1
|
Santos M, Lima L, Carvalho S, Brandão A, Barroso F, Cruz A, Medeiros R. ABCB1 C1236T, G2677TA and C3435T Genetic Polymorphisms and Antidepressant Response Phenotypes: Results from a Portuguese Major Depressive Disorder Cohort. Int J Mol Sci 2024; 25:5112. [PMID: 38791151 PMCID: PMC11120659 DOI: 10.3390/ijms25105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
P-glycoprotein (P-GP) is a transporter molecule expressed on the apical surface of capillary endothelial cells of the Blood-Brain Barrier (BBB), whose activity heavily influences drug distribution, including antidepressants. This transporter is encoded by ABCB1 gene, and genetic variations within ABCB1 gene have been proposed to affect drug efflux and have been previously associated with depression. In this context, we aimed to evaluate the role of C1236T, G2677TA and C3435T ABCB1 genetic polymorphisms in antidepressant treatment phenotypes from a cohort of patients harboring Major Depressive Disorder. Patients enrolled in the study consisted of 80 individuals with Major Depressive Disorder, who took part in a 27-month follow-up study at HML, Portugal. To investigate the correlation between ABCB1 polymorphisms and antidepressant response phenotypes, DNA was extracted from peripheral blood, and C1236T, C3435T and G2677TA polymorphisms were genotyped with TaqMan® SNP Genotyping Assays. Despite the fact that the evaluated polymorphisms (C1236T, C3435T and G2677TA) were not associated with treatment resistant depression, or relapse, we observed that patients carrying TT genotype of the C3435T polymorphism remit earlier than the ones carrying CC or CT genotypes (10.2 weeks vs. 14.9 and 21.3, respectively, p = 0.028, Log-rank test). Since we found an association with C3435T and time to remission, and not to the absence of remission, we suggest that this polymorphism could have an impact on antidepressant drug distribution, and thus influence on the time to remission will occur, without influencing the risk of remission itself.
Collapse
Affiliation(s)
- Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (M.S.); (A.C.)
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Luis Lima
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal;
| | - Serafim Carvalho
- Hospital de Magalhães Lemos, Centro Hospitalar Universitário de Santo António, 4149-003 Porto, Portugal;
- Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Andreia Brandão
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Agostinho Cruz
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (M.S.); (A.C.)
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
2
|
Radosavljevic M, Svob Strac D, Jancic J, Samardzic J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes (Basel) 2023; 14:1095. [PMID: 37239455 PMCID: PMC10218654 DOI: 10.3390/genes14051095] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Pharmacotherapy for neuropsychiatric disorders, such as anxiety and depression, has been characterized by significant inter-individual variability in drug response and the development of side effects. Pharmacogenetics, as a key part of personalized medicine, aims to optimize therapy according to a patient's individual genetic signature by targeting genetic variations involved in pharmacokinetic or pharmacodynamic processes. Pharmacokinetic variability refers to variations in a drug's absorption, distribution, metabolism, and elimination, whereas pharmacodynamic variability results from variable interactions of an active drug with its target molecules. Pharmacogenetic research on depression and anxiety has focused on genetic polymorphisms affecting metabolizing cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, P-glycoprotein ATP-binding cassette (ABC) transporters, and monoamine and γ-aminobutyric acid (GABA) metabolic enzymes, transporters, and receptors. Recent pharmacogenetic studies have revealed that more efficient and safer treatments with antidepressants and anxiolytics could be achieved through genotype-guided decisions. However, because pharmacogenetics cannot explain all observed heritable variations in drug response, an emerging field of pharmacoepigenetics investigates how epigenetic mechanisms, which modify gene expression without altering the genetic code, might influence individual responses to drugs. By understanding the epi(genetic) variability of a patient's response to pharmacotherapy, clinicians could select more effective drugs while minimizing the likelihood of adverse reactions and therefore improve the quality of treatment.
Collapse
Affiliation(s)
- Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
3
|
Abstract
Depression and anxiety disorders carry a tremendous worldwide burden and emerge as a significant cause of disability among western societies. Both disorders are known to disproportionally affect women, as they are twice more likely to be diagnosed and moreover, they are also prone to suffer from female-specific mood disorders. Importantly, the prevalence of these affective disorders has notably risen after the COVID pandemic, especially in women. In this chapter, we describe factors that are possibly contributing to the expression of such sex differences in depression and anxiety. For this, we overview the effect of transcriptomic and genetic factors, the immune system, neuroendocrine aspects, and cognition. Furthermore, we also provide evidence of sex differences in antidepressant response and their causes. Finally, we emphasize the importance to consider sex as a biological variable in preclinical and clinical research, which may facilitate the discovery and development of new and more efficacious antidepressant and anxiolytic pharmacotherapies for both women and men.
Collapse
Affiliation(s)
- Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
4
|
Fugger G, Bartova L, Fabbri C, Fanelli G, Zanardi R, Dold M, Kautzky A, Rujescu D, Souery D, Mendlewicz J, Zohar J, Montgomery S, Serretti A, Kasper S. The sociodemographic and clinical phenotype of European patients with major depressive disorder undergoing first-line antidepressant treatment with NaSSAs. J Affect Disord 2022; 312:225-234. [PMID: 35691416 DOI: 10.1016/j.jad.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/14/2023]
Affiliation(s)
- Gernot Fugger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Lucie Bartova
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Giuseppe Fanelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Raffaella Zanardi
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Markus Dold
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Daniel Souery
- School of Medicine, Free University of Brussels, Brussels, Belgium; Psy Pluriel - European Centre of Psychological Medicine, Brussels, Belgium
| | | | - Joseph Zohar
- Psychiatric Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Stuart Montgomery
- Imperial College School of Medicine, University of London, London, United Kingdom
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Geers LM, Ochi T, Vyalova NM, Losenkov IS, Paderina DZ, Pozhidaev IV, Simutkin GG, Bokhan NA, Wilffert B, Touw DJ, Loonen AJ, Ivanova SA. Influence of eight ABCB1 polymorphisms on antidepressant response in a prospective cohort of treatment-free Russian patients with moderate or severe depression: An explorative psychopharmacological study with naturalistic design. Hum Psychopharmacol 2022; 37:e2826. [PMID: 34788473 PMCID: PMC9285790 DOI: 10.1002/hup.2826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/11/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many antidepressants are substrates of P-glycoprotein, an efflux transporter in the blood-brain-barrier encoded by the ABCB1 gene. Genetic variations might influence the transport rate of antidepressants and hence their pharmacological effects. This study investigates the influence of eight polymorphisms in the ABCB1 gene on antidepressant treatment response. METHOD 152 patients were included from psychiatric departments of the Mental Health Research Institute in Tomsk. The difference in Hamilton-Depression-Rating-Scale (HAMD-17)-scores between baseline and week two, week two and four, and baseline and week four was used to estimate timing of improvement of depression. Associations between the ABCB1 gene-polymorphisms and reduction in HAMD-17 score were assessed using independent t-test and multiple linear regression. RESULTS Tricyclic antidepressants were associated with a higher reduction of HAMD-17 score when compared to SSRIs. The SNP rs2235040 A-allele had a significant positive influence on the ΔHAMD-17(0→2W) score but a significant negative influence on the ΔHAMD-17(2→4W) score. The rs4148739 G-allele had a significant negative influence on the ΔHAMD-17(0→2W) score but a significant positive influence on the ΔHAMD-17(2→4W) score. The SNP rs2235015 T-allele is significant negatively related to the ΔHAMD-17(2→4W) score. CONCLUSION ABCB1 Genetic variations appear to affect speed but not magnitude of antidepressant drug response.
