor dysfunction in endotoxic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1587-1598. [PMID: 36100757 DOI: 10.1007/s00210-022-02289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Cardiac autonomic neuropathy is a prominent feature of endotoxemia. Given the defensive role of the cholinergic pathway in inflammation, we assessed the roles of central homomeric α7 and heteromeric α4β2 nAChRs in arterial baroreceptor dysfunction caused by endotoxemia in rats. Endotoxemia was induced by i.v. administration of lipopolysaccharides (LPS, 10 mg/kg), and baroreflex activity was measured by the vasoactive method, which assesses reflex chronotropic responses to increments (phenylephrine, PE) or decrements (sodium nitroprusside, SNP) in blood pressure. Shifts caused by LPS in PE/SNP baroreflex curves and associated decreases in baroreflex sensitivity (BRS) were dose-dependently reversed by nicotine (25-100 μg/kg, i.v.). The nicotine effect disappeared after intracisternal administration of methyllycaconitine (MLA) or dihydro-β-erythroidine (DHβE), selective blockers of α7 and α4β2 receptors, respectively. The advantageous effect of nicotine on BRSPE was replicated in rats treated with PHA-543613 (α7-nAChR agonist) or 5-iodo-A-85380 (5IA, α4β2-nAChRs agonist) in dose-dependent fashions. Conversely, the depressed BRSSNP of endotoxic rats was improved after combined, but not individual, treatments with PHA and 5IA. Central α7 and α4β2 nAChR activation underlies the nicotine counteraction of arterial baroreflex dysfunction induced by endotoxemia. Moreover, the contribution of these receptors depends on the nature of the reflex chronotropic response (bradycardia vs. tachycardia).
Collapse
Affiliation(s)
- Marwa Y Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt.
- Department of Pharmacology and Toxicology, College of Medicine, Health Sciences Center, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
2
|
Renal Protective Effects of Sparstolonin B in a Mouse Model of Sepsis. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Lee BS, Yang S, Lee C, Ku SK, Bae JS. Renal protective effects of vicenin-2 and scolymoside in a mouse model of sepsis. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Sumin Yang
- Kyungpook National University, Republic of Korea
| | - Changhun Lee
- Kyungpook National University, Republic of Korea
| | | | - Jong-Sup Bae
- Kyungpook National University, Republic of Korea
| |
Collapse
|
4
|
Baradaran Rahim V, Khammar MT, Rakhshandeh H, Samzadeh-Kermani A, Hosseini A, Askari VR. Crocin protects cardiomyocytes against LPS-Induced inflammation. Pharmacol Rep 2019; 71:1228-1234. [PMID: 31670059 DOI: 10.1016/j.pharep.2019.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/23/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sepsis causes organ dysfunctions via elevation of oxidative stress and inflammation. Lipopolysaccharide (LPS) is the major surface molecule of most gram-negative bacteria and routinely used as a sepsis model in investigation studies. Crocin is an active compound of saffron which has different pharmacological properties such as anti-oxidant and anti-inflammatory. In this research, the protective effect of crocin was evaluated against LPS-induced toxicity in the embryonic cardiomyocyte cell line (H9c2). METHODS The cells were pre-treated with different concentration of crocin (10, 20 and 40 μM) for 24 h, and then LPS was added (10 μg/ml) for another 24 h. Afterward, the percentage of cell viability and the levels of inflammatory cytokines (TNF-α, PGE2, IL-1β, and IL-6), gene expression levels (TNF-α, COX-2, IL-1β, IL-6, and iNOS), and the level of nitric oxide (NO) and thiol were measured. RESULTS Our results showed that LPS reduced cell viability, increased the levels of cytokines, gene-expression, nitric oxide, and thiol. Crocin attenuated the LPS-induced toxicity in H9c2 cells via reducing the levels of inflammatory factors (TNF-α, PGE2, IL-1β, and IL-6, p < 0.001), gene expression (TNF-α, COX-2, IL-1β, IL-6, and iNOS, p < 0.001), and NO (p < 0.001), whereas increased the level of thiol content (p < 0.001). CONCLUSION The observed results revealed that crocin has preventive effects on the LPS induced sepsis and its cardiac toxicity in-vitro model. Probably, these findings are related to anti-inflammatory and anti-oxidant properties of crocin. However, performing further animal studies are necessary to support the therapeutic effects of crocin in septic shock cardiac dysfunction.
