1
|
Stajnko A, Palir N, Snoj Tratnik J, Mazej D, Sešek Briški A, Runkel AA, Horvat M, Falnoga I. Genetic susceptibility to low-level lead exposure in men: Insights from ALAD polymorphisms. Int J Hyg Environ Health 2024; 256:114315. [PMID: 38168581 DOI: 10.1016/j.ijheh.2023.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The genetic susceptibility to low-level lead (Pb) exposure in general populations has been poorly investigated and is limited to the single nucleotide polymorphism (SNP) rs1800435 in the delta-aminolevulinic acid dehydratase gene (ALAD). This study explored associations between ten selected ALAD SNPs with Pb concentrations in blood (BPb) and urine (UPb) among 281 men aged 18-49 years from Slovenia, including 20 individuals residing in a Pb-contaminated area. The geometric mean (range) of BPb and UPb were 19.6 (3.86-84.7) μg/L and 0.69 (0.09-3.82) μg/L SG, respectively. The possible genetic influence was assessed by examining SNP haplotypes, individual SNPs, and the combination of two SNPs using multiple linear regression analyses. While no significant associations were found for haplotypes, the presence of variant alleles of rs1800435 and rs1805312 resulted in an 11% and 13% decrease in BPb, respectively, while the presence of variant allele of rs1139488 (homozygous only) exhibited significant 20% increase in BPb, respectively. Additionally, variant allele of rs1800435 resulted in lower UPb. Individual SNPs in the model explained only around 1 additional percentage point of BPb variability. In contrast, combination analyses identified six combinations of two SNPs, which significantly explained 3-22 additional percentage points of BPb variability, with the highest explanatory power observed for the rs1800435-rs1139488 and rs1139488-rs1805313 combinations. Moreover, excluding participants from the Pb-contaminated area indicated that exposure level influenced SNPs-Pb associations. Our results confirm the importance of the ALAD gene in Pb kinetics even at low exposure levels. Additionally, we demonstrated that identifying individuals with specific combinations of ALAD SNPs explained a larger part of Pb variability, suggesting that these combinations, pending confirmation in other populations and further evaluation through mechanistic studies, may serve as superior susceptibility biomarker in Pb exposure compared to individual SNPs.
Collapse
Affiliation(s)
- Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| | - Neža Palir
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Alenka Sešek Briški
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000, Ljubljana, Slovenia
| | - Agneta Annika Runkel
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| |
Collapse
|
2
|
Soler-Blasco R, Harari F, Riutort-Mayol G, Murcia M, Lozano M, Irizar A, Marina LS, Zubero MB, Fernández-Jimenez N, Braeuer S, Ballester F, Llop S. Influence of genetic polymorphisms on arsenic methylation efficiency during pregnancy: Evidence from a Spanish birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165740. [PMID: 37495132 DOI: 10.1016/j.scitotenv.2023.165740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a widespread toxic metalloid. It is well-known that iAs metabolism and its toxicity are mediated by polymorphisms in AS3MT and other genes. However, studies during pregnancy are scarce. We aimed to examine the role of genetic polymorphisms in AS3MT, GSTO2, N6AMT1, MTHFR, MTR, FTCD, CBS, and FOLH1 in iAs methylation efficiency during pregnancy. METHODS The study included 541 pregnant participants from the INMA (Environment and Childhood) Spanish cohort. Using high-performance liquid chromatography coupled to inductively coupled plasma-tandem mass, we measured arsenic (iAs and the metabolites monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in urine samples collected during the first trimester. iAs methylation efficiency was determined based on relative concentrations of the As metabolites in urine (%MMA, %DMA, and %iAs). Thirty-two single nucleotide polymorphisms (SNPs) in nine genes were determined in maternal DNA; AS3MT haplotypes were inferred. We assessed the association between genotypes/haplotypes and maternal As methylation efficiency using multivariate linear regression models. RESULTS The median %MMA and %DMA were 5.3 %, and 89 %, respectively. Ancestral alleles of AS3MT SNPs (rs3740393, rs3740390, rs11191453, and rs11191454) were significantly associated with higher %MMA, %iAs, and lower %DMA. Pregnant participants with zero copies of the GGCTTCAC AS3MT haplotype presented a higher %MMA. Statistically significant associations were also found for the FOLH1 SNP rs202676 (β 0.89 95%CI: 0.24, 1.55 for carriers of the G allele vs. the A allele). CONCLUSIONS Our study shows that ancestral alleles in AS3MT polymorphisms were associated with lower As methylation efficiency in early pregnancy and suggests that FOLH1 also plays a role in As methylation efficiency. These results support the hypothesis that As metabolism is multigenic, being a key element for identifying susceptible populations.
Collapse
Affiliation(s)
- Raquel Soler-Blasco
- Department of Nursing, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Florencia Harari
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Mario Murcia
- Health Policy Planning and Evaluation Service, Conselleria de Sanitat Universal i Salut Pública, Generalitat Valenciana, Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Bizkaia, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Miren Begoña Zubero
- Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Bizkaia, Spain
| | - Nora Fernández-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| | - Simone Braeuer
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ferran Ballester
- Department of Nursing, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
3
|
Ashley-Martin J, Fisher M, Belanger P, Cirtiu CM, Arbuckle TE. Biomonitoring of inorganic arsenic species in pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:921-932. [PMID: 35948664 PMCID: PMC10733137 DOI: 10.1038/s41370-022-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure assessment of inorganic arsenic is challenging due to the existence of multiple species, complexity of arsenic metabolism, and variety of exposure sources. Exposure assessment of arsenic during pregnancy is further complicated by the physiological changes that occur to support fetal growth. Given the well-established toxicity of inorganic arsenic at high concentrations, continued research into the potential health effects of low-level exposure on maternal and fetal health is necessary. Our objectives were to review the value of and challenges inherent in measuring inorganic arsenic species in pregnancy and highlight related research priorities. We discussed how the physiological changes of pregnancy influence arsenic metabolism and necessitate the need for pregnancy-specific data. We reviewed the biomonitoring challenges according to common and novel biological matrices and discussed how each matrix differs according to half-life, bioavailability, availability of laboratory methods, and interpretation within pregnancy. Exposure assessment in both established and novel matrices that accounts for the physiological changes of pregnancy and complexity of speciation is a research priority. Standardization of laboratory method for novel matrices will help address these data gaps. Research is particularly lacking in contemporary populations of pregnant women without naturally elevated arsenic drinking water concentrations (i.e. <10 µg/l).