Collapse
Affiliation(s)
- Lisanne M. Geers
- Department of Clinical Pharmacy and PharmacologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Taichi Ochi
- Pharmacotherapy, ‐ Epidemiology & ‐EconomicsUniversity of Groningen, Groningen Research Institute of PharmacyGroningenThe Netherlands
| | - Natalya M. Vyalova
- Mental Health Research InstituteTomsk National Research Medical Center of the Russian Academy of SciencesTomskRussian Federation
| | - Innokentiy S. Losenkov
- Mental Health Research InstituteTomsk National Research Medical Center of the Russian Academy of SciencesTomskRussian Federation
| | - Diana Z. Paderina
- Mental Health Research InstituteTomsk National Research Medical Center of the Russian Academy of SciencesTomskRussian Federation
- National Research Tomsk State UniversityTomskRussian Federation
| | - Ivan V. Pozhidaev
- Mental Health Research InstituteTomsk National Research Medical Center of the Russian Academy of SciencesTomskRussian Federation
- National Research Tomsk State UniversityTomskRussian Federation
| | - German G. Simutkin
- Mental Health Research InstituteTomsk National Research Medical Center of the Russian Academy of SciencesTomskRussian Federation
| | - Nikolay A. Bokhan
- Mental Health Research InstituteTomsk National Research Medical Center of the Russian Academy of SciencesTomskRussian Federation
- National Research Tomsk State UniversityTomskRussian Federation
- Siberian State Medical UniversityTomskRussian Federation
| | - Bob Wilffert
- Department of Clinical Pharmacy and PharmacologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Pharmacotherapy, ‐ Epidemiology & ‐EconomicsUniversity of Groningen, Groningen Research Institute of PharmacyGroningenThe Netherlands
| | - Daniël J. Touw
- Department of Clinical Pharmacy and PharmacologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Pharmaceutical AnalysisUniversity of Groningen, Groningen Research Institute of PharmacyGroningenThe Netherlands
| | - Anton J.M. Loonen
- Pharmacotherapy, ‐ Epidemiology & ‐EconomicsUniversity of Groningen, Groningen Research Institute of PharmacyGroningenThe Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research InstituteTomsk National Research Medical Center of the Russian Academy of SciencesTomskRussian Federation
- Siberian State Medical UniversityTomskRussian Federation
- National Research Tomsk Polytechnic UniversityTomskRussian Federation
| |
Collapse
|
6
|
Pronk AC, Seppala LJ, Trajanoska K, Stringa N, van de Loo B, de Groot LCPGM, van Schoor NM, Koskeridis F, Markozannes G, Ntzani E, Uitterlinden AG, Rivadeneira F, Stricker BH, van der Velde N. Candidate genetic variants and antidepressant-related fall risk in middle-aged and older adults. PLoS One 2022; 17:e0266590. [PMID: 35421149 PMCID: PMC9009709 DOI: 10.1371/journal.pone.0266590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Antidepressant use has been associated with increased fall risk. Antidepressant-related adverse drug reactions (e.g. orthostatic hypotension) depend partly on genetic variation. We hypothesized that candidate genetic polymorphisms are associated with fall risk in older antidepressant users. METHODS The association between antidepressant use and falls was cross-sectionally investigated in a cohort of Dutch older adults by logistic regression analyses. In case of significant interaction product term of antidepressant use and candidate polymorphism, the association between the variant genotype and fall risk was assessed within antidepressant users and the association between antidepressant use and fall risk was investigated stratified per genotype. Secondly, a look-up of the candidate genes was performed in an existing genome-wide association study on drug-related falls in antidepressant users within the UK Biobank. In antidepressant users, genetic associations for our candidate polymorphisms for fall history were investigated. RESULTS In antidepressant users(n = 566), for rs28371725 (CYP2D6*41) fall risk was decreased in TC/variant allele carriers compared to CC/non-variant allele carriers (OR = 0.45, 95% CI 0.26-0.80). Concerning rs1057910 (CYP2C9*3), fall risk was increased in CA/variant allele carriers compared to AA/non-variant allele carriers (OR = 1.95, 95% CI 1.17-3.27). Regarding, rs1045642 (ABCB1), fall risk was increased in AG/variant allele carriers compared to GG/non-variant allele carriers (OR = 1.69, 95% CI 1.07-2.69). Concerning the ABCB1-haplotype (rs1045642/rs1128503), fall risk was increased in AA-AA/variant allele carriers compared to GG-GG/non-variant allele carriers (OR = 1.86, 95% CI 1.05-3.29). In the UK Biobank, in antidepressant users(n = 34,000) T/variant-allele of rs28371725 (CYP2D*41) was associated with increased fall risk (OR = 1.06, 95% CI 1.01-1.12). G/non-variant-allele of rs4244285 (CY2C19*2) was associated with decreased risk (OR = 0.96, 95% CI 0.92-1.00). CONCLUSION This is the first study showing that certain genetic variants modify antidepressant-related fall risk. The results were not always consistent across the studies and should be validated in a study with a prospective design. However, pharmacogenetics might have value in antidepressant (de)prescribing in falls prevention.
Collapse
Affiliation(s)
- A. C. Pronk
- Department of Internal Medicine, Section of Geriatric Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - L. J. Seppala
- Department of Internal Medicine, Section of Geriatric Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - K. Trajanoska
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - N. Stringa
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - B. van de Loo
- Department of Internal Medicine, Section of Geriatric Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - L. C. P. G. M. de Groot
- Department of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - N. M. van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - F. Koskeridis
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - G. Markozannes
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - E. Ntzani
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
- Department of Health Services, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, United States of America
- Center for Evidence Synthesis in Health, Brown University School of Public Health, Providence, RI, United States of America
| | - A. G. Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - F. Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - B. H. Stricker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - N. van der Velde
- Department of Internal Medicine, Section of Geriatric Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Bairova TA, Nemchinova NV, Belyaeva EV, Sambyalova AY, Ershova OA, Rychkova LV. The Prevalence of Polymorphic Variants of ABCB1 Gene among Indigenous Populations of Siberia. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795421110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Silberbauer LR, Rischka L, Vraka C, Hartmann AM, Godbersen GM, Philippe C, Pacher D, Nics L, Klöbl M, Unterholzner J, Stimpfl T, Wadsak W, Hahn A, Hacker M, Rujescu D, Kasper S, Lanzenberger R, Gryglewski G. ABCB1 variants and sex affect serotonin transporter occupancy in the brain. Mol Psychiatry 2022; 27:4502-4509. [PMID: 36071112 PMCID: PMC7613909 DOI: 10.1038/s41380-022-01733-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Strategies to personalize psychopharmacological treatment promise to improve efficacy and tolerability. We measured serotonin transporter occupancy immediately after infusion of the widely prescribed P-glycoprotein substrate citalopram and assessed to what extent variants of the ABCB1 gene affect drug target engagement in the brain in vivo. A total of 79 participants (39 female) including 31 patients with major depression and 48 healthy volunteers underwent two PET/MRI scans with the tracer [11C]DASB and placebo-controlled infusion of citalopram (8 mg) in a cross-over design. We tested the effect of six ABCB1 single nucleotide polymorphisms and found lower SERT occupancy in ABCB1 rs2235015 minor allele carriers (n = 26, MAF = 0.18) compared to major allele homozygotes (t73 = 2.73, pFWE < 0.05) as well as in men compared to women (t73 = 3.33, pFWE < 0.05). These effects were robust to correction for citalopram plasma concentration, age and diagnosis. From occupancy we derived the ratio of occupied to unoccupied SERT, because in theory this measure is equal to the product of drug affinity and concentration at target sites. A model combining genotype with basic clinical variables, predicted that, at the same dosage, occupied to unoccupied SERT ratio was -14.48 ± 5.38% lower in rs2235015 minor allele carriers, +19.10 ± 6.95% higher in women, -4.83 ± 2.70% lower per 10 kg bodyweight, and -2.68 ± 3.07% lower per 10 years of age. Our results support the exploration of clinical algorithms with adjustment of initial citalopram dosing and highlight the potential of imaging-genetics for precision pharmacotherapy in psychiatry.
Collapse
Affiliation(s)
- Leo R. Silberbauer
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Lucas Rischka
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Annette M. Hartmann
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Godber Mathis Godbersen
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniel Pacher
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- grid.22937.3d0000 0000 9259 8492Clinical Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria ,grid.499898.dCenter for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Andreas Hahn
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- grid.22937.3d0000 0000 9259 8492Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria. .,Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Marshe VS, Islam F, Maciukiewicz M, Bousman C, Eyre HA, Lavretsky H, Mulsant BH, Reynolds CF, Lenze EJ, Müller DJ. Pharmacogenetic Implications for Antidepressant Pharmacotherapy in Late-Life Depression: A Systematic Review of the Literature for Response, Pharmacokinetics and Adverse Drug Reactions. Am J Geriatr Psychiatry 2020; 28:609-629. [PMID: 32122803 DOI: 10.1016/j.jagp.2020.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Affecting up to 15% of older adults, late-life depression (LLD) is characterized by the occurrence of depressive symptoms after the age of 50-65 years and maybe pathophysiologically distinct from depression in younger adults. Therefore, LLD is challenging to treat, and predictive genetic testing might be essential to improve treatment in this vulnerable population. The current review aims to provide a summary of the literature exploring genetic associations with antidepressant treatment outcomes in late-life. We conducted a systematic search of three integrated electronic databases. We identified 29 articles investigating genetic associations with antidepressant treatment outcomes, pharmacokinetic parameters, and adverse drug reactions in older adults. Given the small number of investigations conducted in older adults, it is difficult to conclude the presence or absence of genetic associations with the outcomes of interest. In sum, the most substantial amount of evidence exists for the CYP2D6 metabolizer status, SLC6A4 5-HTTLPR, and BDNF rs6265. These findings are consistent in the literature when not restricting to older adults, suggesting that similar treatment recommendations may be provided for older adults regarding genetic variation, such as those outlined for CYP2D6 by the Clinical Pharmacogenetics Implementation Consortium. Nonetheless, further studies are required in well-characterized samples, including genome-wide data, to validate if similar treatment adjustments are appropriate in older adults, given that there appear to be significant effects of genetic variation on antidepressant treatment factors.
