1
|
de Carvalho VM, Chung-Filho AA, Braga FHP, Chagas-Neto P, Soares-Lima SC, Pombo-de-Oliveira MS. Interaction between birth characteristics and CRHR1, MC2R, NR3C1, GLCCI1 variants in the childhood lymphoblastic leukemia risk. Front Oncol 2024; 13:1274131. [PMID: 38348123 PMCID: PMC10859751 DOI: 10.3389/fonc.2023.1274131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/31/2023] [Indexed: 02/15/2024] Open
Abstract
Background The incidence rate of childhood acute lymphoblastic leukemia (ALL) differs worldwide, and the interplay between hemostasis actors and the maladaptive responses to environmental exposures has been explored. It has been proposed that endogenous cortisol, induced by different triggers, would eliminate pre-leukemic clones originated in utero. Herein, we tested if the interaction between CRHR1rs242941 C>A, MC2Rrs1893219 A>G, NR3C1rs41423247 G>C, and GLCCI1rs37972 C>T (players in glucocorticoid secretion) and birth characteristics would be associated with ALL risk. Methods Children aged <10 years were enrolled within the EMiLI project (period: 2012 to 2020). The study had three steps: (1) observational analysis of birth characteristics (n = 533 cases and 1,603 controls); (2) genotyping to identify single-nucleotide variants (n = 756 cases and 431 controls); and (3) case-only to test gene-environment interactions (n = 402 cases). Genetic syndromes were exclusion criteria. The controls were healthy children. The distribution of the variables was assessed through Pearson's chi-square test. Logistic regression (LR) tests were run fitted and adjusted for selected covariate models to estimate the association risk. Formal interaction analysis was also performed. Genotyping was tested by qPCR with TaqMan probes (NR3C1) or by high-resolution melting (MC2R and GLCCI1). Hardy-Weinberg equilibrium (HWE) was accessed by the chi-square test. The genotype-risk association was tested in co-dominant, dominant, and recessive models. The gene-environment interaction odds ratio (iOR) was assessed in case-only. Results Low birthweight, C-section, and low maternal schooling were associated with increased risk for ALL, adjOR 2.11, 95% CI, 1.02-4.33; adjOR 1.59, 95% CI, 1.16-2.17; and adjOR 3.78, 95% CI, 2.47-5.83, respectively, in a multiple logistic regression model. MC2R rs1893219 A>G was negatively associated with ALL (AG: OR = 0.68; 95% CI = 0.50-0.94 and GG: OR = 0.60; 95% CI = 0.42-0.85), while for GLCCI1 rs37972 C>T, TT was positively associated with ALL (OR = 1.91; 95% CI = 1.21-3.00). The combination of genotypes for MC2R (AA) and GLCCI1 (TT) increased ALL risk (OR = 2.61; 95% CI = 1.16-5.87). In a multiplicative interaction, MC2R rs1893219 A>G was associated with children whose mothers had less than 9 years of schooling (iOR = 1.99; 95% CI = 1.11-1.55). Conclusion Our study has demonstrated a significant association between MC2R rs1893219 A>G (reduced risk) and GLCCI1 rs37972 C>T variants (increased risk) and childhood ALL susceptibility. Based on this evidence, genes controlling the HPA axis activity may play a role in leukemogenesis, and further investigation is needed to substantiate our findings.
Collapse
Affiliation(s)
- Vitoria Müller de Carvalho
- Research Center, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Alython Araujo Chung-Filho
- Research Center, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Flávio Henrique Paraguassu Braga
- National Placental and Umbilical Cord Blood Bank, Instituto Nacional de Câncer (INCA), Ministério da Saúde (MS), Rio de Janeiro, Brazil
| | - Paulo Chagas-Neto
- Research Center, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Sheila Coelho Soares-Lima
- Research Center, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Maria S. Pombo-de-Oliveira
- Research Center, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
McCorrison J, Girke T, Goetz LH, Miller RA, Schork NJ. Genetic Support for Longevity-Enhancing Drug Targets: Issues, Preliminary Data, and Future Directions. J Gerontol A Biol Sci Med Sci 2019; 74:S61-S71. [PMID: 31724058 PMCID: PMC7330475 DOI: 10.1093/gerona/glz206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Interventions meant to promote longevity and healthy aging have often been designed or observed to modulate very specific gene or protein targets. If there are naturally occurring genetic variants in such a target that affect longevity as well as the molecular function of that target (eg, the variants influence the expression of the target, acting as "expression quantitative trait loci" or "eQTLs"), this could support a causal relationship between the pharmacologic modulation of the target and longevity and thereby validate the target at some level. We considered the gene targets of many pharmacologic interventions hypothesized to enhance human longevity and explored how many variants there are in those targets that affect gene function (eg, as expression quantitative trait loci). We also determined whether variants in genes associated with longevity-related phenotypes affect gene function or are in linkage disequilibrium with variants that do, and whether pharmacologic studies point to compounds exhibiting activity against those genes. Our results are somewhat ambiguous, suggesting that integrating genetic association study results with functional genomic and pharmacologic studies is necessary to shed light on genetically mediated targets for longevity-enhancing drugs. Such integration will require more sophisticated data sets, phenotypic definitions, and bioinformatics approaches to be useful.