Collapse
Affiliation(s)
- Jillian Ashley-Martin
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Mandy Fisher
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Patrick Belanger
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Ciprian Mihai Cirtiu
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Tye E Arbuckle
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
4
|
Liang X, Guo G, Wang Y, Wang M, Chen X, Zhang J, Li S, Liu L, Huang Q, Cui B, Zhang M, Sun G, Tang N, Zhang X, Zhang Q. Arsenic metabolism, N6AMT1 and AS3MT single nucleotide polymorphisms, and their interaction on gestational diabetes mellitus in Chinese pregnant women. ENVIRONMENTAL RESEARCH 2023; 221:115331. [PMID: 36681142 DOI: 10.1016/j.envres.2023.115331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in N6AMT1 and AS3MT are associated with arsenic (As) metabolism, and efficient As methylation capacity has been associated with diabetes. However, little is known about the gene-As interaction on gestational diabetes mellitus (GDM). OBJECTIVE This study aimed to explore the individual and combined effects of N6AMT1 and AS3MT SNPs with As metabolism on GDM. METHODS A cross-sectional study was performed among 385 Chinese pregnant women (86 GDM and 299 Non-GDM). Four SNPs in N6AMT1 (rs1997605 and rs1003671) and AS3MT (rs1046778 and rs11191453) were genotyped. Urinary inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were determined, and the percentages of As species (iAs%, MMA%, and DMA%) were calculated to assess the efficiency of As metabolism. RESULTS Pregnant women with N6AMT1 rs1997605 AA genotype had lower iAs% (B: 2.11; 95% CI: 4.08, -0.13) and MMA% (B: 0.21; 95% CI: 0.39, -0.04) than pregnant women with GG genotype. The AS3MT rs1046778 and rs11191453 C alleles were negatively associated with iAs% and MMA% but positively associated with DMA%. Higher urinary MMA% was significantly associated with a lower risk of GDM (OR: 0.54; 95% CI: 0.30, 0.97). The A allele in N6AMT1 rs1997605 (OR: 0.46; 95% CI: 0.26, 0.79) was associated with a decreased risk of GDM. The additive interactions between N6AMT1 rs1997605 GG genotypes and lower iAs% (AP: 0.50; 95% CI: 0.01, 0.99) or higher DMA% (AP: 0.52; 95% CI: 0.04, 0.99) were statistically significant. Similar additive interactions were also found between N6AMT1 rs1003671 GG genotypes and lower iAs% or higher DMA%. CONCLUSIONS Genetic variants in N6AMT1 and efficient As metabolism (indicated by lower iAs% and higher DMA%) can interact to influence GDM occurrence synergistically in Chinese pregnant women.
Collapse
Affiliation(s)
- Xiaoshan Liang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Guanshuai Guo
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yiyun Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Meng Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Jingran Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, 300380, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001 China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Bo Cui
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin, 300050, China
| | - Ming Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Guifan Sun
- Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Qiu F, Zhang H, He Y, Liu H, Zheng T, Xia W, Xu S, Zhou J, Li Y. Associations of arsenic exposure with blood pressure and platelet indices in pregnant women: A cross-sectional study in Wuhan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114378. [PMID: 36525950 DOI: 10.1016/j.ecoenv.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Environmental inorganic arsenic (iAs) exposure is potentially related to abnormal blood pressure (BP) changes and abnormal platelet activation. However, limited epidemiological studies have explored the impacts of iAs exposure on platelet change mediated by BP, especially for pregnant women. OBJECTIVES Our purpose was to investigate the associations of arsenic exposure with blood pressure and platelet indices among pregnant women. METHODS The present study population included 765 pregnant women drawn from a prospective birth cohort study in Wuhan, China, recruited between October 2013 and April 2016. Urine sampled in the second trimester were used to assess arsenic species concentrations. The relative distribution of urinary arsenic species was used to measure human methylation capacity. BP parameters and platelet indices originated from the medical record. We applied multivariable linear regression models to explore the cross-sectional relationships between urinary arsenic metabolites, BP parameters, and platelet indices. We utilized mediation analysis to investigate the impacts of arsenic exposure on platelet indices through BP as mediator variables. RESULTS We observed significant positive correlations between iAs and systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP). Pregnant women with higher methylation capacity to metabolize iAs characterized by higher secondary methylation index (SMI) and total methylation index (TMI) had a more significant reduction in SBP, DBP, and MAP. Pregnant women with higher DBP and MAP had higher platelet counts (PLC). A decreased PLC was found in subjects wither higher SMI. Additionally, SMI was negatively linked to PLC mediated through MAP. CONCLUSIONS Obtained results suggested that higher methylation capacity to metabolize iAs might contribute to decreased PLC among pregnant women, and MAP might mediate the influence of SMI on PLC.
Collapse
Affiliation(s)
- Feng Qiu
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jieqiong Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanyuan Li
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Zhang Q, Zhang X, Li S, Liu H, Liu L, Huang Q, Hou Y, Liang X, Cui B, Zhang M, Xia L, Zhang L, Li C, Li J, Sun G, Tang N. Joint effect of urinary arsenic species and serum one-carbon metabolism nutrients on gestational diabetes mellitus: A cross-sectional study of Chinese pregnant women. ENVIRONMENT INTERNATIONAL 2021; 156:106741. [PMID: 34217037 DOI: 10.1016/j.envint.2021.106741] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Growing evidence indicates that arsenic (As) exposure can increase the risk of gestational diabetes mellitus (GDM). However, little is known about As species and GDM and the combined effect of As and one-carbon metabolism (OCM) on GDM. OBJECTIVES We aimed to examine the associations between As species and GDM and evaluate the potential interactions of folate, vitamin B12, and homocysteine (Hcy) with As species on GDM prevalence. METHOD We measured levels of arsenite (As3+), arsenate (As5+), dimethylarsinic acid (DMA), and arsenobetaine (AsB) species in urine and folate, vitamin B12, and Hcy in serum from 396 pregnant women in Tianjin, China. The diagnosis of GDM was based on an oral glucose tolerance test. Associations of As species in urine with GDM were evaluated using generalized linear models (GLMs) and Bayesian kernel machine regression (BKMR). Additive interactions of As and OCM with GDM were estimated by determining the relative excess risk due to interaction (RERI). RESULTS Of the 396 pregnant women, 89 were diagnosed with GDM. Continuous increases in urinary inorganic As were associated with GDM in the GLMs, with adjusted odds ratios of 2.12 (95% CI: 0.96, 4.71) for As3+, and 0.27 (95% CI: 0.07, 0.98) for As5+. The BKMR in estimating the exposure-response functions showed that As3+ and AsB were positively associated with GDM. However, As5+ showed a negative relationship with GDM. Although the additive interactions between As exposure and OCM indicators were not significant, we found that pregnant women with higher urinary As3+ and total As accompanied by lower serum vitamin B12 were more likely to have higher odds of GDM (3.12, 95% CI: 1.32, 7.38 and 3.10, 95% CI: 1.30, 7.38, respectively). CONCLUSIONS Our data suggest a positive relation between As3+ and GDM but a negative relation between As5+ and GDM. Potential additive interaction of As and OCM with GDM requires further investigation.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xumei Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin 300380, China
| | - Huihuan Liu
- Beichen District Women's and Children's Health Center, Tianjin 300400, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001 China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yaxing Hou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoshan Liang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Bo Cui
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Ming Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Liting Xia
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guifan Sun
- Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
7
|
Bae S, Kamynina E, Guetterman HM, Farinola AF, Caudill MA, Berry RJ, Cassano PA, Stover PJ. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev 2021; 10:CD012649. [PMID: 34661903 PMCID: PMC8522704 DOI: 10.1002/14651858.cd012649.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Adetutu F Farinola
- Faculty of Public Health, Department of Human Nutrition and Dietetics, University of Ibadan, Ibadan, Nigeria