Collapse
Affiliation(s)
- Victoria S Marshe
- Institute of Medical Science, University of Toronto (VSM, BHM, DJM), Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (VSM, FI, MM, BHM, DJM), Toronto, ON, Canada
| | - Farhana Islam
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (VSM, FI, MM, BHM, DJM), Toronto, ON, Canada; Department of Pharmacology (FI, DJM), University of Toronto, Toronto, ON, Canada
| | - Malgorzata Maciukiewicz
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (VSM, FI, MM, BHM, DJM), Toronto, ON, Canada
| | - Chad Bousman
- Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology (CB), University of Calgary, Calgary, AB, Canada; Department of Psychiatry (CB), University of Melbourne, Melbourne, Victoria, Australia
| | - Harris A Eyre
- Innovation Institute, Texas Medical Center (HAE), Houston, TX; School of Medicine, IMPACT SRC, Deakin University (HAE), Geelong, Victoria, Australia; Brainstorm Lab, Department of Psychiatry and Behavioral Sciences (HAE), Stanford University, Palo Alto, CA; Discipline of Psychiatry (HAE), The University of Adelaide, Adelaide, South Australia, Australia
| | - Helen Lavretsky
- Department of Psychiatry (HL), University of California, Los Angeles, CA
| | - Benoit H Mulsant
- Institute of Medical Science, University of Toronto (VSM, BHM, DJM), Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (VSM, FI, MM, BHM, DJM), Toronto, ON, Canada; Department of Psychiatry (BHM, DJM), University of Toronto, Toronto, ON, Canada
| | - Charles F Reynolds
- Department of Psychiatry (CFR), University of Pittsburgh, Pittsburgh, PA
| | - Eric J Lenze
- Healthy Mind Lab, Department of Psychiatry (EJL), Washington University, St. Louis, MO
| | - Daniel J Müller
- Institute of Medical Science, University of Toronto (VSM, BHM, DJM), Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (VSM, FI, MM, BHM, DJM), Toronto, ON, Canada; Department of Pharmacology (FI, DJM), University of Toronto, Toronto, ON, Canada; Department of Psychiatry (BHM, DJM), University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Kostyuk GP, Zakharova NV, Reznik AM, Surkova EI, Ilinsky VV. [Perspectives of the use of pharmacogenetic tests in neurology and psychiatry]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:131-135. [PMID: 31626230 DOI: 10.17116/jnevro2019119091131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The review is devoted to the analysis of the current state of pharmacogenetic research and their use in psychiatric practice. The main genes responsible for the pharmacodynamics and pharmacokinetics of drugs used in psychiatry are listed. Foreign pharmacogenetic clinical recommendations and progress on their implementation in medical practice in various countries of Europe and the USA are analyzed. The need to create Russian clinical guidelines on pharmacogenomics to improve the effectiveness of patient care and to implement a personalized approach to therapy is discussed.
Collapse
Affiliation(s)
- G P Kostyuk
- Alekseev Psychiatric Clinical Hospital #1, Moscow, Russia
| | - N V Zakharova
- Alekseev Psychiatric Clinical Hospital #1, Moscow, Russia
| | - A M Reznik
- Medical Institute of Ongoing Education of 'Moscow National University of Food Production', Moscow, Russia
| | | | | |
Collapse
|
11
|
Modification of the association between paroxetine serum concentration and SERT-occupancy by ABCB1 (P-glycoprotein) polymorphisms in major depressive disorder. Psychiatr Genet 2020; 30:19-29. [DOI: 10.1097/ypg.0000000000000244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Shan XX, Qiu Y, Xie WW, Wu RR, Yu Y, Wu HS, Li LH. ABCB1 Gene Is Associated With Clinical Response to SNRIs in a Local Chinese Han Population. Front Pharmacol 2019; 10:761. [PMID: 31333472 PMCID: PMC6620233 DOI: 10.3389/fphar.2019.00761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
Background: The relation between the ATP-binding cassette subfamily B member 1 (ABCB1) gene and major depressive disorder (MDD) has been studied in a local Chinese Han population. MDD is associated with the rs2032582 (G2677T) and rs1128503 (C1236T) single-nucleotide polymorphisms (SNPs) of ABCB1 but not with rs1045642, rs2032583, rs2235040, and rs2235015. This study aims to explore the potential correlations of therapeutic responses with selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) in a local Chinese Han population. Methods: The study population included 292 patients with MDD. All patients were assessed at baseline and at first, second, fourth, and sixth weeks according to the 17-item Hamilton Rating Scale for Depression (HAM-D17) to determine their therapeutic responses to SSRIs and SNRIs. Results: In the SSRI therapy group, the genotype or allele distribution of six SNPs was not significantly different between responders and nonresponders. In the SNRI therapy group, only rs2032583 was associated with a therapeutic response to SNRIs. The C allele of the ABCB1 rs2032583 polymorphism was negatively correlated with therapeutic responses according to logistic regression analysis. Conclusion: The ABCB1 gene polymorphisms may not be associated with therapeutic responses to SSRIs but not with SNRIs. The TT genotype of rs2032583 could be a predictive factor of improved treatment responses to SNRIs in the Chinese population. These findings should be replicated in future studies with larger patient groups.
Collapse
Affiliation(s)
- Xiao-Xiao Shan
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Human Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yan Qiu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Human Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Wei-Wei Xie
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Ren-Rong Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Human Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yan Yu
- The People's Hospital of Hunan Province, Changsha, China
| | - Hai-Shan Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Human Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Le-Hua Li
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Human Key Laboratory of Psychiatry and Mental Health, Changsha, China
| |
Collapse
|
13
|
Pharmacogenomics in Psychiatric Disorders. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Mora C, Zonca V, Riva MA, Cattaneo A. Blood biomarkers and treatment response in major depression. Expert Rev Mol Diagn 2018; 18:513-529. [DOI: 10.1080/14737159.2018.1470927] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cristina Mora
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Valentina Zonca
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King’s College, London, UK
| |
Collapse
|
15
|
Vancova Z, Cizmarikova M, Dragasek J, Zofcakova S, Kolarcik P, Mojzis J. Does G2677T Polymorphism of the MDR1 Gene Make a Difference in the Therapeutic Response to Paroxetine in Depressed Patients in a Slovakian Population? Med Sci Monit 2018; 24:3136-3145. [PMID: 29754150 PMCID: PMC5975071 DOI: 10.12659/msm.907434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The role of multidrug resistance 1 gene (MDR1 or ABCB1) polymorphism G2677T was studied in relation to paroxetine therapeutic efficacy and its side effects, as well as its association with selected demographic and clinical characteristics of patients with depressive disorder. Material/Methods To evaluate therapeutic efficacy, all patients (n=61) were rated at week 0, 2, 4, and 6 using the Hamilton Rating Scale for Depression (HAMD-21). They were labelled as “responders” (a decrease in HAMD ≥50%) and “nonresponders”. The frequency of the side effects of nausea and sexual dysfunction were assessed using the Utvalg for Kliniske Undersogelser rating scale. The PCR-restriction fragment length polymorphism method was used for genotyping. Results A significantly enhanced therapeutic efficacy of paroxetine was observed in patients carrying at least one T allele at week 4 (GG versus GT: 0.049; GG versus GT+TT: 0.035) and week 6 (GG versus TT: 0.001; GG versus GT+TT: 0.016; GG+GT versus TT: 0.003; G versus T: 0.001). On the other hand, carriers of the T allele showed only a nonsignificant increase in HAMD-21 score reduction. In the present study, no significant association between G2677T polymorphism and side effects was detected. However, we found a marginally significant difference between GG and GT genotypes regarding family history of depressive disorder (p=0.049). Conclusions Our study provided evidence for the potential effect of MDR1 G2677T polymorphism on paroxetine therapeutic efficacy, and eventually on depressive disorder family history. Larger multicenter studies and studies across other ethnic groups are needed to elucidate the contradictory implications of G2677T polymorphism with depressive disorder and its treatment.
Collapse
Affiliation(s)
- Zuzana Vancova
- First Department of Psychiatry, Faculty of Medicine, P.J. Safarik University, Kosice, Slovakia
| | - Martina Cizmarikova
- Department of Pharmacology, Faculty of Medicine, P.J. Safarik University, Kosice, Slovakia
| | - Jozef Dragasek
- First Department of Psychiatry, Faculty of Medicine, P.J. Safarik University, Kosice, Slovakia
| | - Silvia Zofcakova
- Psychiatry Outpatient Department, Air Force Military Hospital, Kosice, Slovakia
| | - Peter Kolarcik
- Department of Health Psychology - Institute of Public Health, Faculty of Medicine, P.J. Safarik University, Kosice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P.J. Safarik University, Kosice, Slovakia
| |
Collapse
|
16
|
Lloyd-Parry O, Downing C, Aleisaei E, Jones C, Coward K. Nanomedicine applications in women's health: state of the art. Int J Nanomedicine 2018; 13:1963-1983. [PMID: 29636611 PMCID: PMC5880180 DOI: 10.2147/ijn.s97572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
State-of-the-art applications of nanomedicine have the potential to revolutionize the diagnosis, prevention, and treatment of a range of conditions and diseases affecting women’s health. In this review, we provide a synopsis of potential applications of nanomedicine in some of the most dominant fields of women’s health: mental health, sexual health, reproductive medicine, oncology, menopause-related conditions and dementia. We explore published studies arising from in vitro and in vivo experiments, and clinical trials where available, to reveal novel and highly promising therapeutic applications of nanomedicine in these fields. For the first time, we summarize the growing body of evidence relating to the use of nanomaterials as experimental tools for the detection, prevention, and treatment of significant diseases and conditions across the life course of a cisgender woman, from puberty to menopause; revealing the far-reaching and desirable theoretical impact of nanomedicine across different medical disciplines. We also present an overview of potential concerns regarding the therapeutic applications of nanomedicine and the factors currently restricting the growth of applied nanomedicine.