Collapse
Affiliation(s)
- Jamison McCorrison
- Graduate Program in Bioinformatics and Systems Biology, University of California–San Diego, Phoenix, Arizona
| | - Thomas Girke
- Institute for Integrative Genome Biology, University of California, Riverside, Phoenix, Arizona
| | - Laura H Goetz
- Department of Quantitative Medicine and Systems Biology, The Translational Genomics Research Institute (TGen), Phoenix, Arizona
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Richard A Miller
- Department of Pathology, Ann Arbor
- Glenn Center for the Biology of Aging, University of Michigan, Ann Arbor
| | - Nicholas J Schork
- Department of Quantitative Medicine and Systems Biology, The Translational Genomics Research Institute (TGen), Phoenix, Arizona
- Department of Population Sciences, City of Hope National Medical Center, Duarte, California
- Department of Psychiatry, University of California–San Diego
- Department of Family Medicine and Public Health, University of California–San Diego
| |
Collapse
|
3
|
Melanocortins, Melanocortin Receptors and Multiple Sclerosis. Brain Sci 2017; 7:brainsci7080104. [PMID: 28805746 PMCID: PMC5575624 DOI: 10.3390/brainsci7080104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
The melanocortins and their receptors have been extensively investigated for their roles in the hypothalamo-pituitary-adrenal axis, but to a lesser extent in immune cells and in the nervous system outside the hypothalamic axis. This review discusses corticosteroid dependent and independent effects of melanocortins on the peripheral immune system, central nervous system (CNS) effects mediated through neuronal regulation of immune system function, and direct effects on endogenous cells in the CNS. We have focused on the expression and function of melanocortin receptors in oligodendroglia (OL), the myelin producing cells of the CNS, with the goal of identifying new therapeutic approaches to decrease CNS damage in multiple sclerosis as well as to promote repair. It is clear that melanocortin signaling through their receptors in the CNS has potential for neuroprotection and repair in diseases like MS. Effects of melanocortins on the immune system by direct effects on the circulating cells (lymphocytes and monocytes) and by signaling through CNS cells in regions lacking a mature blood brain barrier are clear. However, additional studies are needed to develop highly effective MCR targeted therapies that directly affect endogenous cells of the CNS, particularly OL, their progenitors and neurons.
Collapse
|
4
|
Shi XY, Yang XF, Tomonoh Y, Hu LY, Ju J, Hirose S, Zou LP. Development of a mouse model of infantile spasms induced by N -methyl- d -aspartate. Epilepsy Res 2015; 118:29-33. [DOI: 10.1016/j.eplepsyres.2015.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/28/2015] [Accepted: 09/22/2015] [Indexed: 01/31/2023]
|
5
|
Park HK, Chon J, Park HJ, Chung JH, Baik HH. Association between two promoter polymorphisms (rs1893219 and rs1893220) of MC2R gene and intracerebral hemorrhage in Korean population. Neurosci Lett 2015; 602:1-5. [PMID: 26115626 DOI: 10.1016/j.neulet.2015.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 11/26/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis has an important role in the pathogenesis of stroke. We investigated whether single nucleotide polymorphisms (SNPs) of melanocortin 2 receptor (MC2R), also known as adrenocorticotropic hormone (ACTH) receptor, were associated with the development of intracerebral hemorrhage (ICH) in Korean population. Two promoter SNPs [rs1893219 (-853A/G) and rs1893220 (-759G/T)] were genotyped in 145 ICH patients and 331 control subjects using direct sequencing. Multiple logistic regression models were used to determine odds ratios, 95% confidence intervals, and p-values. Two SNPs were associated with the development of ICH (rs1893219, p=0.003 in log-additive model, p=0.023 in dominant model, p=0.002 in recessive model; rs1893220, p=0.005 in log-additive model, p=0.021 in dominant model, p=0.003 in recessive model). The frequencies of the G allele of rs1893219 and the T allele of rs1893220 were decreased in ICH group compared to control group (p=0.003 and p=0.004, respectively). The frequencies of the AG and GT haplotypes comprised of rs1893219 and rs1893220 were also significantly different between the ICH and control groups (p=0.0026 and p=0.0034, respectively). These data suggest that the MC2R gene may contribute to the development of ICH.
