1
|
Scala M, Wortmann SB, Kaya N, Stellingwerff MD, Pistorio A, Glamuzina E, van Karnebeek CD, Skrypnyk C, Iwanicka‐Pronicka K, Piekutowska‐Abramczuk D, Ciara E, Tort F, Sheidley B, Poduri A, Jayakar P, Jayakar A, Upadia J, Walano N, Haack TB, Prokisch H, Aldhalaan H, Karimiani EG, Yildiz Y, Ceylan AC, Santiago‐Sim T, Dameron A, Yang H, Toosi MB, Ashrafzadeh F, Akhondian J, Imannezhad S, Mirzadeh HS, Maqbool S, Farid A, Al‐Muhaizea MA, Alshwameen MO, Aldowsari L, Alsagob M, Alyousef A, AlMass R, AlHargan A, Alwadei AH, AlRasheed MM, Colak D, Alqudairy H, Khan S, Lines MA, García Cazorla MÁ, Ribes A, Morava E, Bibi F, Haider S, Ferla MP, Taylor JC, Alsaif HS, Firdous A, Hashem M, Shashkin C, Koneev K, Kaiyrzhanov R, Efthymiou S, Genomics QS, Schmitt‐Mechelke T, Ziegler A, Issa MY, Elbendary HM, Striano P, Alkuraya FS, Zaki MS, Gleeson JG, Barakat TS, Bierau J, van der Knaap MS, Maroofian R, Houlden H. Clinico-radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency. Hum Mutat 2022; 43:403-419. [PMID: 34989426 PMCID: PMC9152572 DOI: 10.1002/humu.24326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan-Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Saskia B. Wortmann
- Amalia Children's HospitalRadboud University NijmegenNijmegenThe Netherlands
- University Children's HospitalParacelsus Medical UniversitySalzburgAustria
| | - Namik Kaya
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
- Department of Translational Genomics, Center for Genomics MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Menno D. Stellingwerff
- Department of Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Angela Pistorio
- Clinical Epidemiology and Biostatistics UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Emma Glamuzina
- Adult and Paediatric National Metabolic ServiceStarship Children's HospitalAucklandNew Zealand
| | - Clara D. van Karnebeek
- Departments of Pediatrics and Clinical GeneticsAcademic Medical CentreAmsterdamThe Netherlands
| | - Cristina Skrypnyk
- Department of Molecular Medicine, Al‐Jawhara Centre for Molecular MedicineArabian Gulf UniversityManamaKingdom of Bahrain
| | - Katarzyna Iwanicka‐Pronicka
- Department of Medical GeneticsThe Children's Memorial Health InstituteWarsawPoland
- Department of Audiology and PhoniatricsThe Children's Memorial Health InstituteWarsawPoland
| | | | - Elżbieta Ciara
- Department of Medical GeneticsThe Children's Memorial Health InstituteWarsawPoland
| | - Frederic Tort
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica iGenètica MolecularHospital Clínic, IDIBAPS, CIBERERBarcelonaSpain
| | - Beth Sheidley
- Department of NeurologyF.M. Kirby Neurobiology Center, Boston Children's HospitalBostonMassachusettesUSA
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics ProgramBoston Children's HospitalBostonMassachusettesUSA
| | - Annapurna Poduri
- Department of NeurologyF.M. Kirby Neurobiology Center, Boston Children's HospitalBostonMassachusettesUSA
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics ProgramBoston Children's HospitalBostonMassachusettesUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettesUSA
| | | | | | - Jariya Upadia
- Tulane University School of MedicineNew OrleansLouisianaUSA
| | | | - Tobias B. Haack
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Holger Prokisch
- Institute of Human GeneticsTechnische Universität MünchenMunichGermany
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Hesham Aldhalaan
- Department of NeurosciencesKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Ehsan G. Karimiani
- Department of Medical GeneticsNext Generation Genetic PolyclinicMashhadIran
- Molecular and Clinical Sciences InstituteSt. George's University of London, Cranmer TerraceLondonUK
- Innovative Medical Research CenterIslamic Azad University, Mashhad BranchMashhadIran
| | - Yilmaz Yildiz
- Pediatric Metabolic Diseases ClinicDr. Sami Ulus Training and Research Hospital for Maternity and ChildrenAnkaraTurkey
| | - Ahmet C. Ceylan
- Department of Medical GeneticsAnkara City HospitalAnkaraTurkey
| | | | | | | | - Mehran B. Toosi
- Pediatric Neurology Department, Ghaem HospitalMashhad University of Medical SciencesMashhadIran
| | - Farah Ashrafzadeh
- Department of PediatricsMashhad University of Medical SciencesMashhadIran
| | - Javad Akhondian
- Pediatric Neurology Department, Ghaem HospitalMashhad University of Medical SciencesMashhadIran
| | - Shima Imannezhad
- Department of Pediatric DiseasesMashhad University of Medical SciencesMashhadIran
| | - Hanieh S. Mirzadeh
- Department of Pediatric DiseasesMashhad University of Medical SciencesMashhadIran
| | - Shazia Maqbool
- Development and Behavioral Pediatrics DepartmentInstitute of Child Health and The Children HospitalLahorePakistan
| | - Aisha Farid
- Development and Behavioral Pediatrics DepartmentInstitute of Child Health and The Children HospitalLahorePakistan
| | - Mohamed A. Al‐Muhaizea
- Department of NeurosciencesKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Meznah O. Alshwameen
- Department of NeurosciencesKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Lama Aldowsari
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Maysoon Alsagob
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Ashwaq Alyousef
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Rawan AlMass
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Aljouhra AlHargan
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Ali H. Alwadei
- Neurosciences DepartmentKing Fahad Medical CityRiyadhSaudi Arabia
| | - Maha M. AlRasheed
- Department of Clinical PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific ComputingKFSHRCRiyadhKingdom of Saudi Arabia
| | - Hanan Alqudairy
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Sameena Khan
- Department of NeurosciencesKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Matthew A. Lines
- Medical Genetics, Department of PediatricsAlberta Children's HospitalCalgaryCanada
| | | | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica iGenètica MolecularHospital Clínic, IDIBAPS, CIBERERBarcelonaSpain
| | - Eva Morava
- Department of Clinical Genomics, Laboratory of Medicine and PathologyCenter for Individualized Medicine, Mayo ClinicRochesterMinnesotaUSA
| | - Farah Bibi
- Institute of Biochemistry and BiotechnologyPir Mehar Ali Shah Arid Agriculture UniversityRawalpindiPakistan
| | - Shahzad Haider
- Izzat Ali Shah HospitalLalarukh Wah CanttRawalpindiPakistan
| | - Matteo P. Ferla
- NIHR Oxford BRC Genomic Medicine, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Jenny C. Taylor
- NIHR Oxford BRC Genomic Medicine, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Hessa S. Alsaif
- Department of Translational Genomics, Center for Genomics MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Abdulwahab Firdous
- Department of Translational Genomics, Center for Genomics MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomics MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Chingiz Shashkin
- International University of Postgraduate EducationAlmatyKazakhstan
| | - Kairgali Koneev
- Department of Neurology and NeurosurgeryAsfendiyarov Kazakh National Medical UniversityAlmatyKazakhstan
| | - Rauan Kaiyrzhanov
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | | | | | | | - Andreas Ziegler
- Zentrum für Kinder und Jugendmedizin Heidelberg, Sektion Neuropädiatrie und StoffwechselmedizinUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Mahmoud Y. Issa
- Clinical Genetics Department, Human Genetics and Genome Research DivisionNational Research CentreCairoEgypt
| | - Hasnaa M. Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research DivisionNational Research CentreCairoEgypt
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomics MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
- Department of Anatomy and Cell BiologyAlfaisal UniversityRiyadhSaudi Arabia
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research DivisionNational Research CentreCairoEgypt
| | - Joseph G. Gleeson
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical InstituteUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Jorgen Bierau
- Laboratory of Biochemical Genetics, Department of Clinical GeneticsMaastricht University HospitalMaastrichtThe Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Reza Maroofian
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Henry Houlden
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
2
|
Zamzami MA. Inosine Triphosphate Pyrophosphatase (ITPase): Functions, Mutations, Polymorphisms and Its Impact on Cancer Therapies. Cells 2022; 11:384. [PMID: 35159194 PMCID: PMC8833965 DOI: 10.3390/cells11030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Inosine triphosphate pyrophosphatase (ITPase) is an enzyme encoded by the ITPA gene and functions to prevent the incorporation of noncanonical purine nucleotides into DNA and RNA. Specifically, the ITPase catalyzed the hydrolysis of (deoxy) nucleoside triphosphates ((d) NTPs) into the corresponding nucleoside monophosphate with the concomitant release of pyrophosphate. Recently, thiopurine drug metabolites such as azathioprine have been included in the lists of ITPase substrates. Interestingly, inosine or xanthosine triphosphate (ITP/XTP) and their deoxy analogs, deoxy inosine or xanthosine triphosphate (dITP/dXTP), are products of important biological reactions such as deamination that take place within the cellular compartments. However, the incorporation of ITP/XTP, dITP/dXTP, or the genetic deficiency or polymorphism of the ITPA gene have been implicated in many human diseases, including infantile epileptic encephalopathy, early onset of tuberculosis, and the responsiveness of patients to cancer therapy. This review provides an up-to-date report on the ITPase enzyme, including information regarding its discovery, analysis, and cellular localization, its implication in human diseases including cancer, and its therapeutic potential, amongst others.