Collapse
Affiliation(s)
- Oliver Lloyd-Parry
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Charlotte Downing
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Eisa Aleisaei
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
17
|
Predictors of treatment outcome in depression in later life: A systematic review and meta-analysis. J Affect Disord 2018; 227:164-182. [PMID: 29100149 DOI: 10.1016/j.jad.2017.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/13/2017] [Accepted: 10/01/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Predictor analyses of late-life depression can be used to identify variables associated with outcomes of treatments, and hence ways of tailoring specific treatments to patients. The aim of this review was to systematically identify, review and meta-analyse predictors of outcomes of any type of treatment for late-life depression. METHODS Pubmed, Embase, CINAHL, Web of Science and PsycINFO were searched for studies published up to December 2016. Primary and secondary studies reported treatment predictors from randomised controlled trials of any treatment for patients with major depressive disorder aged over 60 were included. Treatment outcomes included response, remission and change in depression score. RESULTS Sixty-seven studies met the inclusion criteria. Of 65 identified statistically significant predictors, only 7 were reported in at least 3 studies. Of these, 5 were included in meta-analyses, and only 3 were statistically significant. Most studies were rated as being of moderate to strong quality and satisfied key quality criteria for predictor analyses. LIMITATIONS The searches were limited to randomised controlled trials and most of the included studies were secondary analyses. CONCLUSIONS Baseline depression severity, co-morbid anxiety, executive dysfunction, current episode duration, early improvement, physical illnesses and age were reported as statistically significant predictors of treatment outcomes. Only the first three were significant in meta-analyses. Subgroup analyses showed differences in predictor effect between biological and psychosocial treatment. However, high heterogeneity and small study numbers suggest a cautious interpretation of results. These predictors were associated with various mechanisms including brain pathophysiology, perceived social support and proposed distinct types of depressive disorder. Further investigation of the clinical utility of these predictors is suggested.
Collapse
|
18
|
Busch Y, Menke A. Blood-based biomarkers predicting response to antidepressants. J Neural Transm (Vienna) 2018; 126:47-63. [PMID: 29374800 DOI: 10.1007/s00702-018-1844-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023]
Abstract
Major depressive disorder is a common, serious and in some cases, life-threatening condition and affects approximately 350 million people globally. Although there is effective treatment available for it, more than 50% of the patients fail to respond to the first antidepressant they receive. The selection of a distinct treatment is still exclusively based on clinical judgment without incorporating lab-derived objective measures. However, there is growing evidence of biomarkers that it helps to improve diagnostic processes and treatment algorithms. Here genetic markers and blood-based biomarkers of the monoamine pathways, inflammatory pathways and the hypothalamic-pituitary-adrenal (HPA) axis are reviewed. Promising findings arise from studies investigating inflammatory pathways and immune markers that may identify patients suitable for anti-inflammatory based treatment regimes. Next, an early normalization of a disturbed HPA axis or depleted neurotrophic factors may predict stable treatment response. Genetic markers within the serotonergic system may identify patients who are vulnerable because of stressful life events, but evidence for guiding treatment regimes still is inconsistent. Therefore, there is still a great need for studies investigating and validating biomarkers for the prediction of treatment response to facilitate the treatment selection and shorten the time to remission and thus provide personalized medicine in psychiatry.
Collapse
Affiliation(s)
- Yasmin Busch
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Würzburg, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Würzburg, Germany. .,Comprehensive Heart Failure Center, University Hospital of Wuerzburg, Am Schwarzenberg 15, 97080, Würzburg, Germany.
| |
Collapse
|
19
|
Ozbey G, Celikel FC, Cumurcu BE, Kan D, Yucel B, Hasbek E, Percin F, Guzey IC, Uluoglu C. Influence of ABCB1 polymorphisms and serum concentrations on venlafaxine response in patients with major depressive disorder. Nord J Psychiatry 2017; 71:230-237. [PMID: 28079463 DOI: 10.1080/08039488.2016.1268203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The pharmacokinetics and the pharmacodynamics of antidepressants show large inter-individual variations which result in unpredictable clinical responses. AIM The aim of the study was to examine the effect of ABCB1 polymorphisms and the serum concentrations on the efficacy and tolerability of venlafaxine in patients with major depressive disorder (MDD). METHODS Fifty-two outpatients who met the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition (DSM-IV) criteria for MDD were recruited for the study. The severity of depression was assessed using the 17-item Hamilton Rating Scale for Depression scale (HDRS17) and tolerability was assessed based on a query regarding side-effects for 6 weeks. The ABCB1 C3435T/A and G2677T/A polymorphisms were genotyped by PCR/RFLP and steady-state serum venlafaxine concentrations were measured by high-performance liquid chromatography. RESULTS Patients with the TT genotype for the C3435T and the TT/TA genotype for the G2677T/A polymorphism showed significantly higher frequencies in venlafaxine-induced akathisia. This relationship was not observed for efficacy. As regards serum venlafaxine concentrations, patient groups showed no significant differences in efficacy and tolerability. CONCLUSION The results suggest that individuals with the TT-TT/TA genotypes for the C3435T-G2677T/A polymorphisms of ABCB1 may be pre-disposed to a risk of akathisia.
Collapse
Affiliation(s)
- Gul Ozbey
- a Department of Pharmacology , Akdeniz University Medical Faculty , Antalya , Turkey
| | | | | | - Derya Kan
- d Department of Genetics , Gazi University Medical Faculty , Ankara , Turkey
| | | | - Ekrem Hasbek
- f Department of Psychiatry , Sivas State Hospital , Sivas , Turkey
| | - Ferda Percin
- g Department of Genetics , Gazi University Medical Faculty , Ankara , Turkey
| | - Ismail Cüneyt Guzey
- h Department of Research and Development, Division of Psychiatry , St Olavs University Hospital , Trondheim , Norway.,i Department of Neuroscience, Faculty of Medicine , Norwegian University of Science and Technology , Trondheim , Norway
| | - Canan Uluoglu
- j Department of Pharmacology , Gazi University Medical Faculty , Ankara , Turkey
| |
Collapse
|
20
|
Ramos M, Berrogain C, Concha J, Lomba L, García CB, Ribate MP. Pharmacogenetic studies: a tool to improve antidepressant therapy. Drug Metab Pers Ther 2016; 31:197-204. [PMID: 27889704 DOI: 10.1515/dmpt-2016-0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
The World Health Organization (WHO) predicts that major depressive disorder (MDD) will be the second leading cause of death and disability by 2020. Nowadays, approximately 60-70% of patients with this disorder have shown the lack of effectiveness and tolerability of the therapy with antidepressants. The US Food and Drug Administration (FDA) and the European Medicine Agency (EMA) are including pharmacogenetic information in the labeling of several antidepressants. The presence of this information represents the relevance of genetic polymorphisms in drug response. These pharmacogenetic studies have been based on the knowledge of genes involved in pharmacokinetic (CYP2D6, CYP2C19 and ABCB1) and pharmacodynamic (SLC6A4, HTR2A, BDNF, GNB3 and FKBP5) processes of antidepressant medications. The knowledge of the genotype of patients with MDD is an important tool for personalized therapy that can improve their clinical response to treatment. In this review, we highlight the most relevant genes involved in the metabolism of antidepressants (ADs) or the genes related to the presence of adverse reactions.
Collapse
|
21
|
Pharmacogenetics and Imaging-Pharmacogenetics of Antidepressant Response: Towards Translational Strategies. CNS Drugs 2016; 30:1169-1189. [PMID: 27752945 DOI: 10.1007/s40263-016-0385-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genetic variation underlies both the response to antidepressant treatment and the occurrence of side effects. Over the past two decades, a number of pharmacogenetic variants, among these the SCL6A4, BDNF, FKBP5, GNB3, GRIK4, and ABCB1 genes, have come to the forefront in this regard. However, small effects sizes, mixed results in independent samples, and conflicting meta-analyses results led to inherent difficulties in the field of pharmacogenetics translating these findings into clinical practice. Nearly all antidepressant pharmacogenetic variants have potentially pleiotropic effects in which they are associated with major depressive disorder, intermediate phenotypes involved in emotional processes, and brain areas affected by antidepressant treatment. The purpose of this article is to provide a comprehensive review of the advances made in the field of pharmacogenetics of antidepressant efficacy and side effects, imaging findings of antidepressant response, and the latest results in the expanding field of imaging-pharmacogenetics studies. We suggest there is mounting evidence that genetic factors exert their impact on treatment response by influencing brain structural and functional changes during antidepressant treatment, and combining neuroimaging and genetic methods may be a more powerful way to detect biological mechanisms of response than either method alone. The most promising imaging-pharmacogenetics findings exist for the SCL6A4 gene, with converging associations with antidepressant response, frontolimbic predictors of affective symptoms, and normalization of frontolimbic activity following antidepressant treatment. More research is required before imaging-pharmacogenetics informed personalized medicine can be applied to antidepressant treatment; nevertheless, inroads have been made towards assessing genetic and neuroanatomical liability and potential clinical application.
Collapse
|
22
|
Abstract
P-glycoprotein (P-gp), the gene product of ABCB1, is a drug transporter at the blood–brain barrier and could be a limiting factor for entrance of antidepressants into the brain, the target site of antidepressant action. Animal studies showed that brain concentrations of many antidepressants depend on P-gp. In humans, ABCB1 genotyping in the treatment of depression rests on the assumption that genetic variations in ABCB1 explain individual differences in antidepressant response via their effects on P-gp expression at the blood–brain barrier. High P-gp expression is hypothesized to lead to lower and often insufficient brain concentrations of P-gp substrate antidepressants. In this review, we summarize 32 studies investigating the question of whether ABCB1 polymorphisms predict clinical efficacy and/or tolerability of antidepressants in humans and evaluate the clinical application status of ABCB1 genotyping in depression treatment.