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
8
|
Lu J, Yu K, Fan S, Liu W, Dong Z, Li J, Wang X, Hai X, Zhou J. Influence of AS3MT polymorphisms on arsenic metabolism and liver injury in APL patients treated with arsenic trioxide. Toxicol Appl Pharmacol 2019; 379:114687. [PMID: 31330140 DOI: 10.1016/j.taap.2019.114687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023]
Abstract
Arsenic-induced side effects limit its application in the treatment of acute promyelocytic leukemia (APL). We recently demonstrated that AS3MT 14215 (rs3740390) genotypes were associated with urinary arsenic metabolites and hematological and biochemical values. To further decipher the role of AS3MT genotypes on arsenic metabolism and toxicity, AS3MT 27215 (rs11191446), 35587 (rs11191453), 35991 (rs10748835), and their interactive effects were examined in fifty APL patients treated with arsenic trioxide (As2O3) for the first time. Urinary arsenic metabolites and methylation capacity indexes were evaluated by the percentage of inorganic arsenic (iAs), monomethylarsonate (MMA), dimethylarsinate (DMA), primary methylation index (PMI, MMA/iAs), secondary methylation index (SMI, DMA/MMA), and total methylation index (TMI, [MMA+DMA]/iAs). Results showed 27215 (rs11191446) genotypes had no statistical significance in arsenic metabolism, as only 5 (10%) patients were the non-wild-type genotypes. 35587 (rs11191453) genotypes were significantly associated with MMA%, DMA%, and SMI. 35991 (rs10748835) genotypes were significantly associated with iAs%, DMA%, PMI, TMI, and the level of ALT and AST. Patients with both 35587 (rs11191453) TT and 35991 (rs10748835) AG+GG genotypes were significantly associated with DMA% and SMI. In addition, patients with both 35991 (rs10748835) AA and 35587 (rs11191453) TC+CC genotypes had the highest DMA%, SMI, and TMI, but the lowest iAs%, ALT and AST level, indicating that additive effects exist on arsenic metabolism and liver function. Our data promotes the realization that AS3MT 35587 (rs11191453), 35991 (rs10748835), especially their joint genotypes 35991 (rs10748835) AA / 35587 (rs11191453) TC+CC, is a novel predictive biomarker for the therapeutic efficacy of As2O3 in the treatment of APL.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacy, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Shengjin Fan
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Wensheng Liu
- Department of Pharmacy, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Zengxiang Dong
- Department of Pharmacy, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Jing Li
- Department of Pharmacy, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Xinyu Wang
- Department of Pharmacy, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Xin Hai
- Department of Pharmacy, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China.
| | - Jin Zhou
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China.
| |
Collapse
|
9
|
Gao S, Mostofa MG, Quamruzzaman Q, Rahman M, Rahman M, Su L, Hsueh YM, Weisskopf M, Coull B, Christiani DC. Gene-environment interaction and maternal arsenic methylation efficiency during pregnancy. ENVIRONMENT INTERNATIONAL 2019; 125:43-50. [PMID: 30703610 PMCID: PMC7592115 DOI: 10.1016/j.envint.2019.01.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) may influence arsenic methylation efficiency, affecting arsenic metabolism. Whether gene-environment interactions affect arsenic metabolism during pregnancy remains unclear, which may have implications for pregnancy outcomes. OBJECTIVE We aimed to investigate main effects as well as potential SNP-arsenic interactions on arsenic methylation efficiency in pregnant women. METHOD We recruited 1613 pregnant women in Bangladesh, and collected two urine samples from each participant, one at 4-16 weeks, and the second at 21-37 weeks of pregnancy. We determined the proportions of each arsenic metabolite [inorganic As (iAs)%, monomethylarsonic acid (MMA)%, and dimethylarsinic acid (DMA)%] from the total urinary arsenic level of each sample. A panel of 63 candidate SNPs was selected for genotyping based on their reported associations with arsenic metabolism (including in As3MT, N6AMT1, and GSTO2 genes). We used linear regression models to assess the association between each SNP and DMA% with an additive allelic assumption, as well as SNP-arsenic interaction on DMA%. These analyses were performed separately for two urine collection time-points to capture differences in susceptibility to arsenic toxicity. RESULT Intron variants for As3MT were associated with DMA%. rs9527 (β = -2.98%, PFDR = 0.008) and rs1046778 (β = 1.64%, PFDR = 0.008) were associated with this measure in the early gestational period; rs3740393 (β = 2.54%, PFDR = 0.002) and rs1046778 (β = 1.97%, PFDR = 0.003) in the mid-to-late gestational period. Further, As3MT, GSTO2, and N6AMT1 polymorphisms showed different effect sizes on DMA% conditional on arsenic exposure levels. However, SNP-arsenic interactions were not statistically significant after adjusting for false discovery rate (FDR). rs1048546 in N6AMT1 had the highest significance level in the SNP-arsenic interaction test during mid-to-late gestation (β = -1.8% vs. 1.4%, PGxE_FDR = 0.075). Finally, As3MT and As3MT/CNNM2 haplotypes were associated with DMA% at both time points. CONCLUSION We found that not all genetic associations reported in arsenic methylation efficiency replicate in pregnant women. Arsenic exposure level has a limited effect in modifying the association between genetic variation and arsenic methylation efficiency.
Collapse
Affiliation(s)
- Shangzhi Gao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | | | - Mohammad Rahman
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yu-Mei Hsueh
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Marc Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Stajnko A, Šlejkovec Z, Mazej D, France-Štiglic A, Briški AS, Prpić I, Špirić Z, Horvat M, Falnoga I. Arsenic metabolites; selenium; and AS3MT, MTHFR, AQP4, AQP9, SELENOP, INMT, and MT2A polymorphisms in Croatian-Slovenian population from PHIME-CROME study. ENVIRONMENTAL RESEARCH 2019; 170:301-319. [PMID: 30612060 DOI: 10.1016/j.envres.2018.11.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The relationships between inorganic arsenic (iAs) metabolism, selenium (Se) status, and genetic polymorphisms of various genes, commonly studied in populations exposed to high levels of iAs from drinking water, were studied in a Croatian-Slovenian population from the wider PHIME-CROME project. Population consisted of 136 pregnant women in the 3rd trimester and 176 non-pregnant women with their children (n = 176, 8-9 years old). Their exposure to iAs, defined by As (speciation) analyses of biological samples, was low. The sums of biologically active metabolites (arsenite + arsenate + methylated As forms) for pregnant women, non-pregnant women, and children, respectively were: 3.23 (2.84-3.68), 1.83 (1.54-2.16) and 2.18 (1.86-2.54) ng/mLSG; GM (95 CI). Corresponding plasma Se levels were: 54.8 (52.8-56.9), 82.3 (80.4-84.0) and 65.8 (64.3-67.3) ng/mL; GM (95 CI). As methylation efficiency indexes confirmed the relationship between pregnancy/childhood and better methylation efficiency. Archived blood and/or saliva samples were used for single nucleotide polymorphism (SNP) genotyping of arsenic(3+) methyltransferase - AS3MT (rs7085104, rs3740400, rs3740393, rs3740390, rs11191439, rs10748835, rs1046778 and the corresponding AS3MT haplotype); methylene tetrahydrofolate reductase - MTHFR (rs1801131, rs1801133); aquaporin - AQP 4 and 9 (rs9951307 and rs2414539); selenoprotein P1 - SELENOP (rs7579, rs3877899); indolethylamine N-methyltransferase - INMT (rs6970396); and metallothionein 2A - MT2A (rs28366003). Associations of SNPs with As parameters and urine Se were determined through multiple regression analyses adjusted using appropriate confounders (blood As, plasma Se, ever smoking, etc.). SNPs' influence on As methylation, defined particularly by the secondary methylation index (SMI), confirmed the 'protective' role of minor alleles of six AS3MT SNPs and their haplotype only among non-pregnant women. Among the other investigated genes, the carriers of AQP9 (rs2414539) were associated with more efficient As methylation and higher urine concentration of As and Se among non-pregnant women; poorer methylation was observed for carriers of AQP4 (rs9951307) among pregnant women and SELENOP (rs7579) among non-pregnant women; MT2A (rs28366003) was associated with higher urine concentration of AsIII regardless of the pregnancy status; and INMT (rs6970396) was associated with higher As and Se concentration in non-pregnant women. Among confounders, the strongest influence was observed for plasma Se; it reduced urine AsIII concentration during pregnancy and increased secondary methylation index among non-pregnant women. In the present study of populations with low As exposure, we observed a few new As-gene associations (particularly with AQPs). More reliable interpretations will be possible after their confirmation in larger populations with higher As exposure levels.