Collapse
Affiliation(s)
- Mazin A. Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Aluko A, Ranganathan P. Pharmacogenetics of Drug Therapies in Rheumatoid Arthritis. Methods Mol Biol 2022; 2547:527-567. [PMID: 36068476 DOI: 10.1007/978-1-0716-2573-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder that can lead to severe joint damage and is often associated with a high morbidity and disability. Disease-modifying anti-rheumatic drugs (DMARDs) are the mainstay of treatment in RA. DMARDs not only relieve the clinical signs and symptoms of RA but also inhibit the radiographic progression of disease and reduce the effects of chronic systemic inflammation. Since the introduction of biologic DMARDs in the late 1990s, the therapeutic range of options for the management of RA has significantly expanded. However, patients' response to these agents is not uniform with considerable variability in both efficacy and toxicity. There are no reliable means of predicting an individual patient's response to a given DMARD prior to initiation of therapy. In this chapter, the current published literature on the pharmacogenetics of traditional DMARDS and the newer biologic DMARDs in RA is highlighted. Pharmacogenetics may help individualize drug therapy in patients with RA by providing reliable biomarkers to predict medication toxicity and efficacy.
Collapse
Affiliation(s)
- Atinuke Aluko
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Prabha Ranganathan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Gargallo-Puyuelo CJ, Laredo V, Gomollón F. Thiopurines in Inflammatory Bowel Disease. How to Optimize Thiopurines in the Biologic Era? Front Med (Lausanne) 2021; 8:681907. [PMID: 34336887 PMCID: PMC8322650 DOI: 10.3389/fmed.2021.681907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022] Open
Abstract
Thiopurines have been a cornerstone in the treatment of inflammatory bowel disease (IBD). Although they have been used for more than 50 years, there are still some unsolved issues about their efficacy and, also, some safety concerns, mainly the risk of myelosuppression and life-threatening lymphoproliferative disorders. Furthermore, the development of biological therapy raises the question whether there is still a role for thiopurines in the IBD treatment algorithm. On the other hand, limited cost and wide availability make thiopurines a reasonable option in settings of limited resources and increasing prevalence of IBD. In fact, there is a growing interest in optimizing thiopurine therapy, since pharmacogenomic findings suggest that a personalized approach based on the genotyping of some molecules involved in its metabolism could be useful to prevent side effects. Polymorphisms of thiopurine methyltransferase enzyme (TPMT) that result in low enzymatic activity have been associated with an increased risk of myelotoxicity, especially in Caucasians; however, in Asians it is assumed that the variants of nudix hydrolase 15 (NUDT15) are more relevant in the development of toxicity. Age is also important, since in elderly patients the risk of complications seems to be increased. Moreover, the primo-infection of Epstein Barr virus and cytomegalovirus under thiopurine treatment has been associated with severe lymphoproliferative disorders. In addition to assessing individual characteristics that may influence thiopurines treatment outcomes, this review also discusses other strategies to optimize the therapy. Low-dose thiopurines combined with allopurinol can be used in hypermethylators and in thiopurine-related hepatotoxicity. The measurement of metabolites could be useful to assess compliance, identify patients at risk of adverse events and also facilitating the management of refractory patients. Thioguanine is also a rescue therapy in patients with toxicity related to conventional thiopurine therapy. Finally, the current indications for thiopurines in monotherapy or in combination with biologics, as well as the optimal duration of treatment, are also reviewed.
Collapse
Affiliation(s)
| | - Viviana Laredo
- Department of Gastroenterology, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| | - Fernando Gomollón
- Department of Gastroenterology, University Clinic Hospital Lozano Blesa, Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
5
|
Houndonougbo Y, Pugh B, VanWormer K, April C, Burgis N. Structural dynamics of inosine triphosphate pyrophosphatase (ITPA) protein and two clinically relevant mutants: molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:1236-1247. [PMID: 32129147 DOI: 10.1080/07391102.2020.1727363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The inosine triphosphate pyrophosphatase (ITPA) protein is responsible for removing noncanonical purine nucleoside triphosphates from intracellular nucleotide pools. Absence of ITPA results in genomic instability and increased levels of inosine in DNA and RNA. The proline to threonine substitution at position 32 (P32T) affects roughly 15% of the global population and can modulate treatment outcomes for cancer, lupus, and hepatitis C patients. The substitution of arginine with cysteine at position 178 (R178C) is extremely uncommon and has only been reported in a small cohort of early infantile encephalopathy patients suggesting that a functional ITPA protein is required for life in humans. Here we present molecular dynamic simulations that describe the structure and dynamics of the wild-type ITPA homodimer and two of its clinically relevant mutants, P32T and R178C. The simulation results indicate that both the P32T and R178C mutations alter the structure and dynamic properties of the protein and provide a possible explanation of the experimentally observed effect of the mutations on ITPA activity. Specifically, the mutations increased the overall flexibility of the protein and changed the dominant collective motions of the top lobe as well as the helix 2 of the lower lobe. Moreover, we have identified key active-site residues that are classified as essential or intermediate for inosine triphosphate (ITP) hydrolyzing activity based on their hydrogen bond occupancy. Here we also present biochemical data indicating that the R178C mutant has very low ITP hydrolyzing activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yao Houndonougbo
- Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA
| | - Bethany Pugh
- Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA
| | - Kandise VanWormer
- Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA
| | - Caitlin April
- Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA
| | - Nicholas Burgis
- Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA
| |
Collapse
|
6
|
Peltenburg NC, Bierau J, Schippers JA, Lowe SH, Paulussen ADC, van den Bosch BJC, Leers MPG, Andrinopoulou ER, Bakker JA, Verbon A. Metabolic events in HIV-infected patients using abacavir are associated with erythrocyte inosine triphosphatase activity. J Antimicrob Chemother 2020; 74:157-164. [PMID: 30304447 DOI: 10.1093/jac/dky383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
Objectives Abacavir use has been associated with an increased risk of cardiovascular disease (CVD) and metabolic events in HIV-infected patients, although this finding was not consistently found. It is unclear whether abacavir only increases this risk in subpopulations of HIV-infected patients. It may be hypothesized that inosine 5'-triphosphate pyrophosphohydrolase (ITPase), an enzyme involved in the metabolism of purine analogues used in HIV treatment, plays a role in the risk of CVD and metabolic events in HIV-infected patients. Methods ITPase activity and ITPA genotype were determined in 393 HIV-infected patients. ITPase activity <4 mmol IMP/mmol Hb/h was considered decreased. ITPA polymorphisms tested were: c.94C>A (rs1127354) and c.124 + 21A>C (rs7270101). ORs were determined using generalized estimating equation models for developing CVD in patients who had ever been exposed to abacavir, tenofovir or didanosine and for developing metabolic events in patients currently using these drugs. Results In patients using abacavir, metabolic events were associated with ITPase activity. No association was demonstrated for tenofovir or didanosine. The OR for metabolic events was 3.11 in patients using abacavir with normal ITPase activity (95% CI 1.34-7.21; P = 0.008) compared with patients with decreased ITPase activity [adjusted for age, BMI, cumulative duration of combination ART (cART) use and the use of PI and NNRTI]. CVD was not associated with ITPase activity or ITPA genotype. Conclusions This study shows, for the first time, that ITPase activity is associated with the occurrence of metabolic events in patients using abacavir. Further studies are needed to confirm this association and to elucidate the possible mechanism.