Collapse
Affiliation(s)
- Tanja Maria Brückl
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2–10, 80804 Munich, Germany
| | - Manfred Uhr
- Clinical Laboratory, Max Planck Institute of Psychiatry, Kraepelinstr. 2–10, 80804 Munich, Germany
| |
Collapse
|
23
|
Daud ANA, Bergman JEH, Kerstjens-Frederikse WS, Groen H, Wilffert B. The Risk of Congenital Heart Anomalies Following Prenatal Exposure to Serotonin Reuptake Inhibitors-Is Pharmacogenetics the Key? Int J Mol Sci 2016; 17:ijms17081333. [PMID: 27529241 PMCID: PMC5000730 DOI: 10.3390/ijms17081333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Serotonin reuptake inhibitors (SRIs) are often prescribed during pregnancy. Previous studies that found an increased risk of congenital anomalies, particularly congenital heart anomalies (CHA), with SRI use during pregnancy have created concern among pregnant women and healthcare professionals about the safety of these drugs. However, subsequent studies have reported conflicting results on the association between CHA and SRI use during pregnancy. These discrepancies in the risk estimates can potentially be explained by genetic differences among exposed individuals. In this review, we explore the potential pharmacogenetic predictors involved in the pharmacokinetics and mechanism of action of SRIs, and their relation to the risk of CHA. In general, the risk is dependent on the maternal concentration of SRIs and the foetal serotonin level/effect, which can be modulated by the alteration in the expression and/or function of the metabolic enzymes, transporter proteins and serotonin receptors involved in the serotonin signalling of the foetal heart development. Pharmacogenetics might be the key to understanding why some children exposed to SRIs develop a congenital heart anomaly and others do not.
Collapse
Affiliation(s)
- Aizati N A Daud
- Department of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics, University of Groningen, 9713AV Groningen, The Netherlands.
- School of Pharmaceutical Sciences, Discipline of Clinical Pharmacy, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Jorieke E H Bergman
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713AV Groningen, The Netherlands.
| | | | - Henk Groen
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713AV Groningen, The Netherlands.
| | - Bob Wilffert
- Department of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics, University of Groningen, 9713AV Groningen, The Netherlands.
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713AV Groningen, The Netherlands.
| |
Collapse
|
24
|
Fabbri C, Crisafulli C, Calabrò M, Spina E, Serretti A. Progress and prospects in pharmacogenetics of antidepressant drugs. Expert Opin Drug Metab Toxicol 2016; 12:1157-68. [DOI: 10.1080/17425255.2016.1202237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical Science, Odontoiatric and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Marco Calabrò
- Department of Biomedical Science, Odontoiatric and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Edoardo Spina
- Department of Biomedical Science, Odontoiatric and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Eyre HA, Eskin A, Nelson SF, St. Cyr NM, Siddarth P, Baune BT, Lavretsky H. Genomic predictors of remission to antidepressant treatment in geriatric depression using genome-wide expression analyses: a pilot study. Int J Geriatr Psychiatry 2016; 31:510-7. [PMID: 26471432 PMCID: PMC5567872 DOI: 10.1002/gps.4356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/21/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This first pilot study of genome-wide expression as predictor of antidepressant response in late-life depression examined genome-wide transcriptional profiles in a randomized placebo-controlled trial of combined methylphenidate and citalopram. METHODS Genome-wide transcriptional profiles were examined in peripheral blood leukocytes sampled at baseline and 16 weeks from 35 older adults with major depression, who were randomized to methylphenidate + citalopram, citalopram + placebo, or methylphenidate + placebo. Methylphenidate doses ranged between 10 and 40 mg/day, and citalopram doses ranged between 20 and 60 mg/day. Remission was defined as Hamilton Depression Rating Scale score of 6 or below. Early remission was achieved in the first 4 weeks of treatment. We hypothesized that differential gene expression at baseline can predict antidepressant response. RESULTS We analyzed gene expression in 24 remitters and 11 non-remitters. At baseline, we found three genes showing higher expression in all remitters versus non-remitters that satisfied the established level of significance: a fold change of 2 and p-value of 0.05 that included HLA-DRB5, SELENBP1, and LOC388588. Two gene transcripts showed higher expression in early remitters at baseline compared with non-remitters. The first gene was CA1 carbonic anhydrase gene, on chromosome 8 involved in respiratory function (fold change 2.54; p = 0.03). The second gene was the SNCA-α-synuclein gene, implicated, which binds to dopamine transporter (fold change 2.1; p = 0.03). CONCLUSIONS Remission to antidepressants in geriatric depression may be associated with a particular gene expression profile in monoaminergic and metabolic pathways and needs to be replicated in a larger sample.
Collapse
Affiliation(s)
- Harris A. Eyre
- Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, Australia,UCLA Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Ascia Eskin
- Department of Human Genetics, UCLA, Los Angeles, CA, USA
| | | | - Natalie M. St. Cyr
- UCLA Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Prabha Siddarth
- UCLA Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Bernhard T. Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen Lavretsky
- UCLA Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| |
Collapse
|
26
|
Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature. Clin Pharmacokinet 2016; 54:709-35. [PMID: 25860377 DOI: 10.1007/s40262-015-0267-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.
Collapse
Affiliation(s)
- Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Strasse 3, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
27
|
Breitenstein B, Scheuer S, Brückl TM, Meyer J, Ising M, Uhr M, Holsboer F. Association of ABCB1 gene variants, plasma antidepressant concentration, and treatment response: Results from a randomized clinical study. J Psychiatr Res 2016; 73:86-95. [PMID: 26704739 DOI: 10.1016/j.jpsychires.2015.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022]
Abstract
P-glycoprotein, encoded by the ABCB1 gene, functions as an ATP-driven efflux pump in the blood-brain barrier, extruding its substrates and thereby limiting their passage into the brain. ABCB1 polymorphisms predicted antidepressant drug response: Minor allele carriers of SNPs rs2032583 and rs2235015 had higher remission rates than major allele homozygotes. The aim of the current study was to evaluate an ABCB1 genotype-dependent efficacy of a quick dose escalation strategy. Depressed inpatients (n = 73) treated with antidepressants that are P-glycoprotein substrates were randomly assigned to a standard or high dose condition for 28 days. HAM-D scores, adverse effects and plasma antidepressant concentration were measured weekly and tested among two intronic SNPs rs2032583 and rs2235015. A treatment as usual control sample (n = 128) was retrospectively matched to the study group by gender, age, and diagnosis. There was a significant interaction of genotype x plasma antidepressant concentration: Minor allele carriers of rs2032583 [F(1,65) = 7.221, p = 0.009] and rs2235015 [F(1,65) = 4.939, p = 0.030] whose plasma drug concentration were within recommended range had a greater symptom reduction at study endpoint which exceeded the therapeutic benefit of the treatment as usual group [for rs2032583: F(1,163) = 4.366, p = 0.038]. Minor allele carriers of rs2032583 with high plasma drug levels had more sleep-related side effects than major allele homozygotes with high plasma drug levels. The treatment of MDD can be optimized by ABCB1 genotyping combined with monitoring of plasma drug concentrations: For minor allele carriers of rs2032583 and rs2235015, plasma antidepressant levels should not exceed the recommended range in order to obtain optimal treatment outcome.
Collapse
Affiliation(s)
- Barbara Breitenstein
- HMNC GmbH, Maximilianstr. 34, 80539 Munich, Germany; Max Planck Institute of Psychiatry, Kraepelinstr. 2 - 10, 80804 Munich, Germany; Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Johanniterufer 15, 54290 Trier, Germany.
| | - Sandra Scheuer
- Max Planck Institute of Psychiatry, Kraepelinstr. 2 - 10, 80804 Munich, Germany.
| | - Tanja Maria Brückl
- Max Planck Institute of Psychiatry, Kraepelinstr. 2 - 10, 80804 Munich, Germany.
| | - Jobst Meyer
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Johanniterufer 15, 54290 Trier, Germany.
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Kraepelinstr. 2 - 10, 80804 Munich, Germany.
| | - Manfred Uhr
- Max Planck Institute of Psychiatry, Kraepelinstr. 2 - 10, 80804 Munich, Germany.
| | - Florian Holsboer
- HMNC GmbH, Maximilianstr. 34, 80539 Munich, Germany; Max Planck Institute of Psychiatry, Kraepelinstr. 2 - 10, 80804 Munich, Germany.
| |
Collapse
|
28
|
Chang HH, Chou CH, Yang YK, Lee IH, Chen PS. Association between ABCB1 Polymorphisms and Antidepressant Treatment Response in Taiwanese Major Depressive Patients. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:250-5. [PMID: 26598582 PMCID: PMC4662166 DOI: 10.9758/cpn.2015.13.3.250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 01/16/2023]
Abstract
Objective The multidrug resistance 1 (ABCB1, MDR1) gene, encoding P-glycoprotein, is extensively distributed and expressed in various tissues, such as a blood-brain barrier transporter. P-glycoprotein plays an important role in controlling the passage of substances between the blood and brain. The current study aimed to investigate possible associations of functional ABCB1 polymorphisms (C3435T, G2677T and C1236T) with response to antidepressant treatment and serum cortisol levels in Taiwanese patients with major depressive disorder (MDD). Methods We recruited 112 MDD patients who were randomized to fluoxetine (n=58, mean dose: 21.4±4.5 mg/day) or venlafaxine (n=54, 80.2±34.7 mg/day) treatment for 6 weeks. The 21-item Hamilton Depression Rating Scale (HDRS) was administered initially and biweekly after treatment, and cortisol levels were assessed initially and after 6-week antidepressant treatment. Results The initial HDRS scores and the HDRS scores after six weeks of antidepressant treatment were not significantly different among the different genotypes in each polymorphism of ABCB1. The percentage changes of HDRS scores over time were significantly different in the polymorphisms of ABCB1 G2677T (p=0.002). MDD patients with the G/G genotype of ABCB1 G2677T had a worse antidepressant treatment response. However, the polymorphisms of ABCB1 genotypes were not significantly associated with cortisol levels before and after antidepressant treatment in MDD patients. Conclusion The results suggested that the variants of ABCB1 may influence the short-term antidepressant response in MDD patients. Further details of the underlying mechanisms of ABCB1 in antidepressant treatment remain to be clarified.