Collapse
Affiliation(s)
- Hyun-Kyung Park
- Department of Emergency Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinmann Chon
- Department of Physical Medicine and Rehabilitation, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hae Jeong Park
- Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Joo-Ho Chung
- Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung Hwan Baik
- Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Yang G, Zou LP, Wang J, Shi XY, Yang XF, Wang B, Liu YJ, Sun YH, Jia FY. Association analysis of polymorphisms of the CRHR1 gene with infantile spasms. Mol Med Rep 2015; 12:2539-46. [PMID: 25954915 PMCID: PMC4464474 DOI: 10.3892/mmr.2015.3751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 04/10/2015] [Indexed: 12/24/2022] Open
Abstract
While >200 types of etiologies have been shown to be involved in the pathogenesis of infantile spasms, the pathophysiology of infantile spasms remains largely elusive. Pre-natal stress and hypothalamic-pituitary-adrenal axis dysfunction were shown to be involved in the development of infantile spasms. To test the genetic association between the CRHR1 gene, which encodes the corticotrophin-releasing hormone (CRH) receptor, and infantile spasms, five single nucleotide polymorphisms (SNPs) in the CRHR1 gene were genotyped in a sample set of 128 cases with infantile spasms and 131 healthy controls. Correlation analysis was performed on the genotyped data. Under the assumption of the dominant model, the selected five SNPs, rs4458044, rs171440, rs17689966, rs28364026 and rs242948, showed no association with the risk of infantile spasms and the effectiveness of adrenocorticotropic hormone treatment. In addition, subsequent haplotype analysis suggested none of them was associated with infantile spasms. In conclusion, the experimental results of the present study suggested no association between the CRHR1 gene and infantile spasms in a Chinese population.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Li-Ping Zou
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jing Wang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiu-Yu Shi
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiao-Fan Yang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Bin Wang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yu-Jie Liu
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan-Hong Sun
- Department of Pediatrics, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Fei-Yong Jia
- Department of Pediatrics, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
7
|
A single nucleotide polymorphism in the corticotropin receptor gene is associated with a blunted cortisol response during pediatric critical illness. Pediatr Crit Care Med 2014; 15:698-705. [PMID: 25055195 PMCID: PMC4712687 DOI: 10.1097/pcc.0000000000000193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The cortisol response during critical illness varies widely among patients. Our objective was to examine single nucleotide polymorphisms in candidate genes regulating cortisol synthesis, metabolism, and activity to determine if genetic differences were associated with variability in the cortisol response among critically ill children. DESIGN This was a prospective observational study employing tag single nucleotide polymorphism methodology to examine genetic contributions to the variability of the cortisol response in critical illness. Thirty-one candidate genes and 31 ancestry markers were examined. SETTING Patients were enrolled from seven pediatric critical care units that constitute the Eunice Kennedy Shriver Collaborative Pediatric Critical Care Research Network. SUBJECTS Critically ill children (n = 92), age 40 weeks gestation to 18 years old, were enrolled. INTERVENTIONS Blood samples were obtained from all patients for serum cortisol measurements and DNA isolation. Demographic and illness severity data were collected. MEASUREMENTS AND MAIN RESULTS Single nucleotide polymorphisms were tested for association with serum free cortisol concentrations in context of higher illness severity as quantified by Pediatric Risk of Mortality III score greater than 7. A single nucleotide polymorphism (rs1941088) in the MC2R gene was strongly associated (p = 0.0005) with a low free cortisol response to critical illness. Patients with the AA genotype were over seven times more likely to have a low free cortisol response to critical illness than those with a GG genotype. Patients with the GA genotype exhibited an intermediate free cortisol response to critical illness. CONCLUSIONS The A allele at rs1941088 in the MC2R gene, which encodes the adrenocorticotropic hormone (corticotropin, ACTH) receptor, is associated with a low cortisol response in critically ill children. These data provide evidence for a genetic basis for a portion of the variability in cortisol production during critical illness. Independent replication of these findings will be important and could facilitate development of personalized treatment for patients with a low cortisol response to severe illness.