Collapse
Affiliation(s)
- N Chantal Peltenburg
- Department of Internal Medicine, Division of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jolanda A Schippers
- Department of Integrated Care, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Selwyn H Lowe
- Department of Internal Medicine, Division of Infectious Diseases, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Medical Microbiology, School of CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Aimée D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bianca J C van den Bosch
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mathie P G Leers
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Center, Heerlen, The Netherlands
| | | | - Jaap A Bakker
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Division of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
van Gennep S, Konté K, Meijer B, Heymans MW, D'Haens GR, Löwenberg M, de Boer NKH. Systematic review with meta-analysis: risk factors for thiopurine-induced leukopenia in IBD. Aliment Pharmacol Ther 2019; 50:484-506. [PMID: 31342537 DOI: 10.1111/apt.15403] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/02/2019] [Accepted: 06/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Thiopurine-induced leukopenia, a frequently observed and potentially life-threatening adverse event, complicates the clinical management of IBD patients. AIM To assess risk factors for thiopurine-induced leukopenia in IBD. METHODS MEDLINE, EMBASE, BIOSIS and Cochrane library were searched for studies reporting at least one risk factor for thiopurine-induced leukopenia. Pooled odds ratio (OR) was calculated for each potential risk factor using a random effects model. Studies that were not eligible for meta-analysis were described qualitatively. RESULTS Seventy articles were included, 34 (11 229 patients) were included in meta-analyses. A significantly higher thiopurine-induced leukopenia risk was found for TPMT (OR 3.9, 95% [CI] 2.5-6.1) and for NUDT15 R139C (OR 6.9, 95% CI 5.2-9.1), G52A (OR 3.2, 95% CI 1.3-7.9) and 36_37ins/delGGAGTC variant carriers (OR 5.6, 95% CI 2.8-11.4). A potential association between high 6-thioguanine nucleotides (6-TGN) or 6-methylmercaptopurine (6-MMP) levels and leukopenia was observed, since most studies reported higher metabolite levels in leukopenic patients (6-TGN: 204-308 (Lennard method) and 397 (Dervieux method), 6-MMP: 4020-10 450 pmol/8 x 108 RBC) compared to controls (6-TGN: 170-212 (Lennard method) and 269 (Dervieux method), 6-MMP: 1025-4550 pmol/8 x 108 RBC). CONCLUSIONS TPMT and NUDT15 variants predict thiopurine-induced leukopenia. High 6-TGN and 6-MMP levels might induce leukopenia, although exact cut-off values remain unclear. Potential preventive measures to reduce the risk of thiopurine-induced leukopenia include pre-treatment TPMT and NUDT15 genotyping. Routine thiopurine metabolite measurement might be efficient, yet cut-off levels must be validated in advance.
Collapse
Affiliation(s)
- Sara van Gennep
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kadère Konté
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Berrie Meijer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn W Heymans
- Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Geert R D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Citterio-Quentin A, El Mahmoudi A, Perret T, Conway A, Ryan A, Beringer A, Lachaux A, Boulieu R. Red Blood cell IMPDH activity in adults and children with or without azathioprine: Relationship between thiopurine metabolites, ITPA and TPMT activities. Basic Clin Pharmacol Toxicol 2018; 124:600-606. [PMID: 30451390 DOI: 10.1111/bcpt.13176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/11/2018] [Indexed: 01/11/2023]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is considered as the limiting enzyme of thiopurine metabolism for the formation of 6-thioguanine nucleotides (6-TGN). No data are available on the influence of RBC IMPDH activity on the metabolism of thiopurine drugs in individuals with IBD. The aims of this study were as follows: (a) to carry out a phenotypic study of RBC IMPDH activity in adults and children treated or not with azathioprine (AZA) for autoimmune diseases, and (b) to investigate the relationship between the activities of IMPDH, thiopurine metabolites, inosine triphosphatase (ITPA) and thiopurine methyltransferase (TPMT). IMPDH activity was determined in 97 adults and 67 children treated or not with AZA. 6-Thioguanine nucleotides (6-TGN), 6-methylmercaptopurine nucleotide (6-MeMPN) levels, and ITPA as well as TPMT activities were measured in RBCs by HPLC. Using the Gaussian mixture model, distribution of IMPDH activity was evaluated. Influence of age, sex and AZA treatment on IMPDH activity was also assessed. A bimodal distribution in IMPDH activity was found with 87% of patients exhibiting normal activity and 13% of patients with high activity. No influence of age, sex and AZA therapy was found. There is no relationship between TPMT, ITPA and IMPDH activities. A negative correlation between IMPDH activity and 6-MeMPN was shown in adults and children (rs = -0.335 P = 0.014 and rs = -0.383 P = 0.012, respectively). Our results suggest that AZA-treated patients exhibiting lower IMPDH activity could have higher Me-6MPN levels with higher risk of hepatotoxicity. We demonstrated that RBC matrix could be an interesting alternative to lymphocyte matrix to monitor thiopurine metabolites and enzyme activity.
Collapse
Affiliation(s)
- Antony Citterio-Quentin
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multisites of University Hospital of Lyon, Pharmaco-Toxicology Unit, Hospices Civils de Lyon, Lyon, France
| | - Amal El Mahmoudi
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multisites of University Hospital of Lyon, Pharmaco-Toxicology Unit, Hospices Civils de Lyon, Lyon, France
| | - Thibault Perret
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multisites of University Hospital of Lyon, Pharmaco-Toxicology Unit, Hospices Civils de Lyon, Lyon, France
| | - Anthony Conway
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,School of Pharmacy and Pharmaceuticals Sciences, Trinity College Dublin, Dublin, Ireland
| | - Aishling Ryan
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,School of Pharmacy and Pharmaceuticals Sciences, Trinity College Dublin, Dublin, Ireland
| | - Audrey Beringer
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multisites of University Hospital of Lyon, Pharmaco-Toxicology Unit, Hospices Civils de Lyon, Lyon, France
| | - Alain Lachaux
- Pediatric Gastroenterology Unit, Hôpital Femme Mère Enfant (HFME), Lyon, France
| | - Roselyne Boulieu
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multisites of University Hospital of Lyon, Pharmaco-Toxicology Unit, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
9
|
Lim SZ, Chua EW. Revisiting the Role of Thiopurines in Inflammatory Bowel Disease Through Pharmacogenomics and Use of Novel Methods for Therapeutic Drug Monitoring. Front Pharmacol 2018; 9:1107. [PMID: 30349479 PMCID: PMC6186994 DOI: 10.3389/fphar.2018.01107] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Azathioprine and 6-mercaptopurine, often referred to as thiopurine compounds, are commonly used in the management of inflammatory bowel disease. However, patients receiving these drugs are prone to developing adverse drug reactions or therapeutic resistance. Achieving predefined levels of two major thiopurine metabolites, 6-thioguanine nucleotides and 6-methylmercaptopurine, is a long-standing clinical practice in ensuring therapeutic efficacy; however, their correlation with treatment response is sometimes unclear. Various genetic markers have also been used to aid the identification of patients who are thiopurine-sensitive or refractory. The recent discovery of novel Asian-specific DNA variants, namely those in the NUDT15 gene, and their link to thiopurine toxicity, have led clinicians and scientists to revisit the utility of Caucasian biomarkers for Asian individuals with inflammatory bowel disease. In this review, we explore the limitations associated with the current methods used for therapeutic monitoring of thiopurine metabolites and how the recent discovery of ethnicity-specific genetic markers can complement thiopurine metabolites measurement in formulating a strategy for more accurate prediction of thiopurine response. We also discuss the challenges in thiopurine therapy, alongside the current strategies used in patients with reduced thiopurine response. The review is concluded with suggestions for future work aiming at using a more comprehensive approach to optimize the efficacy of thiopurine compounds in inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Milosevic G, Kotur N, Krstovski N, Lazic J, Zukic B, Stankovic B, Janic D, Katsila T, Patrinos GP, Pavlovic S, Dokmanovic L. Variants in TPMT, ITPA, ABCC4 and ABCB1 Genes As Predictors of 6-mercaptopurine Induced Toxicity in Children with Acute Lymphoblastic Leukemia. J Med Biochem 2018; 37:320-327. [PMID: 30598629 PMCID: PMC6298470 DOI: 10.1515/jomb-2017-0060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/18/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia is the most common childhood malignancy. Optimal use of anti leukemic drugs has led to less toxicity and adverse reactions, and a higher survival rate. Thiopurine drugs, including 6-mercaptopurine, are mostly used as antileukemic medications in the maintenance phase of treatment for children with acute lymphoblastic leukemia. For those patients, TPMT genotype- tailored 6-mercaptopurine therapy is already implemented in the treatment protocols. We investigated the role of TPMT, ITPA, ABCC4 and ABCB1 genetic variants as predictors of outcome and 6-mercaptopurine induced toxicity during the maintenance phase of treatment in pediatric acute lymphoblastic leukemia. METHODS Sixty-eight children with acute lymphoblastic leukemia were enrolled in this study. Patients have been treated according to ALL IC-BFM 2002 or ALL IC-BFM 2009 protocols. Toxicity and adverse events have been monitored via surrogate markers (off-therapy weeks, episodes of leu - ko penia and average 6-mercaptopurine dose) and a prob- abilistic model was employed to predict overall 6-mercaptopurine related toxicity. RESULTS We confirmed that patients with acute lymphoblastic leukemia that carry inactive TPMT allele(s) require 6- mercaptopurine dose reduction. ITPA and ABCC4 genetic variants failed to show an association with 6-mercapto - purine induced toxicity during the maintenance phase. Carriers of ABCB1 variant allele experienced greater hepatotoxicity. The probabilistic model Neural net which considered all the analysed genetic variants was assessed to be the best prediction model. It was able to discriminate ALL patients with good and poor 6-mercaptopurin tolerance in 71% of cases (AUC=0.71). CONCLUSIONS This study contributes to the design of a panel of pharmacogenetic markers for predicting thiopurineinduced toxicity in pediatric ALL.