Collapse
Affiliation(s)
- Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Hsi Chou
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - I Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
29
|
Fabbri C, Serretti A. Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications. Curr Psychiatry Rep 2015; 17:50. [PMID: 25980509 DOI: 10.1007/s11920-015-0594-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pharmacogenetics of antidepressants has been not only a challenging but also frustrating research field since its birth in the 1990s. Indeed, great expectations followed the first evidence of familiar aggregation of antidepressant response. Despite the progress from candidate gene studies to genome-wide association studies (GWAS), results fell out the expectations and they were often inconsistent. Anyway, the cumulative evidence supports the involvement of some genes and molecular pathways in antidepressant efficacy. The best single genes are SLC6A4, HTR2A, BDNF, GNB3, FKBP5, ABCB1, and cytochrome P450 genes (CYP2D6 and CYP2C19). Molecular pathways involved in inflammation and neuroplasticity show the greatest support. The first studies evaluating benefits of genotype-guided antidepressant treatments provided encouraging results and confirmed the relevance of SLC6A4, HTR2A, ABCB1, and cytochrome P450 genes. Further progress in genotyping and data analysis would allow to move forward and complete the understanding of antidepressant pharmacogenetics and its translation into clinical applications.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy,
| | | |
Collapse
|
30
|
Breitenstein B, Brückl TM, Ising M, Müller-Myhsok B, Holsboer F, Czamara D. ABCB1 gene variants and antidepressant treatment outcome: A meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:274-83. [PMID: 25847751 DOI: 10.1002/ajmg.b.32309] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/02/2015] [Indexed: 12/28/2022]
Abstract
The efflux pump P-glycoprotein (P-gp), a gene product of the ABCB1 gene, plays a pivotal role in the transfer of various molecules across the blood-brain barrier. P-gp protects the brain by selectively extruding its substrates, including certain antidepressive drugs, thereby limiting their uptake into the brain. Uhr et al. [2008] first showed that ABCB1 variants predicted the remission to antidepressants with P-gp substrate properties in patients suffering from major depression (MD). Other studies investigating the influence of ABCB1 polymorphisms on antidepressant treatment response produced inconclusive results. In this meta-analysis, we systematically summarized 16 pharmacogenetic studies focused on the association of ABCB1 variants and antidepressant treatment outcome in patients with MD (overall n = 2695). We investigated the association of treatment outcome and six ABCB1 single nucleotide polymorphisms (SNPs): rs2032583, rs2235015, rs2235040, rs1045642, rs2032582, rs1128503. We stratified for admission status, ethnicity, and prescription of concomitant medication. SNP rs2032583 showed a nominally significant association across all studies (P = 0.035, SNP was studied in a total of 2,037 patients) and a significant Bonferroni-corrected association among inpatients (P = 1.5 × 10(-05) , n = 485). Also SNP rs2235015 was significantly associated with antidepressant treatment outcome withstanding Bonferroni correction (P = 3.0 × 10(-04) ) among inpatients in a smaller subsample (n = 195). There were no significant associations of the other SNPs tested with antidepressant treatment outcome. Future pharmacogenetic association studies should focus on the role of the ABCB1 SNP rs2032583 in antidepressant outcome prediction.
Collapse
Affiliation(s)
- Barbara Breitenstein
- HMNC GmbH, Munich, Germany.,Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | | | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,University of Liverpool, Institute of Translational Medicine, Liverpool, UK
| | - Florian Holsboer
- HMNC GmbH, Munich, Germany.,Max Planck Institute of Psychiatry, Munich, Germany
| | | |
Collapse
|
31
|
Bet PM, Verbeek EC, Milaneschi Y, Straver DBM, Uithuisje T, Bevova MR, Hugtenburg JG, Heutink P, Penninx BWJH, Hoogendijk WJG. A common polymorphism in the ABCB1 gene is associated with side effects of PGP-dependent antidepressants in a large naturalistic Dutch cohort. THE PHARMACOGENOMICS JOURNAL 2015; 16:202-8. [DOI: 10.1038/tpj.2015.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 11/09/2022]
|
32
|
Xie WW, Zhang L, Wu RR, Yu Y, Zhao JP, Li LH. Case-control association study of ABCB1 gene and major depressive disorder in a local Chinese Han population. Neuropsychiatr Dis Treat 2015; 11:1967-71. [PMID: 26347319 PMCID: PMC4531014 DOI: 10.2147/ndt.s87175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Human P-glycoprotein encoded by the ATP-binding cassette sub-family B member 1 (ABCB1) gene is expressed in the blood-brain barrier. ABCB1 protects the brain from many drugs and toxins such as glucocorticoids through the efflux pump. Recent evidence suggests that a specific allele of the ABCB1 gene confers susceptibility to major depressive disorder (MDD) in the Japanese population. The aim of this study was to explore the association of ABCB1 gene polymorphisms with MDD in a local Chinese Han population. METHODS Two hundred and ninety-two MDD patients and 208 unrelated individuals were matched by age and sex and examined using a case-control design. Six single nucleotide polymorphisms (SNPs) of the ABCB1 gene, including rs1045642, rs2032583, rs2032582, rs2235040, rs1128503, and rs2235015, were genotyped by ligase detection reaction and multiplex polymerase chain reaction. Linkage disequilibrium and haplotype analysis were investigated in the two study groups. RESULTS Significant protection for MDD individuals carrying the TG haplotype of rs1045642-rs2032582 was observed (odds ratio 0.470, 95% confidence interval 0.251-0.897, P=0.01). The rs2032582 (G2677T) and rs1128503 (C1236T) SNPs of ABCB1 showed nominal associations with MDD; the other four SNPs of the ABCB1 gene were not associated with MDD. CONCLUSION Chinese individuals carrying the TG haplotype of rs1045642-rs2032582 had a nearly 53% lower risk of developing MDD. To the best of our knowledge, this is the first report to analyze the effect of ABCB1 polymorphism on the risk of MDD in a Chinese population.
Collapse
Affiliation(s)
- Wei-Wei Xie
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China ; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, People's Republic of China
| | - Lin Zhang
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China
| | - Ren-Rong Wu
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China
| | - Yan Yu
- People's Hospital of Hunan Province, Changsha, People's Republic of China
| | - Jing-Ping Zhao
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China
| | - Le-Hua Li
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
33
|
Ray A, Tennakoon L, Keller J, Sarginson JE, Ryan HS, Murphy GM, Lazzeroni LC, Trivedi MH, Kocsis JH, DeBattista C, Schatzberg AF. ABCB1 (MDR1) predicts remission on P-gp substrates in chronic depression. THE PHARMACOGENOMICS JOURNAL 2014; 15:332-9. [PMID: 25487678 DOI: 10.1038/tpj.2014.72] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/04/2014] [Accepted: 09/19/2014] [Indexed: 01/16/2023]
Abstract
The hypothesis that allelic variation in the multidrug resistance-1 (MDR1 or ABCB1) gene encoding the P-glycoprotein (P-gp) blood-brain barrier efflux pump is associated with remission and side effects was tested in chronic major depression patients treated with P-gp substrates. In 83 patients from the REVAMP trial, frequency of and time to remission as well as side effects was tested among genotype groups at 6 ABCB1 single nucleotide polymorphisms (SNPs). These six SNPs are significantly associated with remission and time to remission, with minor allele carriers on rs2235040 and rs9282564 attaining statistical significance after controlling for the other ABCB1 SNPs. The six ABCB1 SNPs are also significantly associated with the average side effects. However, here common homozygotes on rs2235040 and rs9282564 demonstrated significantly higher side effects after controlling for the effects of the other ABCB1 SNPs. These findings confirm and extend previous observations that minor alleles of two ABCB1 SNPs predict remission to treatment with substrates and demonstrate that common homozygotes on these SNPs experience greater side effects. Results point to the potential importance of ABCB1 variation for personalized medicine approaches to treating depression.