Collapse
|
8
|
Popovic D, Plecas-Solarovic B, Pesic V, Petrovic M, Vujisic-Tesic B, Popovic B, Ignjatovic S, Ristic A, Damjanovic SS. How does stress possibly affect cardiac remodeling? Peptides 2014; 57:20-30. [PMID: 24751938 DOI: 10.1016/j.peptides.2014.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 01/20/2023]
Abstract
The aim of this study was to evaluate the predictive value of adrenocorticotropic hormone (ACTH), cortisol and ACTH receptor polymorphism (ACTHRP) for left ventricular (LV) remodeling. Thirty-six elite male athletes, as chronic stress adaptation models, and twenty sedentary age and sex-mached subjects emabarked on standard and tissue Doppler echocardiography to assess cardiac parameters at rest. They performed maximal cardiopulmonary test, which was used as an acute stress model. ACTH and cortisol were measured at rest (10min before test), at beginning, at maximal effort, at 3rd min of recovery, using radioimmunometric and radioimmunoassey techniques, respectively. Promoter region of ACTHR gene (18p11.2) was analysed from blood samples using reverse polymerization reaction with the analysis of restriction fragment length polimorphisam by SacI restriction enzyme. Normal genotype was CTC/CTC, heterozygot for ACTHRP CTC/CCC and homozygot CCC/CCC. In all participants, ACTH and cortisol increased during acute stress, whereas in recovery ACTH increased and cortisol remained unchanged. 49/56 examiners manifested CTC/CTC, 7/56 CTC/CCC and 0/56 CCC/CCC. There was no difference in ACTHRP frequency between groups (χ(1)(2)=0.178, p=0.67). LV mass (LVM) and LV end-diastolic volume (LVVd) were higher in athletes than in controls (p<0.01) and lower in CTC/CTC than in CTC/CCC genotype (219.43±46.59(SD)g vs. 276.34±48.86(SD)g, p=0.004; 141.24±24.46(SD)ml vs. 175.29±37.07(SD)ml, p=0.002; respectively). In all participants, predictors of LVM and LVVd were ACTH at rest (B=-1.00,-0.44; β=-0.30,-0.31; p=0.026,0.012, respectively) and ACTHRP (B=56.63,34; β=0.37,0.40; p=0.003,0.001, respectively). These results demonstrate that ACTH and ACTHRP strongly predict cardiac morphology suggesting possible regulatory role of stress system activity and sensitivity in cardiac remodeling.
Collapse
Affiliation(s)
- Dejana Popovic
- Division of Cardiology, Faculty of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia.
| | - Bosiljka Plecas-Solarovic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Milan Petrovic
- Division of Cardiology, Faculty of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Bosiljka Vujisic-Tesic
- Division of Cardiology, Faculty of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Bojana Popovic
- Division of Endocrinology, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Svetlana Ignjatovic
- Division of Cardiology, Faculty of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Arsen Ristic
- Division of Cardiology, Faculty of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Svetozar S Damjanovic
- Division of Endocrinology, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Gragnoli C. Hypothesis of the neuroendocrine cortisol pathway gene role in the comorbidity of depression, type 2 diabetes, and metabolic syndrome. APPLICATION OF CLINICAL GENETICS 2014; 7:43-53. [PMID: 24817815 PMCID: PMC4012344 DOI: 10.2147/tacg.s39993] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Depression, type 2 diabetes (T2D), and metabolic syndrome (MetS) are often comorbid. Depression per se increases the risk for T2D by 60%. This risk is not accounted for by the use of antidepressant therapy. Stress causes hyperactivation of the hypothalamic–pituitary–adrenal (HPA) axis, by triggering the hypothalamic corticotropin-releasing hormone (CRH) secretion, which stimulates the anterior pituitary to release the adrenocorticotropin hormone (ACTH), which causes the adrenal secretion of cortisol. Depression is associated with an increased level of cortisol, and CRH and ACTH at inappropriately “normal” levels, that is too high compared to their expected lower levels due to cortisol negative feedback. T2D and MetS are also associated with hypercortisolism. High levels of cortisol can impair mood as well as cause hyperglycemia and insulin resistance and other traits typical of T2D and MetS. We hypothesize that HPA axis hyperactivation may be due to variants in the genes of the CRH receptors (CRHR1, CRHR2), corticotropin receptors (or melanocortin receptors, MC1R-MC5R), glucocorticoid receptor (NR3C1), mineralocorticoid receptor (NR3C2), and of the FK506 binding protein 51 (FKBP5), and that these variants may be partially responsible for the clinical association of depression, T2D and MetS. In this review, we will focus on the correlation of stress, HPA axis hyperactivation, and the possible genetic role of the CRHR1, CRHR2, MCR1–5, NR3C1, and NR3C2 receptors and FKBP5 in the susceptibility to the comorbidity of depression, T2D, and MetS. New studies are needed to confirm the hypothesized role of these genes in the clinical association of depression, T2D, and MetS.