Collapse
Affiliation(s)
| | - Nikola Kotur
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nada Krstovski
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Jelena Lazic
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Branka Zukic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Biljana Stankovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Janic
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Theodora Katsila
- University of Patras School of Health Sciences, Department of Pharmacy, Patras, Greece
| | - George P. Patrinos
- University of Patras School of Health Sciences, Department of Pharmacy, Patras, Greece
- United Arab Emirates University, College of Medicine and Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | - Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Lidija Dokmanovic
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| |
Collapse
|
11
|
ITPA Activity in Adults and Children Treated With or Without Azathioprine: Relationship Between TPMT Activity, Thiopurine Metabolites, and Co-medications. Ther Drug Monit 2018. [PMID: 28650902 DOI: 10.1097/ftd.0000000000000430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The implication of inosine triphosphate pyrophosphatase (ITPA) on thiopurine drug response variability has been investigated but little data are available on its role on thiopurine metabolites. The ability of ITPA to modify the thiopurine metabolite levels is currently used to optimize azathioprine (AZA) therapy in relation to thiopurine S-methyltransferase (TPMT) activity, the aim of this study is to investigate ITPA phenotype in a large population and to evaluate the relation between ITPA and TPMT activities and thiopurine metabolites. METHODS ITPA activity was determined in 183 adults and 138 children with or without AZA therapy. 6-thioguanine nucleotides (6-TGN), 6-methylmercaptopurine nucleotides (6-MeMPN) levels, and ITPA as well as TPMT activities were measured in red blood cells. Using the Gaussian mixture model, distribution of ITPA activity was evaluated. Intraindividual variability and influence of age, sex, AZA treatment and associated co-medications on ITPA activity were also assessed. RESULTS This retrospective study shows a quadrimodal distribution in ITPA activity. No influence of age, sex, AZA therapy, and co-medications was found. In adults, ITPA activity was not significantly associated with 6-TGN or 6-MeMPN concentrations, whereas a weak negative correlation was observed with 6-MeMPN levels in pediatric populations (rs = -0.261; P = 0.024). A weak positive correlation was observed between ITPA and TPMT activities in children (rs = 0.289; P = 0.001). CONCLUSIONS ITPA activity was poorly influenced by nongenetic parameters and has no influence on 6-TGN and 6-MeMPN concentrations in adults and only a weak correlation with 6-MeMPN and TPMT activity in children. These results demonstrate that ITPA is not a rate-limiting enzyme in the formation of 6-TGN but suggest that a decrease in ITPA activity in children may be a risk factor for accumulation of 6-MeMPN in cells.
Collapse
|
12
|
Citterio-Quentin A, Moulsma M, Gustin MP, Lachaux A, Boulieu R. ITPA Activity in Children Treated by Azathioprine: Relationship to the Occurrence of Adverse Drug Reactions and Inflammatory Response. Basic Clin Pharmacol Toxicol 2018; 122:588-595. [PMID: 29327413 DOI: 10.1111/bcpt.12958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
Azathioprine (AZA), a thiopurine drug, is widely used in the treatment of children with immunological diseases such as inflammatory bowel disease (IBD) and autoimmune hepatitis (AIH); however, interindividual variability in the occurrence of adverse drug reactions (ADRs) and drug response is observed. This study investigated (i) the relationships between inosine triphosphate pyrophosphatase (ITPA) activity, an enzyme involved in thiopurine metabolism, and the occurrence of ADRs in children with immunological disease on AZA therapy, and (ii) the relationship between ITPA activity and the inflammatory activity observed in children with IBD. ITPA and TPMT activities were determined in 106 children with immunological disease on AZA therapy. Markers of hepatotoxicity, myelotoxicity, pancreatitis and inflammation as well as clinical information were retrospectively collected during regular medical visits. No significant association was found between ITPA activity and hepatotoxicity or clinical ADRs such as cutaneous reactions, arthralgia, flulike symptoms and gastrointestinal disorders. Concerning myelotoxicity, a significant relation was observed between ITPA activity and RBC mean corpuscular volume (MCV; p=0.003). This observation may be related to the significant relationship found between high ITPA activity and the increase in γ-globulin level reflecting inflammation (p=0.005). In our study, ITPA activity was not associated with occurrence of ADRs, but a relationship between high ITPA activity and γ-globulin, a marker of inflammation, was found in children with IBD. Therefore, measurement of ITPA activity may help to identify children with IBD predisposed to residual inflammation on AZA therapy. Further prospective studies are needed to confirm this result.
Collapse
Affiliation(s)
- Antony Citterio-Quentin
- UMR CNRS 5305, Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, Lyon, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multi Sites of the University Hospital of Lyon, Pharmaco-Toxicology Unit, Civil Hospices of Lyon, Lyon, France
| | - Mustapha Moulsma
- Edouard Herriot Hospital, Laboratory of Medical Biology Multi Sites of the University Hospital of Lyon, Pharmaco-Toxicology Unit, Civil Hospices of Lyon, Lyon, France
| | - Marie-Paule Gustin
- Emerging pathogen Laboratory - Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Alain Lachaux
- Pediatric Gastroenterology Unit, Civil Hospices of Lyon, Hôpital Femme-Mère-Enfant (HFME), Lyon, France
| | - Roselyne Boulieu
- UMR CNRS 5305, Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, Lyon, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multi Sites of the University Hospital of Lyon, Pharmaco-Toxicology Unit, Civil Hospices of Lyon, Lyon, France
| |
Collapse
|
13
|
Rufini S, Ciccacci C, Novelli G, Borgiani P. Pharmacogenetics of inflammatory bowel disease: a focus on Crohn's disease. Pharmacogenomics 2017; 18:1095-1114. [PMID: 28686143 DOI: 10.2217/pgs-2017-0068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Crohn's disease is an inflammatory bowel disease showing a high heterogeneity in phenotype and a strong genetic component. The treatment is complex, due to different severity of clinical parameters and to the fact that therapies only permit to control symptoms and to induce remission for short periods. Moreover, all categories of drugs present a great interindividual variability both in terms of efficacy and side effects appearance. For this reason, the identification of specific genomic biomarkers involved in drugs response will be of great clinical utility in order to foresee drug's efficacy and to prevent adverse reactions, permitting a more personalized therapeutic approach. In this review, we focus the attention on the pharmacogenetic studies regarding drugs commonly utilized in Crohn's disease treatment.