Collapse
Affiliation(s)
- Vafa Baradaran Rahim
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Khammar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Abstract
Zingerone (ZGR), a phenolic alkanone isolated from ginger, has been reported to possess pharmacological activities such as anti-inflammatory and anti-apoptotic effects. This study was initiated to determine whether ZGR could modulate renal functional damage in a mouse model of sepsis and to elucidate the underlying mechanisms. The potential of ZGR treatment to reduce renal damage induced by cecal ligation and puncture (CLP) surgery in mice was measured by assessment of serum creatinine, blood urea nitrogen (BUN), lipid peroxidation, total glutathione, glutathione peroxidase activity, catalase activity, and superoxide dismutase activity. Treatment with ZGR resulted in elevated plasma levels of BUN and creatinine, and of protein in urine in mice with CLP-induced renal damage. Moreover, ZGR inhibited nuclear factor-κB activation and reduced the induction of nitric oxide synthase and excessive production of nitric acid. ZGR treatment also reduced the plasma levels of interleukin-6 and tumor necrosis factor-α, reduced lethality due to CLP-induced sepsis, increased lipid peroxidation, and markedly enhanced the antioxidant defense system by restoring the levels of superoxide dismutase, glutathione peroxidase, and catalase in kidney tissues. Our study showed renal suppressive effects of zingerone in a mouse model of sepsis, suggesting that ZGR protects mice against sepsis-triggered renal injury.
Collapse
Affiliation(s)
- Bong-Seon Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| | - Changhun Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| | - Sumin Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
6
|
Lee W, Jeong GS, Baek MC, Ku SK, Bae JS. Renal protective effects of aloin in a mouse model of sepsis. Food Chem Toxicol 2019; 132:110651. [PMID: 31254592 DOI: 10.1016/j.fct.2019.110651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023]
Abstract
Aloin is the major anthraquinone glycoside obtained from the Aloe species and exhibits anti-inflammatory and anti-oxidative activities. However, the renal protective effects of aloin and underlying molecular mechanism remain unclear. This study was initiated to determine whether aloin could modulate renal functional damage in a mouse model of sepsis and to elucidate the underlying mechanisms. The potential of aloin treatment to reduce renal damage induced by cecal ligation and puncture (CLP) surgery in mice was measured by assessment of serum creatinine, blood urea nitrogen (BUN), lipid peroxidation, total glutathione, glutathione peroxidase activity, catalase activity, and superoxide dismutase activity. Post-treatment with aloin resulted in a significant reduction in the deleterious renal functions by CLP, such as elevated BUN, creatinine, and urine protein. Moreover, aloin inhibited nuclear factor-κB activation and reduced the induction of nitric oxide synthase and excessive production of nitric acid. Aloin treatment also reduced the plasma levels of interleukin-6 and tumor necrosis factor-α, reduced lethality due to CLP-induced sepsis, increased lipid peroxidation, and markedly enhanced the antioxidant defense system by restoring the levels of superoxide dismutase, glutathione peroxidase, and catalase in kidney tissues. Our study suggested that aloin protects mice against sepsis-triggered renal injury.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan-si, 38610, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
7
|