Collapse
Affiliation(s)
- A Ray
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - L Tennakoon
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - J Keller
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - J E Sarginson
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - H S Ryan
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - G M Murphy
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - L C Lazzeroni
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - M H Trivedi
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - J H Kocsis
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - C DeBattista
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - A F Schatzberg
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| |
Collapse
|
34
|
Affiliation(s)
- Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
35
|
Sucrose consumption test reveals pharmacoresistant depression-associated behavior in two mouse models of temporal lobe epilepsy. Exp Neurol 2014; 263:263-71. [PMID: 25220610 DOI: 10.1016/j.expneurol.2014.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/16/2014] [Accepted: 09/04/2014] [Indexed: 01/21/2023]
Abstract
Among the comorbidities observed in epilepsy patients depression is the most frequent one. Likewise, depression by itself is accompanied by an increased risk to develop epilepsy. Both epilepsy and depression are characterized by a high incidence of pharmacoresistance, which might be based on overactivity of multidrug transporters like P-glycoprotein at the blood-brain barrier. Using genetically modified mice in preclinical epilepsy research is pivotal for investigating this bidirectional relationship. In the present study, we used the sucrose consumption test (SCT) in the pilocarpine and the intrahippocampal kainate mouse post-status epilepticus model to reveal anhedonic behavior, i.e. hyposensitivity to pleasure, as a key symptom of depression. Mice were repetitively investigated by SCT during early epilepsy and the chronic phase of the disease, during which response to antidepressant drug treatment was assessed. SCT revealed long-lasting anhedonia in both models. Anhedonia appeared to be pharmacoresistant, as neither chronic treatment with imipramine in the pilocarpine model nor chronic treatment with fluoxetine in the kainate model could annihilate the differences in sucrose consumption between control and epileptic mice. Moreover, knock-out of P-glycoprotein did not improve the treatment effect of fluoxetine. In conclusion, our findings show for the first time that the SCT is suited for detection of depression-like behavior in mouse models of temporal-lobe epilepsy. Both models might serve as tools to further investigate the neurobiology and pharmacology of epilepsy-associated pharmacoresistant depression.
Collapse
|
36
|
O'Leary OF, O'Brien FE, O'Connor RM, Cryan JF. Drugs, genes and the blues: Pharmacogenetics of the antidepressant response from mouse to man. Pharmacol Biochem Behav 2014; 123:55-76. [PMID: 24161683 DOI: 10.1016/j.pbb.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/04/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
|
37
|
Fabbri C, Minarini A, Niitsu T, Serretti A. Understanding the pharmacogenetics of selective serotonin reuptake inhibitors. Expert Opin Drug Metab Toxicol 2014; 10:1093-118. [PMID: 24930681 DOI: 10.1517/17425255.2014.928693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The genetic background of antidepressant response represents a unique opportunity to identify biological markers of treatment outcome. Encouraging results alternating with inconsistent findings made antidepressant pharmacogenetics a stimulating but often discouraging field that requires careful discussion about cumulative evidence and methodological issues. AREAS COVERED The present review discusses both known and less replicated genes that have been implicated in selective serotonin reuptake inhibitors (SSRIs) efficacy and side effects. Candidate genes studies and genome-wide association studies (GWAS) were collected through MEDLINE database search (articles published till January 2014). Further, GWAS signals localized in promising genetic regions according to candidate gene studies are reported in order to assess the general comparability of results obtained through these two types of pharmacogenetic studies. Finally, a pathway enrichment approach is applied to the top genes (those harboring SNPs with p < 0.0001) outlined by previous GWAS in order to identify possible molecular mechanisms involved in SSRI effect. EXPERT OPINION In order to improve the understanding of SSRI pharmacogenetics, the present review discusses the proposal of moving from the analysis of individual polymorphisms to genes and molecular pathways, and from the separation across different methodological approaches to their combination. Efforts in this direction are justified by the recent evidence of a favorable cost-utility of gene-guided antidepressant treatment.
Collapse
Affiliation(s)
- Chiara Fabbri
- University of Bologna, Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences , Viale Carlo Pepoli 5, 40123 Bologna , Italy +39 051 6584233 ; +39 051 521030 ;
| | | | | | | |
Collapse
|
38
|
Salloum NC, McCarthy MJ, Leckband SG, Kelsoe JR. Towards the clinical implementation of pharmacogenetics in bipolar disorder. BMC Med 2014; 12:90. [PMID: 24885933 PMCID: PMC4039055 DOI: 10.1186/1741-7015-12-90] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/29/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients. DISCUSSION A number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD. SUMMARY Based upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD.
Collapse
Affiliation(s)
| | | | | | - John R Kelsoe
- Department of Psychiatry (0603), University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Abstract
BACKGROUND The gene product of the ABCB1 gene, the P-glycoprotein, functions as a custodian molecule in the blood-brain barrier and regulates the access of most antidepressants into the brain. Previous studies showed that ABCB1 polymorphisms predicted the response to antidepressants that are substrates of the P-gp, while the response to nonsubstrates was not influenced by ABCB1 polymorphisms. The aim of the present study was to evaluate the clinical application of ABCB1 genotyping in antidepressant pharmacotherapy. METHODS Data came from 58 depressed inpatients participating in the Munich Antidepressant Response Signature (MARS) project, whose ABCB1 gene test results were implemented into the clinical decision making process. Hamilton Depression Rating Scale (HAM-D) scores, remission rates, and duration of hospital stay were documented with dose and kind of antidepressant treatment. RESULTS Patients who received ABCB1 genotyping had higher remission rates [χ2(1) = 6.596, p = 0.005, 1-sided] and lower Hamilton sores [t(111) = 2.091, p = 0.0195, 1-sided] at the time of discharge from hospital as compared to patients without ABCB1 testing. Among major allele homozygotes for ABCB1 single nucleotide polymorphisms (SNPs) rs2032583 and rs2235015 (TT/GG genotype), an increase in dose was associated with a shorter duration of hospital stay [rho(28) = -0.441, p = 0.009, 1-sided], whereas other treatment strategies (eg, switching to a nonsubstrate) showed no significant associations with better treatment outcome. Discussion The implementation of ABCB1 genotyping as a diagnostic tool influenced clinical decisions and led to an improvement of treatment outcome. Patients carrying the TT/GG genotype seemed to benefit from an increase in P-gp substrate dose. CONCLUSION Results suggest that antidepressant treatment of depression can be optimized by the clinical application of ABCB1 genotyping.
Collapse
|
40
|
Belzung C. Innovative drugs to treat depression: did animal models fail to be predictive or did clinical trials fail to detect effects? Neuropsychopharmacology 2014; 39:1041-51. [PMID: 24345817 PMCID: PMC3957126 DOI: 10.1038/npp.2013.342] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 02/07/2023]
Abstract
Over recent decades, encouraging preclinical evidence using rodent models pointed to innovative pharmacological targets to treat major depressive disorder. However, subsequent clinical trials have failed to show convincing results. Two explanations for these rather disappointing results can be put forward, either animal models of psychiatric disorders have failed to predict the clinical effectiveness of treatments or clinical trials have failed to detect the effects of these new drugs. A careful analysis of the literature reveals that both statements are true. Indeed, in some cases, clinical efficacy has been predicted on the basis of inappropriate animal models, although the contrary is also true, as some clinical trials have not targeted the appropriate dose or clinical population. On the one hand, refinement of animal models requires using species that have better homological validity, designing models that rely on experimental manipulations inducing pathological features, and trying to model subtypes of depression. On the other hand, clinical research should consider carefully the results from preclinical studies, in order to study these compounds at the correct dose, in the appropriate psychiatric nosological entity or symptomatology, in relevant subpopulations of patients characterized by specific biomarkers. To achieve these goals, translational research has to strengthen the dialogue between basic and clinical science.
Collapse
Affiliation(s)
- Catherine Belzung
- INSERM 930 and Université François Rabelais Tours, UFR Sciences et Techniques, Parc Grandmont, Tours, France,INSERM 930 and Université François Rabelais Tours, UFR Sciences et Techniques, Parc Grandmont, Tours 37200, France. Tel:+33 2 47 36 69 94; Fax:+33 2 47 36 72 85; E-mail:
| |
Collapse
|
41
|
Gassó P, Rodríguez N, Mas S, Pagerols M, Blázquez A, Plana MT, Torra M, Lázaro L, Lafuente A. Effect of CYP2D6, CYP2C9 and ABCB1 genotypes on fluoxetine plasma concentrations and clinical improvement in children and adolescent patients. THE PHARMACOGENOMICS JOURNAL 2014; 14:457-62. [DOI: 10.1038/tpj.2014.12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 11/09/2022]
|
42
|
Breitenstein B, Scheuer S, Holsboer F. Are there meaningful biomarkers of treatment response for depression? Drug Discov Today 2014; 19:539-61. [PMID: 24561326 DOI: 10.1016/j.drudis.2014.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/29/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
During the past decades, the prevalence of affective disorders has been on the rise globally, with only one out of three patients achieving remission in acute treatment with antidepressants. The identification of physiological markers that predict treatment course proves useful in increasing therapeutic success. On the basis of well-documented, recent findings in depression research, we highlight and discuss the most promising biomarkers for antidepressant therapy response. These include genetic variants and gene expression profiles, proteomic and metabolomic markers, neuroendocrine function tests, electrophysiology and imaging techniques. Ultimately, this review proposes an integrative use of biomarkers for antidepressant treatment outcome.