Collapse
Affiliation(s)
- Sara Rufini
- Department of Biomedicine & Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine & Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine & Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
14
|
Beringer A, Citterio-Quentin A, Otero RO, Gustin C, Clarke R, Salvi JP, Boulieu R. Determination of inosine 5'-monophosphate dehydrogenase activity in red blood cells of thiopurine-treated patients using HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:194-199. [PMID: 28110955 DOI: 10.1016/j.jchromb.2017.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 01/25/2023]
Abstract
Thiopurine drugs are commonly used in immune diseases and to a lesser extent, in transplant rejection prophylaxis: however interindividual variability in drug response and in the occurrence of adverse events is observed. Genetic variation in thiopurine S-methyltransferase (TPMT) doesn't completely explain the occurrence of all adverse events and drug response variability. The potential implication of other enzymes involved in thiopurine metabolism, such as ITPA, has been investigated over the last decade but little data is available on inosine 5'-monophosphate dehydrogenase (IMPDH) in patients treated with thiopurine drugs. The authors reported a HPLC method to determine IMPDH activity in the red blood cells (RBCs) of thiopurine-treated patients. IMPDH activity was evaluated by enzymatic conversion of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP). The XMP formed was analyzed on a Luna® NH2 stationary phase, a weak anion exchange phase that exhibits both ionic and hydrophobic properties. XMP was eluted below 15min. Intra-assay and inter-assay precisions were below 9% for RBCs supplemented with 2, 40 and 80μmol/L of XMP. IMPDH activity was measured in adults without thiopurine treatment as well as in adult and paediatric patients treated with thiopurines. A wide interindividual variability in IMPDH activity in RBCs was observed. No difference in IMPDH activity was found between untreated subjects and adult and paediatric patients on thiopurine therapy (median value 11.8, 7.9 and 7.7nmol XPM/g Hb/h respectively). The method described is useful in the determination of IMPDH phenotype from patients on thiopurine therapy and in the investigation of the potential relationship between IMPDH activity in RBCs and the occurrence of adverse events and drug response variability.
Collapse
Affiliation(s)
- Audrey Beringer
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France
| | - Antony Citterio-Quentin
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France
| | - Rebeca Obenza Otero
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France
| | - Clémence Gustin
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France
| | - Rebecca Clarke
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; School of Pharmacy and Pharmaceuticals Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jean-Paul Salvi
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France
| | - Roselyne Boulieu
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France.
| |
Collapse
|
15
|
Burgis NE. A disease spectrum for ITPA variation: advances in biochemical and clinical research. J Biomed Sci 2016; 23:73. [PMID: 27770805 PMCID: PMC5075207 DOI: 10.1186/s12929-016-0291-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Human ITPase (encoded by the ITPA gene) is a protective enzyme which acts to exclude noncanonical (deoxy)nucleoside triphosphates ((d)NTPs) such as (deoxy)inosine 5′-triphosphate ((d)ITP), from (d)NTP pools. Until the last few years, the importance of ITPase in human health and disease has been enigmatic. In 2009, an article was published demonstrating that ITPase deficiency in mice is lethal. All homozygous null offspring died before weaning as a result of cardiomyopathy due to a defect in the maintenance of quality ATP pools. More recently, a whole exome sequencing project revealed that very rare, severe human ITPA mutation results in early infantile encephalopathy and death. It has been estimated that nearly one third of the human population has an ITPA status which is associated with decreased ITPase activity. ITPA status has been linked to altered outcomes for patients undergoing thiopurine or ribavirin therapy. Thiopurine therapy can be toxic for patients with ITPA polymorphism, however, ITPA polymorphism is associated with improved outcomes for patients undergoing ribavirin treatment. ITPA polymorphism has also been linked to early-onset tuberculosis susceptibility. These data suggest a spectrum of ITPA-related disease exists in human populations. Potentially, ITPA status may affect a large number of patient outcomes, suggesting that modulation of ITPase activity is an important emerging avenue for reducing the number of negative outcomes for ITPA-related disease. Recent biochemical studies have aimed to provide rationale for clinical observations, better understand substrate selectivity and provide a platform for modulation of ITPase activity.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Chemistry and Biochemistry, Eastern Washington University, 226 Science Building, Cheney, WA, 99004, USA.
| |
Collapse
|
16
|
Moon W, Loftus EV. Review article: recent advances in pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther 2016; 43:863-883. [PMID: 26876431 DOI: 10.1111/apt.13559] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/26/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Azathioprine and mercaptopurine have a pivotal role in the treatment of inflammatory bowel disease (IBD). However, because of their complex metabolism and potential toxicities, optimal use of biomarkers to predict adverse effects and therapeutic response is paramount. AIM To provide a comprehensive review focused on pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in IBD. METHODS A literature search up to July 2015 was performed in PubMed using a combination of relevant MeSH terms. RESULTS Pre-treatment thiopurine S-methyltransferase typing plus measurement of 6-tioguanine nucleotides and 6-methylmercaptopurine ribonucleotides levels during treatment have emerged with key roles in facilitating safe and effective thiopurine therapy. Optimal use of these tools has been shown to reduce the risk of adverse effects by 3-7%, and to improve efficacy by 15-30%. For the introduction of aldehyde oxidase (AOX) into clinical practice, the association between AOX activity and AZA dose requirements should be positively confirmed. Inosine triphosphatase assessment associated with adverse effects also shows promise. Nucleoside diphosphate-linked moiety X-type motif 15 variants have been shown to predict myelotoxicity on thiopurines in East Asian patients. However, the impact of assessments of xanthine oxidase, glutathione S-transferase, hypoxanthine guanine phosphoribosyltransferase and inosine monophosphate dehydrogenase appears too low to favour incorporation into clinical practice. CONCLUSIONS Measurement of thiopurine-related enzymes and metabolites reduces the risk of adverse effects and improves efficacy, and should be considered part of standard management. However, this approach will not predict or avoid all adverse effects, and careful clinical and laboratory monitoring of patients receiving thiopurines remains essential.
Collapse
Affiliation(s)
- W Moon
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - E V Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Nakauchi A, Wong JH, Mahasirimongkol S, Yanai H, Yuliwulandari R, Mabuchi A, Liu X, Mushiroda T, Wattanapokayakit S, Miyagawa T, Keicho N, Tokunaga K. Identification of ITPA on chromosome 20 as a susceptibility gene for young-onset tuberculosis. Hum Genome Var 2016; 3:15067. [PMID: 27081565 PMCID: PMC4760120 DOI: 10.1038/hgv.2015.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis (TB) is a complex disease, and both genetic and environmental factors contribute to disease progression. A previous genome-wide linkage study in Thailand determined that chromosome 20p13-12.3 may contain risk factors for young-onset disease. The present study aimed to identify novel susceptibility genes for young-onset TB within a 1-Mbp target region adjacent to the top-ranking risk marker in Chr.20p13-12.3. We performed next-generation sequencing (NGS) of the region in 13 young patients from multi-case families in Thailand. We then selected the functionally interesting single-nucleotide polymorphisms as candidates for subsequent analyses. The detected candidates rs13830 and rs1127354 in ITPA showed an association with young (<45 years old) TB patients. However, there was no association in old (⩾45 years old) patients. These findings confirm that stratifying patients based on age of TB onset can be important for identifying genetic risk factors for TB susceptibility. In addition, in silico expression quantitative trait loci analyses indicated that ITPA expression was associated with rs13830 genotype. This is the first study to use NGS resequencing to gain insight into host genetic factors associated with TB and to report a significant association for ITPA with host susceptibility in young-onset TB. The study also demonstrated the effectiveness of NGS in identifying susceptibility genes in common diseases.