Lee BS, Lee C, Yang S, Ku SK, Bae JS. Renal protective effects of zingerone in a mouse model of sepsis. BMB Rep 2019; 52:271-276. [PMID: 30158024 PMCID: PMC6507846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 10/12/2023] Open
Abstract
Zingerone (ZGR), a phenolic alkanone isolated from ginger, has been reported to possess pharmacological activities such as anti-inflammatory and anti-apoptotic effects. This study was initiated to determine whether ZGR could modulate renal functional damage in a mouse model of sepsis and to elucidate the underlying mechanisms. The potential of ZGR treatment to reduce renal damage induced by cecal ligation and puncture (CLP) surgery in mice was measured by assessment of serum creatinine, blood urea nitrogen (BUN), lipid peroxidation, total glutathione, glutathione peroxidase activity, catalase activity, and superoxide dismutase activity. Treatment with ZGR resulted in elevated plasma levels of BUN and creatinine, and of protein in urine in mice with CLP-induced renal damage. Moreover, ZGR inhibited nuclear factor-κB activation and reduced the induction of nitric oxide synthase and excessive production of nitric acid. ZGR treatment also reduced the plasma levels of interleukin-6 and tumor necrosis factor-α, reduced lethality due to CLP-induced sepsis, increased lipid peroxidation, and markedly enhanced the antioxidant defense system by restoring the levels of superoxide dismutase, glutathione peroxidase, and catalase in kidney tissues. Our study showed renal suppressive effects of zingerone in a mouse model of sepsis, suggesting that ZGR protects mice against sepsis-triggered renal injury. [BMB Reports 2019; 52(4): 271-276].
Collapse
Affiliation(s)
- Bong-Seon Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566,
Korea
| | - Changhun Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566,
Korea
| | - Sumin Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566,
Korea
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610,
Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566,
Korea
| |
Collapse
|
8
|
Renal protective effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in a mouse model of sepsis. Pharmacol Rep 2018; 70:1195-1201. [DOI: 10.1016/j.pharep.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/07/2018] [Accepted: 07/26/2018] [Indexed: 12/11/2022]
|
9
|
Abstract
Pelargonidin (PEL) is a well-known red pigment found in plants, and it has been reported to have important biological activities that are potentially beneficial for human health. This study was initiated to determine whether PEL could modulate renal functional damage in a mouse model of sepsis, and to elucidate the underlying mechanisms. The potential of PEL treatment to reduce renal damage induced by cecal ligation and puncture (CLP) surgery in mice was measured by assessment of serum creatinine, blood urea nitrogen (BUN), lipid peroxidation, total glutathione, glutathione peroxidase (GSH-Px) activity, catalase activity, and superoxide dismutase (SOD) activity. Treatment with PEL resulted in elevated plasma levels of BUN and creatinine, and of protein in urine in mice with CLP-induced renal damage. Moreover, PEL inhibited nuclear factor-κB activation and reduced the induction of nitric oxide synthase and excessive production of nitric acid. PEL treatment also reduced the plasma levels of interleukin-6 and tumor necrosis factor-α reduced lethality due to CLP-induced sepsis, increased lipid peroxidation, and markedly enhanced the antioxidant defense system by restoring the levels of SOD, GSH-Px, and catalase in kidney tissues. These results suggested that PEL protects mice against sepsis-triggered renal injury.