Collapse
Affiliation(s)
- Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Zdenka Šlejkovec
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Alenka France-Štiglic
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, Ljubljana, Slovenia
| | - Alenka Sešek Briški
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, Ljubljana, Slovenia
| | - Igor Prpić
- Department of Pediatrics, University Hospital Centre Rijeka, Krešimirova 42, Rijeka, Croatia; Faculty of Medicine, University of Rijeka, Ul. Braće Branchetta 20/1, Rijeka, Croatia
| | - Zdravko Špirić
- Green infrastructure ltd., Fallerovo šetalište 22, Zagreb, Croatia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Ashley-Martin J, Dodds L, Arbuckle TE, Bouchard MF, Shapiro GD, Fisher M, Monnier P, Morisset AS, Ettinger AS. Association between maternal urinary speciated arsenic concentrations and gestational diabetes in a cohort of Canadian women. ENVIRONMENT INTERNATIONAL 2018; 121:714-720. [PMID: 30321846 DOI: 10.1016/j.envint.2018.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Epidemiological and toxicological evidence suggests that maternal total arsenic (As) levels are associated with an elevated risk of gestational diabetes (GDM). Uncertainty remains regarding the metabolic toxicity of specific arsenic species, comprised of both organic and inorganic sources of arsenic exposure. OBJECTIVES We assessed associations between speciated As and GDM using data from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study. METHODS Concentrations of speciated As [(inorganic (trivalent, pentavalent)), methylated arsenic species metabolites (monomethylarsonic acid (MMA), dimethylarsinic acid (DMA)), and organic (arsenobetaine)] were measured in first trimester maternal urine samples. GDM cases were identified in accordance with Canadian guidelines. Multivariable regression models were used to estimate associations between speciated As and GDM, evaluate potential interaction between speciated As exposures, and assess fetal sex-specific findings. RESULTS Among 1243 women who had a live, singleton birth and no previous history of diabetes, 4% met the diagnostic criteria for GDM. Our analyses focused on DMA and arsenobetaine as these were the subtypes with detectable concentrations in at least 40% of samples. Compared to women in the lowest tertile of DMA (<1.49 μg As/L), women with concentrations exceeding 3.52 μg As/L (3rd tertile) experienced an increased risk of GDM (aOR = 3.86; 95% CI: 1.18, 12.57) (p-value for trend across tertiles = 0.04). When restricted to women carrying male infants, the magnitude of this association increased (aOR 3rd tertile = 4.71; 95% CI: 1.05, 21.10). CONCLUSIONS These results suggest a positive relation between DMA and GDM; potential differences in risk by fetal sex requires further investigation.
Collapse
|
12
|
Twaddle NC, Vanlandingham M, Beland FA, Doerge DR. Metabolism and disposition of arsenic species after repeated oral dosing with sodium arsenite in drinking water. II. Measurements in pregnant and fetal CD-1 mice. Food Chem Toxicol 2018. [PMID: 29530638 DOI: 10.1016/j.fct.2018.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Arsenic is ubiquitous in the earth's crust, and human diseases are linked with exposures that are similar to dietary intake estimates. Metabolic methylation of inorganic arsenic facilitates excretion of pentavalent metabolites and decreases acute toxicity; however, tissue binding of trivalent arsenic intermediates is evidence for concomitant metabolic activation. Pregnant and fetal CD-1 mice comprise a key animal model for arsenic carcinogenesis since adult-only exposures have minimal effects. This study evaluated inorganic arsenic and its metabolites in pentavalent and trivalent states in blood and tissues from maternal and fetal CD-1 mice after repeated administration of arsenite through drinking water. After 8 days of exposure, DMA species were ubiquitous in dams and fetuses. Despite the presence of MMAIII in dams, none was observed in any fetal sample. This difference may be important in assessing fetal susceptibility to arsenic toxicity because MMA production has been linked with human disease. Binding of DMAIII in fetal tissues provided evidence for metabolic activation, although the role for such binding in arsenic toxicity is unclear. This study provides links between administered dose, metabolism, and internal exposures from a key animal model of arsenic toxicity to better understand risks from human exposure to environmental arsenic.
Collapse
Affiliation(s)
- Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Michelle Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States.
| |
Collapse
|
13
|
Skröder H, Engström K, Kuehnelt D, Kippler M, Francesconi K, Nermell B, Tofail F, Broberg K, Vahter M. Associations between Methylated Metabolites of Arsenic and Selenium in Urine of Pregnant Bangladeshi Women and Interactions between the Main Genes Involved. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:027001. [PMID: 29398653 PMCID: PMC6066347 DOI: 10.1289/ehp1912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND It has been proposed that interactions between selenium and arsenic in the body may affect their kinetics and toxicity. However, it is unknown how the elements influence each other in humans. OBJECTIVES We aimed to investigate potential interactions in the methylation of selenium and arsenic. METHODS Urinary selenium (U-Se) and arsenic (U-As) were measured using inductively coupled plasma mass spectrometry (ICPMS) in samples collected from pregnant women (n=226) in rural Bangladesh at gestational weeks (GW) 8, 14, 19, and 30. Urinary concentrations of trimethyl selenonium ion (TMSe) were measured by HPLC-vapor generation-ICPMS, as were inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA). Methylation efficiency was assessed based on relative amounts (%) of arsenic and selenium metabolites in urine. Genotyping for the main arsenite and selenium methyltransferases, AS3MT and INMT, was performed using TaqMan probes or Sequenom. RESULTS Multivariable-adjusted linear regression analyses indicated that %TMSe (at GW8) was positively associated with %MMA (β=1.3, 95% CI: 0.56, 2.0) and U-As, and inversely associated with %DMA and U-Se in producers of TMSe (INMT rs6970396 AG+AA, n=74), who had a wide range of urinary TMSe (12-42%). Also, %TMSe decreased in parallel to %MMA during pregnancy, especially in the first trimester (-0.58 %TMSe per gestational week). We found a gene-gene interaction for %MMA (p-interaction=0.076 for haplotype 1). In analysis stratified by INMT genotype, the association between %MMA and both AS3MT haplotypes 1 and 3 was stronger in women with the INMT GG (TMSe nonproducers, 5th-95th percentile: 0.2-2%TMSe) vs. AG+AA genotype. CONCLUSIONS Our findings for Bangladeshi women suggest a positive association between urinary %MMA and %TMSe. Genes involved in the methylation of selenium and arsenic may interact on associations with urinary %MMA. https://doi.org/10.1289/EHP1912.