Collapse
Affiliation(s)
- Ayaka Nakauchi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Jing Hao Wong
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health , Nonthaburi, Thailand
| | - Hideki Yanai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Rika Yuliwulandari
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Genomic Medicine Research Group, YARSI Research Institute, YARSI University, Jakarta, Indonesia
| | - Akihiko Mabuchi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Xiaoxi Liu
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; RIKEN Brain Science Institute, Saitama, Japan
| | - Taisei Mushiroda
- Research Group for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences , Kanagawa, Japan
| | - Sukanya Wattanapokayakit
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health , Nonthaburi, Thailand
| | - Taku Miyagawa
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Naoto Keicho
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association (JATA) , Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
18
|
LaDuke KE, Ehling S, Cullen JM, Bäumer W. Effects of azathioprine, 6-mercaptopurine, and 6-thioguanine on canine primary hepatocytes. Am J Vet Res 2016; 76:649-55. [PMID: 26111096 DOI: 10.2460/ajvr.76.7.649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the cytotoxic effects of azathioprine, 6-mercaptopurine, and 6-thioguanine on canine hepatocytes. SAMPLE Commercially available cryopreserved canine primary hepatocytes. PROCEDURES The study consisted of 2 trials. In trial 1, hepatocytes were incubated with azathioprine, 6-mercaptopurine, or 6-thioguanine at 1 of 6 concentrations (0.468, 0.937, 1.875, 3.750, 7.500, or 15.000 μmol/L) for 24, 48, or 72 hours. At each time, cell viability and lactate dehydrogenase (LDH) activity were determined for each thiopurine-concentration combination, and alanine aminotransferase (ALT) activity was determined for cells incubated with each thiopurine at a concentration of 15 μmol/L. In trial 2, hepatocytes were incubated with azathioprine, 6-mercaptopurine, or 6-thioguanine at 1 of 3 concentrations (18.75, 37.50, or 75.00 μmol/L) for 24 hours, after which the free glutathione concentration was determined for each thiopurine-concentration combination and compared with that for hepatocytes incubated without a thiopurine (control). RESULTS Incubation of hepatocytes with each of the 3 thiopurines adversely affected cell viability in a time- and concentration-dependent manner; however, this decrease in cell viability was not accompanied by a concurrent increase in LDH or ALT activity. Likewise, free glutathione concentration for hepatocytes incubated for 24 hours with supratherapeutic thiopurine concentrations (> 18.75 μmol/L) did not differ significantly from that of control cells. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that thiopurines adversely affected the viability of canine hepatocytes in a time- and concentration-dependent manner but had a nonsignificant effect on the LDH and ALT activities and free glutathione depletion of those hepatocytes.
Collapse
|
19
|
Azimi F, Esmaeilzadeh A, Ramazani A. RETRACTED: Clinical significance of ITPA rs67002563 polymorphism in patients with acute lymphoblastic leukemia treated with 6-mercaptopurine. Pharmacol Res 2015; 102:61-2. [DOI: 10.1016/j.phrs.2015.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 11/25/2022]
|
20
|
Gómez-Gómez GJ, Masedo &A, Yela C, Martínez-Montiel MDP, Casís B. Current stage in inflammatory bowel disease: What is next? World J Gastroenterol 2015; 21:11282-11303. [PMID: 26525013 PMCID: PMC4616205 DOI: 10.3748/wjg.v21.i40.11282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/12/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
In recent years, the incidence of inflammatory bowel disease (IBD) has been on the rise, extending to countries where it was infrequent in the past. As a result, the gap between high and low incidence countries is decreasing. The disease, therefore, has an important economic impact on the healthcare system. Advances in recent years in pharmacogenetics and clinical pharmacology have allowed for the development of treatment strategies adjusted to the patient profile. Concurrently, new drugs aimed at inflammatory targets have been developed that may expand future treatment options. This review examines advances in the optimization of existing drug treatments and the development of novel treatment options for IBD.
Collapse
|
21
|
Frequency of ITPA gene polymorphisms in Iranian patients with acute lymphoblastic leukemia and prediction of its myelosuppressive effects. Leuk Res 2015; 39:1048-54. [DOI: 10.1016/j.leukres.2015.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 01/29/2023]
|
22
|
Liu H, Ding L, Zhang F, Zhang Y, Gao X, Hu P, Bi H, Huang M. The impact of glutathione S–transferase genotype and phenotype on the adverse drug reactions to azathioprine in patients with inflammatory bowel diseases. J Pharmacol Sci 2015; 129:95-100. [DOI: 10.1016/j.jphs.2015.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/02/2015] [Accepted: 02/24/2015] [Indexed: 01/26/2023] Open
|
23
|
Abstract
Pharmacogenetic studies have been performed for almost all classes of drugs that have been used in IBD but very few have generated consistent findings or have been replicated. The genetic test that has been approved for clinical practice is TPMT testing prior to starting treatment with thiopurine drugs. Research in IBD pharmacogenetics has focused on prediction of drug efficacy and toxicity by identifying polymorphisms in the genes encoding enzymes that are involved in metabolic pathways. Recent research has mainly focused on therapeutic agents such as azathioprine, methotrexate, aminosalicylates, corticosteroids, infliximab and adalimumab. Future pharmaceutical trials should include pharmacogenetic research to test appropriate candidate genes in a prospective manner and correlate genetic associations with trial outcomes and relevant functional data.
Collapse
|
24
|
Gallego-Gutiérrez S, Navas-López VM, Kolorz M, Bartosova L, Lukac K, Luque-Pérez S, Núñez-Caro L, García-Galán P, Fernández-Crehuet FG, Blasco-Alonso J, Serrano-Nieto MJ, Sierra-Salinas C. Successful Mercaptopurine Usage despite Azathioprine-Induced Pancreatitis in Paediatric Crohn's Disease. J Crohns Colitis 2015; 9:676-9. [PMID: 25968582 DOI: 10.1093/ecco-jcc/jjv086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/07/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Azathioprine [AZA] and mercaptopurine [MP] are recommended for maintenance of steroid-free remission in children with Crohn`s disease [CD]. Azathioprine-induced pancreatitis, an idiosyncratic and major side effect, has been considered as an absolute contraindication for the use of a second thiopurine in IBD patients. MATERIALS AND METHODS We describe two children with CD in whom MP were successfully trialled after a confirmed azathioprine-induced pancreatitis, being well tolerated in both cases. RESULTS Two boys [13 and 10 years old] started exclusive enteral nutrition after diagnosis of moderate (Pediatric Crohn's Disease Activity Index [wPCDAI] = 45) and mild [wPCDAI = 35] CD. Both developed an acute mild to moderate pancreatitis after 2 and 3 weeks, respectively, of AZA treatment but recovered fully in hospital after AZA withdrawal. They started on MP treatment without any adverse effect. They were tested for the presence of polymorphisms 238G>C, 460G>A, and 719A>G in the TPMT gene and 94C>A and 21>C in the ITPase. Both patients were wild-type for all tested polymorphisms. CONCLUSIONS Azathioprine-induced acute pancreatitis should not be considered as an absolute contraindication for the use of MP. Further investigation is required to create a better understanding of the mechanism underlying the adverse events and to allow more possibilities for personalised therapy.
Collapse
Affiliation(s)
- Silvia Gallego-Gutiérrez
- Pediatric Gastroenterology and Nutrition Unit, UGC de Pediatría, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Víctor Manuel Navas-López
- Pediatric Gastroenterology and Nutrition Unit, UGC de Pediatría, Hospital Regional Universitario de Málaga, Málaga, Spain Biomedical Institute of Malaga [IBIMA], Hopsital General de Málaga, Málaga, Spain
| | - Michal Kolorz
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, UVPS Brno, Czech Republic Department of Clinical Pharmacy, Hospital Pharmacy, Faculty Hospital, Brno, Bohunice, Czech Republic
| | - Ladislava Bartosova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, UVPS Brno, Czech Republic
| | - Katerina Lukac
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, UVPS Brno, Czech Republic
| | - Silvia Luque-Pérez
- Pediatric Gastroenterology and Nutrition Unit, UGC de Pediatría, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Leticia Núñez-Caro
- Pediatric Gastroenterology and Nutrition Unit, UGC de Pediatría, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Paloma García-Galán
- Pediatric Gastroenterology and Nutrition Unit, UGC de Pediatría, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | - Javier Blasco-Alonso
- Pediatric Gastroenterology and Nutrition Unit, UGC de Pediatría, Hospital Regional Universitario de Málaga, Málaga, Spain Biomedical Institute of Malaga [IBIMA], Hopsital General de Málaga, Málaga, Spain
| | - María Juliana Serrano-Nieto
- Pediatric Gastroenterology and Nutrition Unit, UGC de Pediatría, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Carlos Sierra-Salinas
- Pediatric Gastroenterology and Nutrition Unit, UGC de Pediatría, Hospital Regional Universitario de Málaga, Málaga, Spain Biomedical Institute of Malaga [IBIMA], Hopsital General de Málaga, Málaga, Spain
| |
Collapse
|
25
|
Roberts RL, Barclay ML. Update on thiopurine pharmacogenetics in inflammatory bowel disease. Pharmacogenomics 2015; 16:891-903. [PMID: 26067482 DOI: 10.2217/pgs.15.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Azathioprine and 6-mercaptopurine remain pivotal therapies for the maintenance of disease remission in patients with Crohn's disease and ulcerative colitis. While thiopurine S-methyltransferase deficiency was the first pharmacogenetic phenomenon to be recognized to influence thiopurine toxicity and reliably predict leukopenia, it does not predict other adverse effects, nor does it explain most cases of thiopurine resistance. In recent years, a number of other genetic polymorphisms have received increasing attention in the literature. In particular, SNPs in NUDT15 and in the class II HLA locus have been shown to predict thiopurine-related leukopenia and pancreatitis. The aim of this review is to provide a concise update of genetic variability which may influence patient response to azathioprine and 6-mercaptopurine.