Collapse
Affiliation(s)
- In-Chul Lee
- 1 Department of Cosmetic Science and Technology, Seowon University, Cheongju, Korea
| | - Jong-Sup Bae
- 2 College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, Korea
| |
Collapse
|
10
|
Lee IC, Bae JS. Sulforaphane Suppresses Sepsis-Mediated Renal Functions in Cecal Ligation and Puncture Mouse Model. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sulforaphane (SFN), a natural isothiocyanate present in cruciferous vegetables such as broccoli and cabbage, is effective in preventing carcinogenesis, diabetes, and inflammatory responses. This study was initiated to determine whether SFN could modulate renal functional damage in a mouse model of sepsis and to elucidate the underlying mechanisms. The potential of SFN treatment to reduce renal damage induced by cecal ligation and puncture (CLP) surgery in mice was measured by assessment of serum creatinine, blood urea nitrogen (BUN), lipid peroxidation, total glutathione, glutathione peroxidase activity, catalase activity, and superoxide dismutase activity. Treatment with SFN resulted in elevated plasma levels of BUN and creatinine, and of protein in urine in mice with CLP-induced renal damage. SFN treatment also reduced the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α),▢increased lipid peroxidation, and markedly enhanced the antioxidant defense system by restoring the levels of superoxide dismutase, glutathione peroxidase, and catalase in kidney tissues. The present results suggested that SFN protects mice against sepsis-triggered renal injury.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
11
|
Lee W, Lee Y, Jeong GS, Ku SK, Bae JS. Cudratricusxanthone A attenuates renal injury in septic mice. Food Chem Toxicol 2017; 106:404-410. [PMID: 28595959 DOI: 10.1016/j.fct.2017.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/31/2017] [Accepted: 06/03/2017] [Indexed: 01/30/2023]
Abstract
As a natural compound extracted from the roots of Cudrania tricuspidata Bureau, Cudratricusxanthone A (CTXA) is known to possess hepatoprotective, anti-inflammatory, and anti-proliferative activities. This study was aimed to clarify the role of CTXA in modulating renal functional damage in a mouse model of sepsis and to elucidate its underlying mechanisms. We examined the renal protective effects of CTXA on cecal ligation and puncture (CLP)-induced renal damage by assessment of serum creatinine, blood urea nitrogen (BUN), lipid peroxidation, total glutathione, glutathione peroxidase activity, catalase activity, and superoxide dismutase activity. Post-treatment with CTXA resulted in a significant reduction in the deleterious renal functions by CLP, such as elevated BUN, creatinine, and urine protein. Induction of nitric oxide synthase and excessive production of nitric acid by CLP surgery were significantly reduced by post-treatment with CTXA via inhibiting nuclear factor-κB activation. Furthermore, the plasma levels of interleukin-6 and tumor necrosis factor-α were suppressed by CTXA post-treatment. Concurrently, CTXA treatment potently suppressed the CLP-induced septic lethality, rise of lipid peroxidation and markedly enhanced the antioxidant defense system by restoring the levels of superoxide dismutase, glutathione peroxidase, and catalase in kidney. The present results suggested that CTXA could protect against sepsis-triggered renal injury in mice.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yuri Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
12
|
Fouad AA, Qutub HO, Al-Melhim WN. Nephroprotection of punicalagin in rat model of endotoxemic acute kidney injury. Toxicol Mech Methods 2016; 26:538-543. [PMID: 27464552 DOI: 10.1080/15376516.2016.1211207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The potential nephroprotection of punicalagin (PNG) against lipopolysaccharide (LPS)-induced acute kidney injury in rats was investigated. Rats received a single i.v. dose of LPS (5 mg/kg), and treated with PNG (50 mg/kg, i.p.), 1 h before, and 1 h following LPS administration. LPS caused significant increases of serum creatinine and neutrophil gelatinase-associated lipocalin. LPS also resulted in significant increases in interleukin-18, tumor necrosis factor-α, interleukin-6, malondialdehyde, nitric oxide, Bax/Bcl-2 ratio and myeloperoxidase, inducible nitric oxide synthase, caspases 3, 8 and 9 activities, and a significant decrease in total antioxidant capacity in kidney tissues. PNG significantly ameliorated the alterations in the measured parameters. Additionally, PNG attenuated the histopathological injury and reduced kidney injury molecule-1 expression in kidneys of rats that received LPS. It was concluded that PNG ameliorated endotoxemic acute kidney injury in rats by counteracting inflammation, oxidative/nitrative stress and apoptosis.