Collapse
Affiliation(s)
- Claudia Gragnoli
- Center for Biotechnology and Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA ; Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
10
|
Switonski M, Mankowska M, Salamon S. Family of melanocortin receptor (MCR) genes in mammals-mutations, polymorphisms and phenotypic effects. J Appl Genet 2013; 54:461-72. [PMID: 23996627 PMCID: PMC3825561 DOI: 10.1007/s13353-013-0163-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/11/2013] [Accepted: 07/28/2013] [Indexed: 01/02/2023]
Abstract
The melanocortin receptor gene family consists of five single-exon members, which are located on autosomes. Three genes (MC2R, MC4R and MC5R) are syntenic in the human, mouse, cattle and dog genomes, while in the pig, the syntenic group comprises MC1R, MC2R and MC5R. Two genes (MC1R and MC4R) have been extensively studied due to their function in melanogenesis (MC1R) and energy control (MC4R). Conservative organisation of these genes in five mammalian species (human, mouse, cattle, pig and dog), in terms of the encoded amino acid sequence, is higher in the case of MC4R compared to MC1R. Polymorphisms of these two genes are responsible or associated with variation of pigmentation (MC1R) and adipose tissue deposition (MC4R). Polymorphic variants in MC1R, causing coat colour variation, were described in humans and domestic mammals (cattle, horse, pig, sheep, dog), as well as farm red and arctic foxes. The MC4R gene is very polymorphic in humans and it is well known that some variants cause monogenic obesity or significantly contribute to the development of polygenic obesity. Such relationships are not so evident in domestic mammals; however, at least one missense substitution (298Asp > Asn) in the porcine MC4R significantly contributes, at least in some breeds, to fat tissue accumulation, feed conversion ratio and daily weight gain. Knowledge on the phenotypic effects of polymorphisms of MC2R, MC3R and MC5R in domestic mammals is scarce, probably due to the small number of reports addressing these genes. Thus, further studies focused on these genes should be undertaken.
Collapse
Affiliation(s)
- M Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland,
| | | | | |
Collapse
|
11
|
Hoekstra M, van der Sluis RJ, Li Z, Oosterveer MH, Groen AK, Van Berkel TJC. FXR agonist GW4064 increases plasma glucocorticoid levels in C57BL/6 mice. Mol Cell Endocrinol 2012; 362:69-75. [PMID: 22643070 DOI: 10.1016/j.mce.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 01/09/2023]
Abstract
Since high expression of farnesoid X receptor (FXR) has been detected in glucocorticoid-producing adrenocortical cells, we evaluated the potential role of FXR in adrenal glucocorticoid production. FXR agonist GW4064 increased fasting plasma corticosterone levels (+45%; P<0.01) in C57BL/6 mice, indicative of enhanced adrenal steroidogenesis. GW4064 treatment did not affect plasma ACTH levels, adrenal weight, or adrenal expression of steroidogenic genes. Scavenger receptor BI (SR-BI) mRNA and protein expression, respectively, increased 1.9-fold (P<0.01) and 1.5-fold, which suggests a stimulated lipoprotein-associated cholesterol uptake into the adrenals upon GW4064 treatment. In line with an enhanced flux of cellular cholesterol into the steroidogenic pathway, adrenal unesterified and esterified cholesterol stores were 21-41% decreased (P<0.01) upon GW4064 treatment. In conclusion, we have shown that the FXR agonist GW4064 stimulates plasma corticosterone levels in C57BL/6 mice. Our findings suggest a novel role for FXR in the modulation of adrenal cholesterol metabolism and glucocorticoid synthesis in mice.