Collapse
Affiliation(s)
- Helena Skröder
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Engström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University , Lund, Sweden
| | - Doris Kuehnelt
- Institute of Chemistry, NAWI Graz, University of Graz, Graz, Austria
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kevin Francesconi
- Institute of Chemistry, NAWI Graz, University of Graz, Graz, Austria
| | - Barbro Nermell
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fahmida Tofail
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Uppal JS, Shuai Q, Li Z, Le XC. Arsenic biotransformation and an arsenite S-adenosylmethionine methyltransferase in plankton. J Environ Sci (China) 2017; 61:118-121. [PMID: 29191309 DOI: 10.1016/j.jes.2017.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Jagdeesh S Uppal
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Qin Shuai
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China.
| | - Zhuang Li
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3.
| |
Collapse
|
15
|
Bae S, Kamynina E, Farinola AF, Caudill MA, Stover PJ, Cassano PA, Berry R, Peña-Rosas JP. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2017. [DOI: 10.1002/14651858.cd012649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sajin Bae
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Elena Kamynina
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Adetutu F Farinola
- University of Ibadan; Faculty of Public Health, Department of Human Nutrition and Dietetics; Seat of Wisdom Chapel Ibadan Oyo State Nigeria 200282
| | - Marie A Caudill
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Patrick J Stover
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Patricia A Cassano
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Robert Berry
- Independent cosultant; 1376 N Decatur Rd NE Atlanta Georgia USA 30306
| | - Juan Pablo Peña-Rosas
- World Health Organization; Evidence and Programme Guidance, Department of Nutrition for Health and Development; 20 Avenue Appia Geneva GE Switzerland 1211
| |
Collapse
|
16
|
Lin PID, Bromage S, Mostofa MG, Allen J, Oken E, Kile ML, Christiani DC. Associations between Diet and Toenail Arsenic Concentration among Pregnant Women in Bangladesh: A Prospective Study. Nutrients 2017; 9:nu9040420. [PMID: 28441747 PMCID: PMC5409759 DOI: 10.3390/nu9040420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/27/2022] Open
Abstract
This prospective study evaluated the relationship between long-term dietary habits and total arsenic (As) concentration in toenail clippings in a cohort of 1616 pregnant women in the Bangladeshi administrative regions of Sirajdikhan and Pabna Sadar. Diet was assessed at Gestation Week 28 and at Postpartum Month 1, using a locally-validated dish-based semi-quantitative food-frequency questionnaire. Toenail As concentration was analyzed by microwave-assisted acid digestion and inductively coupled plasma mass spectrometry. Associations between natural log-transformed consumption of individual food items and temporally matched natural log-transformed toenail As concentration were quantified using general linear models that accounted for As concentration in the primary drinking water source and other potential confounders. The analysis was stratified by As in drinking water (≤50 μg/L versus >50 μg/L) and the time of dietary assessment (Gestation Week 28 versus Postpartum Week 1). Interestingly, toenail As was not significantly associated with consumption of plain rice as hypothesized. However, toenail As was positively associated with consumption of several vegetable, fish and meat items and was negatively associated with consumption of rice, cereal, fruits, and milk based food items. Further studies in pregnant women are needed to compare As metabolism at different levels of As exposure and the interaction between dietary composition and As absorption.
Collapse
Affiliation(s)
- Pi-I D Lin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02113, USA.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80709, Taiwan.
| | - Sabri Bromage
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02113, USA.
| | - Md Golam Mostofa
- Department of Environmental Research, Dhaka Community Hospital, Dhaka 1217, Bangladesh.
| | - Joseph Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02113, USA.
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02115, USA.
| | - Molly L Kile
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02113, USA.
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02113, USA.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80709, Taiwan.
| |
Collapse
|
17
|
Hsieh RL, Su CT, Shiue HS, Chen WJ, Huang SR, Lin YC, Lin MI, Mu SC, Chen RJ, Hsueh YM. Relation of polymorphism of arsenic metabolism genes to arsenic methylation capacity and developmental delay in preschool children in Taiwan. Toxicol Appl Pharmacol 2017; 321:37-47. [DOI: 10.1016/j.taap.2017.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/15/2022]
|
18
|
Ettinger AS, Arbuckle TE, Fisher M, Liang CL, Davis K, Cirtiu CM, Bélanger P, LeBlanc A, Fraser WD. Arsenic levels among pregnant women and newborns in Canada: Results from the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort. ENVIRONMENTAL RESEARCH 2017; 153:8-16. [PMID: 27880879 DOI: 10.1016/j.envres.2016.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/01/2016] [Accepted: 11/14/2016] [Indexed: 05/22/2023]
Abstract
Arsenic is a common environmental contaminant from both naturally-occurring and anthropomorphic sources and human exposure can be detected in various tissues. Its toxicity depends on many factors including the chemical form, valence state, bioavailability, metabolism and detoxification within the human body. Of paramount concern, particularly with respect to health effects in children, is the timing of exposure as the prenatal and early life periods are more susceptible to toxic effects. The Maternal-Infant Research on Environmental Chemicals (MIREC) cohort was established to obtain national-level biomonitoring data for approximately 2,000 pregnant women and their infants between 2008 and 2011 from 10 Canadian cities. We measured total arsenic (As) in 1st and 3rd trimester maternal blood, umbilical cord blood, and infant meconium and speciated arsenic in 1st trimester maternal urine. Most pregnant women had detectable levels of total arsenic in blood (92.5% and 87.3%, respectively, for 1st and 3rd trimester); median difference between 1st and 3rd trimester was 0.1124µg/L (p<0.0001), but paired samples were moderately correlated (Spearman r=0.41, p<0.0001). Most samples were below the LOD for umbilical cord blood (50.9%) and meconium (93.9%). In 1st trimester urine samples, a high percentage (>50%) of arsenic species (arsenous acid (As-III), arsenic acid (As-V), monomethylarsonic acid (MMA), and arsenobetaine (AsB)) were also below the limit of detection, except dimethylarsinic acid (DMA). DMA (>85% detected) ranged from <LOD to 64.42 (95th percentile: 11.99)µgAs/L. There was a weak but significant correlation between total arsenic in blood and specific gravity-adjusted DMA in urine (Spearman r=0.33, p<0.0001). Among this population of pregnant woman and newborns, levels of arsenic measured in blood and urine were lower than national population figures for Canadian women of reproductive age (20-39 years). In general, higher arsenic levels were observed in women who were older, foreign-born (predominantly from Asian countries), and had higher education. Further research is needed to elucidate sources of exposure and factors that may influence arsenic exposure in pregnant women and children.