Collapse
Affiliation(s)
- Amr A Fouad
- a Department of Biomedical Sciences, Pharmacology Division, College of Medicine , King Faisal University , Al-Ahsa , Saudi Arabia
| | - Hatem O Qutub
- b Department of Internal Medicine, College of Medicine , King Faisal University , Al-Ahsa , Saudi Arabia
| | - Walid N Al-Melhim
- c Department of Biomedical Sciences, Histopathology Division, College of Medicine , King Faisal University , Al-Ahsa , Saudi Arabia
| |
Collapse
|
13
|
Rana M, Maurya P, Reddy SS, Singh V, Ahmad H, Dwivedi AK, Dikshit M, Barthwal MK. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity. Front Pharmacol 2016; 7:223. [PMID: 27504095 PMCID: PMC4959270 DOI: 10.3389/fphar.2016.00223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia.
Collapse
Affiliation(s)
- Minakshi Rana
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Preeti Maurya
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Sukka S Reddy
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Vishal Singh
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Hafsa Ahmad
- Division of Pharmaceutics, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Anil K Dwivedi
- Division of Pharmaceutics, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Madhu Dikshit
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Manoj K Barthwal
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| |
Collapse
|
14
|
Chiu CH, Chyau CC, Chen CC, Lin CH, Cheng CH, Mong MC. Polysaccharide extract of Cordyceps sobolifera attenuates renal injury in endotoxemic rats. Food Chem Toxicol 2014; 69:281-8. [DOI: 10.1016/j.fct.2014.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/29/2014] [Accepted: 04/04/2014] [Indexed: 11/29/2022]
|
15
|
Affiliation(s)
- Susan L Stevens
- From the Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland
| | - Keri B Vartanian
- From the Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland
| | - Mary P Stenzel-Poore
- From the Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland.
| |
Collapse
|
16
|
Rinaldi B, Donniacuo M, Esposito E, Capuano A, Sodano L, Mazzon E, Di Palma D, Paterniti I, Cuzzocrea S, Rossi F. PPARα mediates the anti-inflammatory effect of simvastatin in an experimental model of zymosan-induced multiple organ failure. Br J Pharmacol 2011; 163:609-23. [PMID: 21323892 DOI: 10.1111/j.1476-5381.2011.01248.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Zymosan-induced non-septic shock is a multi-factorial pathology that involves several organs including the kidneys, liver and lungs. Its complexity and diversity presents a continuing therapeutic challenge. Given their pleiotropic effect, statins could be beneficial in non-septic shock. One of the molecular mechanisms underlying the anti-inflammatory effect of statins involves the peroxisome proliferator-activated receptor (PPAR) α. We used a zymosan-induced non-septic shock experimental model to investigate the role of PPARα in the anti-inflammatory effects of simvastatin. EXPERIMENTAL APPROACH Effects of simvastatin (5 or 10 mg·kg(-1) i.p.) were analysed in PPARα knock-out (KO) and PPARα wild type (WT) mice after zymosan or vehicle administration. Organ injury in lung, liver, kidney and intestine was evaluated by immunohistology. PPARα mRNA expression and nuclear factor-κB activation were evaluated in all experimental groups, 18 h after study onset. Cytokine levels were measured in plasma, and nitrite/nitrate in plasma and peritoneal exudate. Nitric oxide synthase, nitrotyrosine and poly ADP-ribose were localized by immunohistochemical methods. KEY RESULTS Simvastatin significantly and dose-dependently increased the zymosan-induced expression of PPARα levels in all tissues analysed. It also dose-dependently reduced systemic inflammation and the organ injury induced by zymosan in lung, liver, intestine and kidney. These effects were observed in PPARαWT mice and in PPARαKO mice. CONCLUSIONS AND IMPLICATIONS Simvastatin protected against the molecular and cellular damage caused by systemic inflammation in our experimental model. Our results also provide new information regarding the role of PPARα in the anti-inflammatory effects of statins.
Collapse
Affiliation(s)
- Barbara Rinaldi
- Department of Experimental Medicine, Section of Pharmacology 'L.Donatelli', Excellence Centre for Cardiovascular Diseases, Second University of Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|