Collapse
MESH Headings
- Adrenal Glands/anatomy & histology
- Adrenal Glands/drug effects
- Adrenal Glands/metabolism
- Adrenocorticotropic Hormone/blood
- Animals
- Apolipoproteins A/genetics
- Apolipoproteins A/metabolism
- Cholesterol Side-Chain Cleavage Enzyme/genetics
- Cholesterol Side-Chain Cleavage Enzyme/metabolism
- Corticosterone/blood
- Female
- Glucocorticoids/blood
- Isoxazoles/pharmacology
- Lipid Metabolism
- Lipids/blood
- Liver/metabolism
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Size/drug effects
- Phosphoenolpyruvate Carboxykinase (ATP)/genetics
- Phosphoenolpyruvate Carboxykinase (ATP)/metabolism
- Progesterone Reductase/genetics
- Progesterone Reductase/metabolism
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
- Steroid 11-beta-Hydroxylase/genetics
- Steroid 11-beta-Hydroxylase/metabolism
- Steroid 21-Hydroxylase/genetics
- Steroid 21-Hydroxylase/metabolism
- Tryptophan Oxygenase/genetics
- Tryptophan Oxygenase/metabolism
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Yang G, Zou LP, He B, Ding YX, Wang J, Shi XY, Sun YH, Jia FY. NR3C1 gene polymorphism for genetic susceptibility to infantile spasms in a Chinese population. Life Sci 2012; 91:37-43. [PMID: 22728713 DOI: 10.1016/j.lfs.2012.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/27/2012] [Accepted: 05/24/2012] [Indexed: 12/17/2022]
Abstract
AIMS To test the genetic association of NR3C1 gene which encodes the glucocorticoid receptor with infantile spasms (IS). MAIN METHODS Nine single nucleotide polymorphisms (SNPs) within the NR3C1 gene were genotyped in a sample set of 128 cases and 131 controls. Association analysis was performed on the genotyped data. KEY FINDINGS Two SNPs, rs10482672 and rs2963155, showed nominal associations with IS (P=0.018, OR=1.89, 95% CI=1.11-3.22, for rs10482672; P=0.04, OR=1.70, 95% CI=1.03-2.81 for rs2963155) under the assumption of a dominant model. The haplotype TG of two SNPs (rs6877893 and rs4912905) was associated with a decreased risk of IS (P=0.038, OR=0.66, 95% CI=0.45-0.98), whereas haplotype TC being homozygous was associated with an increased risk of IS (P=0.015, OR=2.60, 95% CI=1.20-5.60). The rs6866893 was also associated with the responsiveness of adrenocorticotropic hormone. SIGNIFICANCE The current experimental results suggest the importance of the NR3C1 gene polymorphism for genetic susceptibility to IS in a Chinese population.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Stafstrom CE, Arnason BGW, Baram TZ, Catania A, Cortez MA, Glauser TA, Pranzatelli MR, Riikonen R, Rogawski MA, Shinnar S, Swann JW. Treatment of infantile spasms: emerging insights from clinical and basic science perspectives. J Child Neurol 2011; 26:1411-21. [PMID: 21719797 DOI: 10.1177/0883073811413129] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Infantile spasms is an epileptic encephalopathy of early infancy with specific clinical and electroencephalographic (EEG) features, limited treatment options, and a poor prognosis. Efforts to develop improved treatment options have been hindered by the lack of experimental models in which to test prospective therapies. The neuropeptide adrenocorticotropic hormone (ACTH) is effective in many cases of infantile spasms, although its mechanism(s) of action is unknown. This review describes the emerging candidate mechanisms that can underlie the therapeutic effects of ACTH in infantile spasms. These mechanisms can ultimately help to improve understanding and treatment of the disease. An overview of current treatments of infantile spasms, novel conceptual and experimental approaches to infantile spasms treatment, and a perspective on remaining clinical challenges and current research questions are presented here. This summary derives from a meeting of specialists in infantile spasms clinical care and research held in New York City on June 14, 2010.
Collapse
Affiliation(s)
- Carl E Stafstrom
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Steinlein OK. Gene polymorphisms and their role in epilepsy treatment and prognosis. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:109-18. [PMID: 20556360 DOI: 10.1007/s00210-010-0531-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/27/2010] [Indexed: 12/16/2022]
Abstract
The human genome carries an enormous number of genetic variants, many of them of functional consequence. In epilepsy, they are likely to be involved in drug-specific treatment efficacy, unwanted or even toxic drug reactions, teratogenic risks in pregnancy as well as in the long-term prognosis of patients with epilepsy. As in many other disorders with a complex genetic background, the associated genetic variants that could be verified successfully in replication studies are still only a few. However, new techniques and improved research strategies are likely to increase their number in the foreseeable future, although at a much slower pace as initially expected.
Collapse
Affiliation(s)
- Ortrud K Steinlein
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University of Munich, Goethestr. 29, 80336, Munich, Germany.
| |
Collapse
|