Collapse
Affiliation(s)
- Rebecca L Roberts
- Department of Surgical Sciences, Dunedin School of Medicine, PO Box 56, Dunedin, New Zealand
| | - Murray L Barclay
- Department of Medicine, University of Otago Christchurch, PO Box 4345, Christchurch, New Zealand.,Department of Gastroenterology, Christchurch Hospital, Private Bag 4710, Christchurch, New Zealand
| |
Collapse
|
26
|
Abstract
The prodrug azathioprine is primarily used for maintaining remission in inflammatory bowel disease, but approximately 30% of the patients suffer adverse side effects. The prodrug is activated by glutathione conjugation and release of 6-mercaptopurine, a reaction most efficiently catalyzed by glutathione transferase (GST) A2-2. Among five genotypes of GST A2-2, the variant A2*E has threefold-fourfold higher catalytic efficiency with azathioprine, suggesting that the expression of A2*E could boost 6-mercaptopurine release and adverse side effects in treated patients. Structure-activity studies of the GST A2-2 variants and homologous alpha class GSTs were made to delineate the determinants of high catalytic efficiency compared to other alpha class GSTs. Engineered chimeras identified GST peptide segments of importance, and replacing the corresponding regions in low-activity GSTs by these short segments produced chimeras with higher azathioprine activity. By contrast, H-site mutagenesis led to decreased azathioprine activity when active-site positions 208 and 213 in these favored segments were mutagenized. Alternative substitutions indicated that hydrophobic residues were favored. A pertinent question is whether variant A2*E represents the highest azathioprine activity achievable within the GST structural framework. This issue was addressed by mutagenesis of H-site residues assumed to interact with the substrate based on molecular modeling. The mutants with notably enhanced activities had small or polar residues in the mutated positions. The most active mutant L107G/L108D/F222H displayed a 70-fold enhanced catalytic efficiency with azathioprine. The determination of its structure by X-ray crystallography showed an expanded H-site, suggesting improved accommodation of the transition state for catalysis.
Collapse
Affiliation(s)
- Olof Modén
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Bengt Mannervik
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden; Department of Neurochemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
27
|
Smid A, Karas-Kuzelicki N, Milek M, Jazbec J, Mlinaric-Rascan I. Association of ITPA genotype with event-free survival and relapse rates in children with acute lymphoblastic leukemia undergoing maintenance therapy. PLoS One 2014; 9:e109551. [PMID: 25303517 PMCID: PMC4193781 DOI: 10.1371/journal.pone.0109551] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/02/2014] [Indexed: 01/18/2023] Open
Abstract
Although the treatment of acute lymphoblastic leukemia (ALL) has improved significantly over recent decades, failure due to treatment-related toxicities and relapse of the disease still occur in about 20% of patients. This retrospective study included 308 pediatric ALL patients undergoing maintenance therapy and investigated the effects of genetic variants of enzymes involved in the 6-mercaptopurine (6-MP) metabolism and folate pathway on survival and relapse rates. The presence of at least one of the non-functional ITPA alleles (94C>A and/or IVS2+21A>C variant) was associated with longer event-free survival compared to patients with the wild-type ITPA genotype (p = 0.033). Furthermore, patients carrying at least one non-functional ITPA allele were shown to be at a lower risk of suffering early (p = 0.003) and/or bone marrow relapse (p = 0.017). In conclusion, the ITPA genotype may serve as a genetic marker for the improvement of risk stratification and therapy individualization for patients with ALL.
Collapse
Affiliation(s)
- Alenka Smid
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Miha Milek
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Jazbec
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
28
|
Determination of Inosine Triphosphate Pyrophosphatase in Red Blood Cells Using HPLC. Ther Drug Monit 2014; 36:689-91. [DOI: 10.1097/ftd.0000000000000075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory arthritis leading to severe joint damage and associated with high morbidity and mortality. Disease-modifying antirheumatic drugs (DMARDs) are the mainstay of treatment in RA. DMARDs not only relieve the clinical signs and symptoms of RA but also inhibit the radiographic progression of disease. In the last decade, a new class of disease-modifying medications, the biologic agents, has been added to the existing spectrum of DMARDs in RA. However, patients' response to these agents is not uniform with considerable variability in both efficacy and toxicity. There are no reliable means of predicting an individual patient's response to a given DMARD prior to initiation of therapy. In this chapter, the current published literature on the pharmacogenetics of traditional DMARDS and the newer biologic DMARDs in RA is highlighted. Pharmacogenetics may help individualize drug therapy in patients with RA in the near future.
Collapse
Affiliation(s)
- Deepali Sen
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8045, St. Louis, MO, 63110, USA
| | | | | |
Collapse
|
30
|
Simone PD, Pavlov YI, Borgstahl GEO. ITPA (inosine triphosphate pyrophosphatase): from surveillance of nucleotide pools to human disease and pharmacogenetics. Mutat Res 2013; 753:131-146. [PMID: 23969025 DOI: 10.1016/j.mrrev.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023]
Abstract
Cellular nucleotide pools are often contaminated by base analog nucleotides which interfere with a plethora of biological reactions, from DNA and RNA synthesis to cellular signaling. An evolutionarily conserved inosine triphosphate pyrophosphatase (ITPA) removes the non-canonical purine (d)NTPs inosine triphosphate and xanthosine triphosphate by hydrolyzing them into their monophosphate form and pyrophosphate. Mutations in the ITPA orthologs in model organisms lead to genetic instability and, in mice, to severe developmental anomalies. In humans there is genetic polymorphism in ITPA. One allele leads to a proline to threonine substitution at amino acid 32 and causes varying degrees of ITPA deficiency in tissues and plays a role in patients' response to drugs. Structural analysis of this mutant protein reveals that the protein is destabilized by the formation of a cavity in its hydrophobic core. The Pro32Thr allele is thought to cause the observed dominant negative effect because the resulting active enzyme monomer targets both homo- and heterodimers to degradation.
Collapse
Affiliation(s)
- Peter D Simone
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Youri I Pavlov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, USA; Department of Genetics, St-Petersburg University, St-Petersburg, 199034, Russia
| | - Gloria E O Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, USA.
| |
Collapse
|
31
|
Simone PD, Struble LR, Kellezi A, Brown CA, Grabow CE, Khutsishvili I, Marky LA, Pavlov YI, Borgstahl GE. The human ITPA polymorphic variant P32T is destabilized by the unpacking of the hydrophobic core. J Struct Biol 2013; 182:197-208. [PMID: 23528839 PMCID: PMC4212276 DOI: 10.1016/j.jsb.2013.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 01/24/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPA), a key enzyme involved in maintaining the purity of cellular nucleoside triphosphate pools, specifically recognizes inosine triphosphate and xanthosine triphosphate (including the deoxyribose forms) and detoxifies them by catalyzing the hydrolysis of a phosphoanhydride bond, releasing pyrophosphate. This prevents their inappropriate use as substrates in enzymatic reactions utilizing (d)ATP or (d)GTP. A human genetic polymorphism leads to the substitution of Thr for Pro32 (P32T) and causes ITPA deficiency in erythrocytes, with heterozygotes having on average 22.5% residual activity, and homozygotes having undetectable activity. This polymorphism has been implicated in modulating patients' response to mercaptopurines and ribavirin. Human fibroblasts containing this variant have elevated genomic instability upon treatment with base analogs. We find that the wild-type and P32T forms are dimeric in solution and in the crystal structure. This abolishes the previous speculation that the P32T change disrupts dimerization as a mechanism of inactivation. The only difference in structure from the wild-type protein is that the area surrounding Thr32 is disrupted. Phe31 is flipped from the hydrophobic core out into the solvent, leaving a hole in the hydrophobic core of the protein which likely accounts for the reduced thermal stability of P32T ITPA and ultimately leads to its susceptibility to degradation in human cells. Circular dichroism and thermal denaturation studies confirm these structural results. We propose that the dimer of P32T variant subunit with wild-type subunit is degraded in cells similarly to the P32T homodimer explaining the level of loss of ITPA activity in heterozygotes.