Collapse
Affiliation(s)
- Barbara Breitenstein
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Florian Holsboer
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
43
|
Fabbri C, Porcelli S, Serretti A. From pharmacogenetics to pharmacogenomics: the way toward the personalization of antidepressant treatment. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2014; 59:62-75. [PMID: 24881125 PMCID: PMC4079233 DOI: 10.1177/070674371405900202] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Major depressive disorder is the most common psychiatric disorder, worldwide, yet response and remission rates are still unsatisfactory. The identification of genetic predictors of antidepressant (AD) response could provide a promising opportunity to improve current AD efficacy through the personalization of treatment. The major steps and findings along this path are reviewed together with their clinical implications and limitations. METHOD We systematically reviewed the literature through MEDLINE and Embase database searches, using any word combination of "antidepressant," "gene," "polymorphism," "pharmacogenetics," "genome-wide association study," "GWAS," "response," and "adverse drug reactions." Experimental works and reviews published until March 2012 were collected and compared. RESULTS Numerous genes pertaining to several functional systems were associated with AD response. The more robust findings were found for the following genes: solute carrier family 6 (neurotransmitter transporter), member 4; serotonin receptor 1A and 2A; brain-derived neurotrophic factor; and catechol-O-methyltransferase. Genome-wide association studies (GWASs) provided many top markers, even if none of them reached genome-wide significance. CONCLUSIONS AD pharmacogenetics have not produced any knowledge applicable to routine clinical practice yet, as results were mainly inconsistent across studies. Despite this, the rising awareness about methodological deficits of past studies could allow for the identication of more suitable strategies, such as the integration of the GWAS approach with the candidate gene approach, and innovative methodologies, such as pathway analysis and study of depressive endophenotypes.
Collapse
Affiliation(s)
- Chiara Fabbri
- Researcher, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Porcelli
- Researcher, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Professor, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Keers R, Aitchison KJ. Pharmacogenetics of antidepressant response. Expert Rev Neurother 2014; 11:101-25. [DOI: 10.1586/ern.10.186] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
El-Hage W, Leman S, Camus V, Belzung C. Mechanisms of antidepressant resistance. Front Pharmacol 2013; 4:146. [PMID: 24319431 PMCID: PMC3837246 DOI: 10.3389/fphar.2013.00146] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/05/2013] [Indexed: 12/28/2022] Open
Abstract
Depression is one of the most frequent and severe mental disorder. Since the discovery of antidepressant (AD) properties of the imipramine and then after of other tricyclic compounds, several classes of psychotropic drugs have shown be effective in treating major depressive disorder (MDD). However, there is a wide range of variability in response to ADs that might lead to non response or partial response or in increased rate of relapse or recurrence. The mechanisms of response to AD therapy are poorly understood, and few biomarkers are available than can predict response to pharmacotherapy. Here, we will first review markers that can be used to predict response to pharmacotherapy, such as markers of drug metabolism or blood-brain barrier (BBB) function, the activity of specific brain areas or neurotransmitter systems, hormonal dysregulations or plasticity, and related molecular targets. We will describe both clinical and preclinical studies and describe factors that might affect the expression of these markers, including environmental or genetic factors and comorbidities. This information will permit us to suggest practical recommendations and innovative treatment strategies to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Wissam El-Hage
- INSERM 930, Faculté de Sciences et Techniques, Université François Rabelais Tours, France ; Centre Hospitalier Régional Universitaire de Tours, Centre Expert Dépression Résistante, Fondation FondaMental Tours, France
| | | | | | | |
Collapse
|
46
|
Human P-glycoprotein differentially affects antidepressant drug transport: relevance to blood-brain barrier permeability. Int J Neuropsychopharmacol 2013; 16:2259-72. [PMID: 23931269 DOI: 10.1017/s1461145713000692] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The pharmacological concept that inhibition of the drug efflux pump P-glycoprotein (P-gp) enhances brain distribution of the antidepressant imipramine in the rat has recently been demonstrated. To determine if these findings are relevant to humans, the present study investigated if imipramine is a transported substrate of human P-gp. Furthermore, additional experiments were carried out to determine if findings in relation to imipramine and human P-gp would apply to other antidepressants from a range of different classes. To this end, bidirectional transport experiments were carried out in the ABCB1-transfected MDCKII-MDR1 cell line. Transported substrates of human P-gp are subjected to net efflux in this system, exhibiting a transport ratio (TR) ≥ 1.5, and directional efflux is attenuated by co-incubation of a P-gp inhibitor. Imipramine was identified as a transported substrate of human P-gp (TR = 1.68, attenuated by P-gp inhibition). However, the antidepressants amitriptyline, duloxetine, fluoxetine and mirtazapine were not transported substrates of human P-gp (TR ≤ 1.16 in all cases). These results offer insight into the role of P-gp in the distribution of antidepressants, revealing that rodent findings pertaining to imipramine may translate to humans. Moreover, the present results highlight that other antidepressants may not be transported substrates of human P-gp.
Collapse
|
47
|
O'Brien FE, O'Connor RM, Clarke G, Dinan TG, Griffin BT, Cryan JF. P-glycoprotein inhibition increases the brain distribution and antidepressant-like activity of escitalopram in rodents. Neuropsychopharmacology 2013; 38:2209-19. [PMID: 23670590 PMCID: PMC3773671 DOI: 10.1038/npp.2013.120] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/27/2013] [Accepted: 05/07/2013] [Indexed: 02/07/2023]
Abstract
Despite the clinical prevalence of the antidepressant escitalopram, over 30% of escitalopram-treated patients fail to respond to treatment. Recent gene association studies have highlighted a potential link between the drug efflux transporter P-glycoprotein (P-gp) and response to escitalopram. The present studies investigated pharmacokinetic and pharmacodynamic interactions between P-gp and escitalopram. In vitro bidirectional transport studies revealed that escitalopram is a transported substrate of human P-gp. Microdialysis-based pharmacokinetic studies demonstrated that administration of the P-gp inhibitor cyclosporin A resulted in increased brain levels of escitalopram without altering plasma escitalopram levels in the rat, thereby showing that P-gp restricts escitalopram transport across the blood-brain barrier (BBB) in vivo. The tail suspension test (TST) was carried out to elucidate the pharmacodynamic impact of P-gp inhibition on escitalopram effect in a mouse model of antidepressant activity. Pre-treatment with the P-gp inhibitor verapamil enhanced the response to escitalopram in the TST. Taken together, these data indicate that P-gp may restrict the BBB transport of escitalopram in humans, potentially resulting in subtherapeutic brain concentrations in certain patients. Moreover, by verifying that increasing escitalopram delivery to the brain by P-gp inhibition results in enhanced antidepressant-like activity, we suggest that adjunctive treatment with a P-gp inhibitor may represent a beneficial approach to augment escitalopram therapy in depression.
Collapse
Affiliation(s)
- Fionn E O'Brien
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland,Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Richard M O'Connor
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland,Department of Psychiatry, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland,Department of Psychiatry, University College Cork, Cork, Ireland
| | - Brendan T Griffin
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland, Tel: +353 21 420 5426, Fax: +353 21 420 5479, E-mail:
| |
Collapse
|
48
|
Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:487-520. [PMID: 23852853 DOI: 10.1002/ajmg.b.32184] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is an emergent cause of personal and socio-economic burden, both for the high prevalence of the disorder and the unsatisfying response rate of the available antidepressant treatments. No reliable predictor of treatment efficacy and tolerance in the single patient is available, thus drug choice is based on a trial and error principle with poor clinical efficiency. Among modulators of treatment outcome, genetic polymorphisms are thought to explain a significant share of the inter-individual variability. The present review collected the main pharmacogenetic findings primarily about antidepressant response and secondly about antidepressant induced side effects, and discussed the main strengths and limits of both candidate and genome-wide association studies and the most promising methodological opportunities and challenges of the field. Despite clinical applications of antidepressant pharmacogenetics are not available yet, previous findings suggest that genotyping may be applied in the clinical practice. In order to reach this objective, further rigorous pharmacogenetic studies (adequate sample size, study of better defined clinical subtypes of MDD, adequate covering of the genetic variability), their combination with the results obtained through complementary methodologies (e.g., pathway analysis, epigenetics, transcriptomics, and proteomics), and finally cost-effectiveness trials are required.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
49
|
Association between genetic variation in the ABCB1 gene and switching, discontinuation, and dosage of antidepressant therapy: results from the Rotterdam Study. J Clin Psychopharmacol 2013; 33:546-50. [PMID: 23771194 DOI: 10.1097/jcp.0b013e318291c07b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The objective of this study was to investigate whether polymorphisms in the ABCB1 gene were associated with switching, with discontinuation of antidepressants within 45 days after starting therapy, and/or with dose change in a large prospective population-based cohort study. Between April 1, 1991, and December 31, 2007, there were 1257 incident users of antidepressants with known ABCB1 genotypes (1236C>T, 2677G>T/A, 3435C>T) in the population-based Rotterdam Study. Logistic regression models were used to estimate the genotype and haplotype effect on the risk of switching and discontinuation. In addition, the association between the haplotypes and the prescribed drug dosage was assessed per drug class. The separate polymorphisms in the ABCB1 gene were associated with increased risks of switching and discontinuation but reached only statistical significance for the association between the 3435C>T polymorphism and switching. In a model adjusted for age and sex, homozygous carriers of the T-T-T haplotype had an increased risk of switching (odds ratio, 4.22; 95% confidence interval, 1.30-13.7; P = 0.017) and discontinuation (odds ratio, 1.47; 95% confidence interval, 0.98-2.22; P = 0.063). Explained variance was 10.4% for switching and 2.5% for discontinuation. In contrast, no association was observed between the T-T-T haplotype and the prescribed dosage. In summary, this study showed that genetic variation in the ABCB1 gene might play a role in the risk of switching and discontinuation of antidepressant therapy but the clinical relevance is limited.
Collapse
|
50
|
Pitychoutis PM, Kokras N, Sanoudou D, Dalla C, Papadopoulou-Daifoti Z. Pharmacogenetic considerations for late life depression therapy. Expert Opin Drug Metab Toxicol 2013; 9:989-99. [DOI: 10.1517/17425255.2013.794786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|