Collapse
Affiliation(s)
- Adrienne S Ettinger
- University of Michigan School of Public Health, Department of Nutritional Sciences, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA.
| | - Tye E Arbuckle
- Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, A.L. 0801 A, 50 Colombine Dr., Ottawa, ON, Canada K1A 0K9.
| | - Mandy Fisher
- Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, A.L. 0801 A, 50 Colombine Dr., Ottawa, ON, Canada K1A 0K9
| | - Chun Lei Liang
- Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, A.L. 0801 A, 50 Colombine Dr., Ottawa, ON, Canada K1A 0K9
| | - Karelyn Davis
- Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, A.L. 0801 A, 50 Colombine Dr., Ottawa, ON, Canada K1A 0K9
| | - Ciprian-Mihai Cirtiu
- Laboratoire de toxicologie, Institut national de santé publique du Québec, 945, avenue Wolfe, Québec, QC, Canada G1V 5B3
| | - Patrick Bélanger
- Laboratoire de toxicologie, Institut national de santé publique du Québec, 945, avenue Wolfe, Québec, QC, Canada G1V 5B3
| | - Alain LeBlanc
- Laboratoire de toxicologie, Institut national de santé publique du Québec, 945, avenue Wolfe, Québec, QC, Canada G1V 5B3
| | - William D Fraser
- Department of Obstetrics and Gynecology, University of Sherbrooke, 3001, 12th avenue Nord, Sherbrooke, QC, Canada J1H 5N4; CHU Sainte-Justine Research Center, Mother and Child University Hospital Center, 3175 chemin de la Côte-Sainte-Catherine, Montréal, QC, Canada H3T 1C5
| |
Collapse
|
19
|
Chen X, Guo X, He P, Nie J, Yan X, Zhu J, Zhang L, Mao G, Wu H, Liu Z, Aga D, Xu P, Smith M, Ren X. Interactive Influence of N6AMT1 and As3MT Genetic Variations on Arsenic Metabolism in the Population of Inner Mongolia, China. Toxicol Sci 2016; 155:124-134. [PMID: 27637898 DOI: 10.1093/toxsci/kfw181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic arsenic exposure via drinking water has become a worldwide public health concern. In humans, inorganic arsenic (iAs) is metabolized to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) mainly mediated by arsenic (+3 oxidation state) methyltransferase (As3MT). We reported recently that N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) was involved in arsenic metabolism, and examined its interactive effect with As3MT on arsenic metabolism in vitro To further evaluate the interactive effect of N6AMT1 and As3MT on arsenic biomethylation in humans, we conducted a human population-based study including 289 subjects living in rural villages in Inner Mongolia, China, and assessed their urinary arsenic metabolites profiles in relation to genetic polymorphisms and haplotypes of N6AMT1 and As3MT Five N6AMT1 single nucleotide polymorphisms (SNPs; rs1003671, rs7282257, rs2065266, rs2738966, rs2248501) and the N6AMT1 haplotype 2_GGCCAT were significantly associated with the percentage of iAs (% iAs) in urine (e.g., for rs7282257, mean was 9.62% for TT, 6.73% for AA). Rs1003671 was also in a significant relationship with urinary MMA and DMA (the mean of %MMA was 24.95% for GA, 31.69% for GG; the mean of % DMA was 69.21% for GA, 59.82% for GG). The combined effect of N6AMT1 haplotype 2_GGCCAT and As3MT haplotype 2_GCAC showed consistence with the additive significance of each haplotype on % iAs: the mean was 5.47% and 9.36% for carriers with both and null haplotypes, respectively. Overall, we showed that N6AMT1 genetic polymorphisms were associated with arsenic biomethylation in the Chinese population, and its interaction with As3MT was observed in specific haplotype combinations.
Collapse
Affiliation(s)
- Xushen Chen
- The Key Laboratory of Gene Engineering of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.,Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, 14214
| | - Xiaojuan Guo
- School of Public and Environmental Health, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.,Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| | - Ping He
- Department of Chemistry, University at Buffalo, Buffalo, New York, 14260
| | - Jing Nie
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, 14214
| | - Xiaoyan Yan
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, 14214
| | - Jinqiu Zhu
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, 14214
| | - Luoping Zhang
- School of Public Health, University of California at Berkeley, Berkeley, California, 94720
| | - Guangyun Mao
- School of Public and Environmental Health, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Hongmei Wu
- School of Public and Environmental Health, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Zhiyue Liu
- Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| | - Diana Aga
- Department of Chemistry, University at Buffalo, Buffalo, New York, 14260
| | - Peilin Xu
- The Key Laboratory of Gene Engineering of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Martyn Smith
- School of Public Health, University of California at Berkeley, Berkeley, California, 94720
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, 14214
| |
Collapse
|
20
|
Xu X, Drobná Z, Voruganti VS, Barron K, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Cerón RH, Morales DV, Terrazas FAB, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Crandell J, Fry RC, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M, Mendez MA. Association Between Variants in Arsenic (+3 Oxidation State) Methyltranserase (AS3MT) and Urinary Metabolites of Inorganic Arsenic: Role of Exposure Level. Toxicol Sci 2016; 153:112-23. [PMID: 27370415 DOI: 10.1093/toxsci/kfw112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Variants in AS3MT, the gene encoding arsenic (+3 oxidation state) methyltranserase, have been shown to influence patterns of inorganic arsenic (iAs) metabolism. Several studies have suggested that capacity to metabolize iAs may vary depending on levels of iAs exposure. However, it is not known whether the influence of variants in AS3MT on iAs metabolism also vary by level of exposure. We investigated, in a population of Mexican adults exposed to drinking water As, whether associations between 7 candidate variants in AS3MT and urinary iAs metabolites were consistent with prior studies, and whether these associations varied depending on the level of exposure. Overall, associations between urinary iAs metabolites and AS3MT variants were consistent with the literature. Referent genotypes, defined as the genotype previously associated with a higher percentage of urinary dimethylated As (DMAs%), were associated with significant increases in the DMAs% and ratio of DMAs to monomethylated As (MAs), and significant reductions in MAs% and iAs%. For 3 variants, associations between genotypes and iAs metabolism were significantly stronger among subjects exposed to water As >50 versus ≤50 ppb (water As X genotype interaction P < .05). In contrast, for 1 variant (rs17881215), associations were significantly stronger at exposures ≤50 ppb. Results suggest that iAs exposure may influence the extent to which several AS3MT variants affect iAs metabolism. The variants most strongly associated with iAs metabolism-and perhaps with susceptibility to iAs-associated disease-may vary in settings with exposure level.