Collapse
Affiliation(s)
- Peter D. Simone
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Lucas R. Struble
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Admir Kellezi
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Carrie A. Brown
- Department of Chemistry, Wayne State College, Wayne, NE 68787, USA
| | - Corinn E. Grabow
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Irine Khutsishvili
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Luis A. Marky
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Youri I. Pavlov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, St-Petersburg University, St-Petersburg 199034, Russia
| | - Gloria E.O. Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
32
|
Polymorphism of genes involved in purine metabolism (XDH, AOX1, MOCOS) in kidney transplant recipients receiving azathioprine. Ther Drug Monit 2013; 34:266-74. [PMID: 22495427 DOI: 10.1097/ftd.0b013e31824aa681] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Xanthine dehydrogenase (XDH), aldehyde oxidase1 (AOX1), and molybdenum cofactor sulfurase (MOCOS) are enzymes involved in purine metabolism. The aim of this study was to investigate single nucleotide polymorphisms (SNPs) in XDH, AOX1, and MOCOS genes in relation to clinical parameters and risk of drug side effects in a cohort of kidney transplant recipients treated with azathioprine (AZA) as a part of standard immunosuppressive regimen. METHODS One hundred fifty-six patients receiving AZA for the first year from the surgery were genotyped for the presence of common SNPs in the coding regions of XDH, AOX1, and MOCOS genes using TaqMan assays. RESULTS AOX1 rs55754655 variant allele carriers received a higher mean AZA dose 3, 6, and 12 months after transplantation (P < 0.05). The patients inheriting rs594445 MOCOS minor allele required significantly lower doses of AZA for efficient treatment compared with wild-type heterozygotes at 3, 6, and 12 months from the transplantation (mean values: 1.39 versus 1.59, 1.38 versus 1.58, and 1.33 versus 1.53 mg·kg·24 h) and displayed lower mean RBC count at the time points evaluated. Multivariate analysis has shown that the effect of MOCOS rs594445 polymorphism is independent of other investigated gene variations and might influence AZA dosage, similarly to TPMT heterozygosity. The authors have not observed an association between any of the studied XDH SNPs and clinical parameters of AZA-treated patients. CONCLUSIONS The results of this study should be regarded as preliminary. However, if the observed association between SNPs: AOX1 rs55754655, MOCOS rs594445, and AZA dose requirements would be positively confirmed in further independent studies, it could be introduced into clinical practice to individualize thiopurine treatment.
Collapse
|
33
|
Roberts RL, Barclay ML. Current relevance of pharmacogenetics in immunomodulation treatment for Crohn's disease. J Gastroenterol Hepatol 2012; 27:1546-54. [PMID: 22741564 DOI: 10.1111/j.1440-1746.2012.07220.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
No drug therapy is completely risk free, and the costs associated with non-response and adverse effects can exceed the cost of the therapy. The ultimate goal of pharmacogenetic research is to find robust genetic predictors of drug response that enable the development of prospective genetic tests to reliably identify patients at risk of non-response or of developing an adverse effect prior to the drug being prescribed. Currently, thiopurine S-methyltransferase (TPMT) deficiency is the only pharmacogenetic factor that is prospectively assessed before azathioprine or 6-mercaptopurine immunomodulation is commenced in patients with Crohn's disease (CD). As yet no other inherited determinant of drug response has made the transition from bench to bedside for the management of this disease. In this review we summarize what is known about TPMT deficiency and explore whether there is evidence to support a role of other genetic polymorphisms in predicting the response of CD patients to thiopurine drugs, methotrexate, and anti-tumor necrosis factor α (TNFα) therapy.
Collapse
Affiliation(s)
- Rebecca L Roberts
- Department of Surgical Sciences, Dunedin School of Medicine, Dunedin, New Zealand.
| | | |
Collapse
|
34
|
Citterio-Quentin A, Salvi JP, Boulieu R. Determination of inosine triphosphate pyrophosphatase phenotype in human red blood cells using HPLC. Ther Drug Monit 2012; 34:477-80. [PMID: 22673202 DOI: 10.1097/ftd.0b013e31825c2703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thiopurine drugs, widely used in cancer chemotherapy, inflammatory bowel disease, and autoimmune hepatitis, are responsible for common adverse events. Only some of these may be explained by genetic polymorphism of thiopurine S-methyltransferase. Recent articles have reported that inosine triphosphate pyrophosphatase (ITPase) deficiency was associated with adverse drug reactions toward thiopurine drug therapy. Here, we report a weak anion exchange high-performance liquid chromatography method to determine ITPase activity in red blood cells and to investigate the relationship with the occurrence of adverse events during azathioprine therapy. METHODS ITPase activity was assessed by the enzymatic conversion of inosine triphosphate (ITP) to inosine monophosphate (IMP). The reaction was stopped by heating for 3 minutes at 120°C. IMP, inosine diphosphate, and ITP were analyzed on a Hypersil APS-2 column, a weak anion exchange phase that exhibits both ionic and hydrophobic properties. RESULTS The chromatographic method reported allows the analysis of IMP, inosine diphosphate, and ITP in a single run in <12.5 minutes. The method was linear in the range 5-1500 μmole/L of IMP. Intraassay and interassay precisions were <5% for red blood cell lysates supplemented with 50, 500, and 1000 μmole/L IMP. Km and Vmax evaluated by Lineweaver-Burk plot were 677.4 μmole/L and 19.6 μmole·L·min, respectively. The frequency distribution of ITPase from 73 patients was investigated. CONCLUSIONS The method described is useful to determine the ITPase phenotype from patients on thiopurine therapy and to investigate the potential relation between ITPase deficiency and the occurrence of adverse events.
Collapse
Affiliation(s)
- Antony Citterio-Quentin
- Institut des Sciences Parmaceutiques et Biologiques, Pharmacie Clinique, Pharmacocinétique et Évaluation du Médicament, Université de Lyon, Université Lyon 1, Lyon, France
| | | | | |
Collapse
|
35
|
Neokleous N, Seimeni O, Koumas S, Prokopiou C. Mercaptopurine-induced hypersensitivity febrile reaction in patient with acute promyelocytic leukemia. Leuk Lymphoma 2012; 53:495-6. [DOI: 10.3109/10428194.2011.619609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Tanaka Y, Manabe A, Nakadate H, Kondoh K, Nakamura K, Koh K, Utano T, Kikuchi A, Komiyama T. The activity of the inosine triphosphate pyrophosphatase affects toxicity of 6-mercaptopurine during maintenance therapy for acute lymphoblastic leukemia in Japanese children. Leuk Res 2011; 36:560-4. [PMID: 22200619 DOI: 10.1016/j.leukres.2011.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/24/2011] [Accepted: 11/22/2011] [Indexed: 01/29/2023]
Abstract
The association between inosine triphosphate pyrophosphatase (ITPA) activity and toxicity of 6-mercaptopurine (6-MP) was retrospectively evaluated in 65 Japanese children with acute lymphoblastic leukemia (ALL). Patients with an ITPA activity of less than 126 μmol/h/gHb presented with hepatotoxicity more frequently than those with higher ITPA activity (p<0.01). The average 6-MP dose during maintenance therapy administered to two patients with the ITPA deficiency was lower than that given to the other patients. Measuring ITPA activity is important for ensuring the safety of maintenance therapy for Asians with ALL because thiopurine S-methyl transferase mutations are rare in the Asian population.
Collapse
Affiliation(s)
- Yoichi Tanaka
- Department of Clinical Pharmacy, Center for Clinical Pharmacy and Sciences, School of Pharmacy, Kitasato University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|