Collapse
Affiliation(s)
- Xiaofan Xu
- *Department of Nutrition, Gillings School of Global Public Health
| | - Zuzana Drobná
- Department of Biological Sciences College of Sciences, North Carolina State University, North Carolina
| | | | - Keri Barron
- *Department of Nutrition, Gillings School of Global Public Health
| | - Carmen González-Horta
- Programa de Maestría en Ciencias en Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Blanca Sánchez-Ramírez
- Programa de Maestría en Ciencias en Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Lourdes Ballinas-Casarrubias
- Programa de Maestría en Ciencias en Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | | | | | | | - María C Ishida
- Programa de Maestría en Ciencias en Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Daniela S Gutiérrez-Torres
- Programa de Maestría en Ciencias en Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - R Jesse Saunders
- *Department of Nutrition, Gillings School of Global Public Health
| | - Jamie Crandell
- Department of Biostatistics Gillings School of Global Public Health School of Nursing
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health and Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina
| | - Dana Loomis
- International Agency for Research of Cancer, Monographs Section, Lyon Cedex, France
| | - Gonzalo G García-Vargas
- Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Luz M Del Razo
- **Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | - Miroslav Stýblo
- *Department of Nutrition, Gillings School of Global Public Health
| | - Michelle A Mendez
- *Department of Nutrition, Gillings School of Global Public Health Carolina Population Center and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Drobná Z, Martin E, Kim KS, Smeester L, Bommarito P, Rubio-Andrade M, García-Vargas GG, Stýblo M, Zou F, Fry RC. Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: Implications for risk analysis. Reprod Toxicol 2016; 61:28-38. [PMID: 26928318 PMCID: PMC4970429 DOI: 10.1016/j.reprotox.2016.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/28/2016] [Accepted: 02/23/2016] [Indexed: 02/03/2023]
Abstract
Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the metabolism of inorganic arsenic (iAs). Polymorphisms of AS3MT influence adverse health effects in adults, but little is known about their role in iAs metabolism in pregnant women and infants. The relationships between seven single nucleotide polymorphisms (SNPs) in AS3MT and urinary concentrations of iAs and its methylated metabolites were assessed in mother-infant pairs of the Biomarkers of Exposure to ARsenic (BEAR) cohort. Maternal alleles for five of the seven SNPs (rs7085104, rs3740400, rs3740393, rs3740390, and rs1046778) were associated with urinary concentrations of iAs metabolites, and alleles for one SNP (rs3740393) were associated with birth outcomes/measures. These associations were strongly dependent upon the male sex of the fetus but independent of fetal genotype for AS3MT. These data highlight a potential sex-dependence of the relationships among maternal genotype, iAs metabolism and infant health outcomes.
Collapse
Affiliation(s)
- Zuzana Drobná
- Department of Biological Sciences, North Carolina State University, NC 27695, United States
| | - Elizabeth Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Kyung Su Kim
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Paige Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Gonzalo G García-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
22
|
Skröder Löveborn H, Kippler M, Lu Y, Ahmed S, Kuehnelt D, Raqib R, Vahter M. Arsenic Metabolism in Children Differs From That in Adults. Toxicol Sci 2016; 152:29-39. [PMID: 27056082 PMCID: PMC4922540 DOI: 10.1093/toxsci/kfw060] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Arsenic toxicity in adults is associated with methylation efficiency, influenced by factors such as gender, genetics, and nutrition. The aim of this study was to evaluate influencing factors for arsenic metabolism in children. For 488 children (9 years), whose mothers participated in a study on arsenic exposure during pregnancy (nested into the MINIMat trial) in rural Bangladesh, we measured urinary concentrations of inorganic arsenic (iAs) and its metabolites methylarsonic acid (MMA) and dimethylarsinic acid (DMA) by HPLC-HG-ICPMS. Methylation efficiency was assessed by relative amounts (%) of the metabolites. We evaluated the impact of factors such as maternal urinary metabolite pattern, arsenic exposure, gender, socioeconomic status, season of sampling, and nutritional factors, including erythrocyte selenium (Ery-Se), and plasma folate and vitamin B12. Children had higher %DMA and lower %iAs in urine compared to their mothers, unrelated to their lower exposure [median urinary arsenic (U-As) 53 vs 78 µg/l]. Surprisingly, selenium status (Ery-Se) was strongly associated with children’s arsenic methylation; an increase in Ery-Se from the 5–95th percentile was associated with: +1.8 percentage points (pp) for %iAs (P = .001), +1.4 pp for %MMA (P = .003), and −3.2 pp for %DMA (P < .001). Despite this, Ery-Se was positively associated with U-As (5–95th percentile: +41 µg/l, P = .026). As expected, plasma folate was inversely associated with %iAs (5–95th percentile: −1.9 pp, P = .001) and positively associated with %DMA (5–95th percentile: +2.2 pp, P = .008). Children methylated arsenic more efficiently than their mothers. Also influencing factors, mainly selenium and folate, differed. This warrants further research.
Collapse
Affiliation(s)
| | - Maria Kippler
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden;
| | - Ying Lu
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Sultan Ahmed
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden; International Center for Diarrhoeal Disease Research, Bangladesh (Icddr,B), Dhaka 1000, Bangladesh
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| | - Rubhana Raqib
- International Center for Diarrhoeal Disease Research, Bangladesh (Icddr,B), Dhaka 1000, Bangladesh
| | - Marie Vahter
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden;
| |
Collapse
|
23
|
Jansen RJ, Argos M, Tong L, Li J, Rakibuz-Zaman M, Islam MT, Slavkovich V, Ahmed A, Navas-Acien A, Parvez F, Chen Y, Gamble MV, Graziano JH, Pierce BL, Ahsan H. Determinants and Consequences of Arsenic Metabolism Efficiency among 4,794 Individuals: Demographics, Lifestyle, Genetics, and Toxicity. Cancer Epidemiol Biomarkers Prev 2015; 25:381-90. [PMID: 26677206 DOI: 10.1158/1055-9965.epi-15-0718] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/18/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs), a class I carcinogen, affects several hundred million people worldwide. Once absorbed, iAs is converted to monomethylated (MMA) and then dimethylated forms (DMA), with methylation facilitating urinary excretion. The abundance of each species in urine relative to their sum (iAs%, MMA%, and DMA%) varies across individuals, reflecting differences in arsenic metabolism capacity. METHODS The association of arsenic metabolism phenotypes with participant characteristics and arsenical skin lesions was characterized among 4,794 participants in the Health Effects of Arsenic Longitudinal Study (Araihazar, Bangladesh). Metabolism phenotypes include those obtained from principal component (PC) analysis of arsenic species. RESULTS Two independent PCs were identified: PC1 appears to represent capacity to produce DMA (second methylation step), and PC2 appears to represent capacity to convert iAs to MMA (first methylation step). PC1 was positively associated (P <0.05) with age, female sex, and BMI, while negatively associated with smoking, arsenic exposure, education, and land ownership. PC2 was positively associated with age and education but negatively associated with female sex and BMI. PC2 was positively associated with skin lesion status, while PC1 was not. 10q24.32/AS3MT region polymorphisms were strongly associated with PC1, but not PC2. Patterns of association for most variables were similar for PC1 and DMA%, and for PC2 and MMA% with the exception of arsenic exposure and SNP associations. CONCLUSIONS Two distinct arsenic metabolism phenotypes show unique associations with age, sex, BMI, 10q24.32 polymorphisms, and skin lesions. IMPACT This work enhances our understanding of arsenic metabolism kinetics and toxicity risk profiles.
Collapse
Affiliation(s)
- Rick J Jansen
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Maria Argos
- Divison of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Jiabei Li
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | | | | | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yu Chen
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois. Department of Human Genetics and Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois.
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois. Department of Human Genetics and Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois. Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
24
|
Kuo CC, Howard BV, Umans JG, Gribble MO, Best LG, Francesconi KA, Goessler W, Lee E, Guallar E, Navas-Acien A. Arsenic Exposure, Arsenic Metabolism, and Incident Diabetes in the Strong Heart Study. Diabetes Care 2015; 38:620-7. [PMID: 25583752 PMCID: PMC4370323 DOI: 10.2337/dc14-1641] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Little is known about arsenic metabolism in diabetes development. We investigated the prospective associations of low-moderate arsenic exposure and arsenic metabolism with diabetes incidence in the Strong Heart Study. RESEARCH DESIGN AND METHODS A total of 1,694 diabetes-free participants aged 45-75 years were recruited in 1989-1991 and followed through 1998-1999. We used the proportions of urine inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) over their sum (expressed as iAs%, MMA%, and DMA%) as the biomarkers of arsenic metabolism. Diabetes was defined as fasting glucose ≥ 126 mg/dL, 2-h glucose ≥ 200 mg/dL, self-reported diabetes history, or self-reported use of antidiabetic medications. RESULTS Over 11,263.2 person-years of follow-up, 396 participants developed diabetes. Using the leave-one-out approach to model the dynamics of arsenic metabolism, we found that lower MMA% was associated with higher diabetes incidence. The hazard ratios (95% CI) of diabetes incidence for a 5% increase in MMA% were 0.77 (0.63-0.93) and 0.82 (0.73-0.92) when iAs% and DMA%, respectively, were left out of the model. DMA% was associated with higher diabetes incidence only when MMA% decreased (left out of the model) but not when iAs% decreased. iAs% was also associated with higher diabetes incidence when MMA% decreased. The association between MMA% and diabetes incidence was similar by age, sex, study site, obesity, and urine iAs concentrations. CONCLUSIONS Arsenic metabolism, particularly lower MMA%, was prospectively associated with increased incidence of diabetes. Research is needed to evaluate whether arsenic metabolism is related to diabetes incidence per se or through its close connections with one-carbon metabolism.
Collapse
Affiliation(s)
- Chin-Chi Kuo
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD Kidney Institute and Division of Nephrology, Department of Internal Medicine, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC
| | | | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Timber Lake, SD
| | - Kevin A Francesconi
- Institute of Chemistry - Analytical Chemistry, Karl-Franzens University Graz, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, Karl-Franzens University Graz, Graz, Austria
| | - Elisa Lee
- Center for American Indian Health Research, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ana Navas-Acien
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Laine JE, Bailey KA, Rubio-Andrade M, Olshan AF, Smeester L, Drobná Z, Herring AH, Stýblo M, García-Vargas GG, Fry RC. Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:186-92. [PMID: 25325819 PMCID: PMC4314242 DOI: 10.1289/ehp.1307476] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/15/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs) from drinking water is a global public health problem, yet much remains unknown about the extent of exposure in susceptible populations. OBJECTIVES We aimed to establish the Biomarkers of Exposure to ARsenic (BEAR) prospective pregnancy cohort in Gómez Palacio, Mexico, to better understand the effects of iAs exposure on pregnant women and their children. METHODS Two hundred pregnant women were recruited for this study. Concentrations of iAs in drinking water (DW-iAs) and maternal urinary concentrations of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) were determined. Birth outcomes were analyzed for their relationship to DW-iAs and to the concentrations and proportions of maternal urinary arsenicals. RESULTS DW-iAs for the study subjects ranged from < 0.5 to 236 μg As/L. More than half of the women (53%) had DW-iAs that exceeded the World Health Organization's recommended guideline of 10 μg As/L. DW-iAs was significantly associated with the sum of the urinary arsenicals (U-tAs). Maternal urinary concentrations of MMAs were negatively associated with newborn birth weight and gestational age. Maternal urinary concentrations of iAs were associated with lower mean gestational age and newborn length. CONCLUSIONS Biomonitoring results demonstrate that pregnant women in Gómez Palacio are exposed to potentially harmful levels of DW-iAs. The data support a relationship between iAs metabolism in pregnant women and adverse birth outcomes. The results underscore the risks associated with iAs exposure in vulnerable populations.
Collapse
Affiliation(s)
- Jessica E Laine
- Department of Epidemiology, and Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Gillings School of Public Heath, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bailey K, Fry RC. Long-term health consequences of prenatal arsenic exposure: links to the genome and the epigenome. REVIEWS ON ENVIRONMENTAL HEALTH 2014; 29:9-12. [PMID: 24552957 PMCID: PMC4049250 DOI: 10.1515/reveh-2014-0006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 05/09/2023]
Abstract
Arsenic continues to poison the water of millions of individuals around the globe. Despite the potentially devastating effects of arsenic on worldwide human health, the impacts of such exposure on vulnerable populations including pregnant women and their unborn children are understudied. Data from human populations exposed early in life highlight the increased mortality risks related to both cancer and non-cancer endpoints. The molecular underpinnings for these effects are largely unknown. Here we highlight the current studies linking prenatal arsenic exposure and health effects, particularly those that examined associations between arsenic exposure and altered genomic and epigenetic signaling. Current needs in the field to increase our understanding of the molecular basis for adult disease are mentioned.
Collapse
Affiliation(s)
- Kathryn Bailey
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Corresponding Author Information: Rebecca C. Fry, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, 135 Dauer Drive, CB 7431, University of North Carolina, Chapel Hill, North Carolina, USA, Phone: (919) 843-6864, Fax: (919) 843-9047,
| |
Collapse
|
27
|
Harari F, Engström K, Concha G, Colque G, Vahter M, Broberg K. N-6-adenine-specific DNA methyltransferase 1 (N6AMT1) polymorphisms and arsenic methylation in Andean women. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:797-803. [PMID: 23665909 PMCID: PMC3702000 DOI: 10.1289/ehp.1206003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 05/08/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND In humans, inorganic arsenic is metabolized to methylated metabolites mainly by arsenic (+3 oxidation state) methyltransferase (AS3MT). AS3MT polymorphisms are associated with arsenic metabolism efficiency. Recently, a putative N-6-adenine-specific DNA methyltransferase 1 (N6AMT1) was found to methylate arsenic in vitro. OBJECTIVE We evaluated the role of N6AMT1 polymorphisms in arsenic methylation efficiency in humans. METHODS We assessed arsenic methylation efficiency in 188 women exposed to arsenic via drinking water (~ 200 µg/L) in the Argentinean Andes by measuring the relative concentrations of arsenic metabolites in urine [inorganic arsenic, methylarsonic acid (MMA), and dimethylarsinic acid] by high-performance liquid chromatography coupled with hydride generation and inductively coupled plasma mass spectrometry. We performed genotyping for N6AMT1 and AS3MT polymorphisms by Taqman assays, and gene expression (in blood; n = 63) with Illumina HumanHT-12 v4.0. RESULTS Five N6AMT1 single nucleotide polymorphisms (SNPs; rs1997605, rs2205449, rs2705671, rs16983411, and rs1048546) and two N6AMT1 haplotypes were significantly associated with the percentage of MMA (%MMA) in urine, even after adjusting for AS3MT haplotype. %MMA increased monotonically according to the number of alleles for each SNP (e.g., for rs1048546, mean %MMA was 7.5% for GG, 8.8% for GT, and 9.7% for TT carriers). Three SNPs were in linkage disequilibrium (R2 > 0.8). Estimated associations for joint effects of N6AMT1 (haplotype 1) and AS3MT (haplotype 2) were generally consistent with expectations for additive effects of each haplotype on %MMA. Carriers of N6AMT1 genotypes associated with lower %MMA showed the lowest N6AMT1 expression, but associations were monotonic according to copy number for only one genotype and one haplotype. CONCLUSIONS N6AMT1 polymorphisms were associated with arsenic methylation in Andean women, independent of AS3MT. N6AMT1 polymorphisms may be susceptibility markers for arsenic-related toxic effects.
Collapse
Affiliation(s)
- Florencia Harari
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|