1
|
Puri RD, Tuteja M, Verma IC. Genetic Approach to Diagnosis of Intellectual Disability. Indian J Pediatr 2016; 83:1141-9. [PMID: 27619815 DOI: 10.1007/s12098-016-2205-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 01/29/2023]
Abstract
Intellectual disability is a non-specific phenotype present in a genetically heterogeneous group of disorders. It is characterized by deficits in intellectual and adaptive functioning, presenting before 18 y of age. Identifying the cause of ID is important to provide treatment where available, genetic counseling, recurrence risks and reproductive options for subsequent pregnancies. Advances in technology, especially next generation sequencing and microarrays, have greatly increased the diagnostic yield of evaluation in cases of ID. This paper describes the points in history taking and examination in the evaluation of a proband, and discusses the proper use of newer diagnostic technologies.
Collapse
Affiliation(s)
- Ratna Dua Puri
- Ganga Ram Institute of Postgraduate Medical Research and Education, Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, New Delhi, 110060, India.
| | - Moni Tuteja
- Ganga Ram Institute of Postgraduate Medical Research and Education, Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - I C Verma
- Ganga Ram Institute of Postgraduate Medical Research and Education, Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| |
Collapse
|
2
|
Giordano M, Gertosio C, Pagani S, Meazza C, Fusco I, Bozzola E, Bozzola M. A 5.8 Mb interstitial deletion on chromosome Xq21.1 in a boy with intellectual disability, cleft palate, hearing impairment and combined growth hormone deficiency. BMC MEDICAL GENETICS 2015; 16:74. [PMID: 26323392 PMCID: PMC4593198 DOI: 10.1186/s12881-015-0220-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/19/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Deletions of the long arm of chromosome X in males are a rare cause of X-linked intellectual disability. Here we describe a patient with an interstitial deletion of the Xq21.1 chromosome. CASE PRESENTATION In a 15 year boy, showing intellectual disability, short stature, hearing loss and dysmorphic facial features, a deletion at Xq21.1 was identified by array-CGH. This maternally inherited 5.8 Mb rearrangement encompasses 14 genes, including BRWD3 (involved in X-linked intellectual disability), TBX22 (a gene whose alterations have been related to the presence of cleft palate), POU3F4 (mutated in X-linked deafness) and ITM2A (a gene involved in cartilage development). CONCLUSION Correlation between the clinical findings and the function of gene mapping within the deleted region confirms the causative role of this microrearrangement in our patient and provides new insight into a gene possibly involved in short stature.
Collapse
Affiliation(s)
- M Giordano
- Laboratory of Genetics, Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100, Novara, Italy.
| | - C Gertosio
- Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | - S Pagani
- Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - C Meazza
- Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - I Fusco
- Laboratory of Genetics, Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100, Novara, Italy.
| | - E Bozzola
- Department of Pediatric Medicine, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | - M Bozzola
- Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
3
|
Craig IW, Haworth CMA, Plomin R. Commentary on "A Role for the X Chromosome in Sex Differences in Variability in General Intelligence?" (Johnson et al., 2009). PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2015; 4:615-21. [PMID: 26161737 DOI: 10.1111/j.1745-6924.2009.01170.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Johnson et al.'s (2009) article highlights the role of X-chromosomal genes in general intelligence and draws attention to their potential role in explaining the observed greater variance for this trait in males and their excess at both extremes of the distribution. We note that this would result from a simple additive effect of X-linked intelligence genes and also discuss the potentially important contribution of recessive deleterious loci. The buffering effect of heterozygosity in females will be partly constrained by the skewing of X-inactivation patterns increasing the variance of females beyond what is expected. Furthermore, escape of some X-linked genes from in-activation may also be relevant to male-female variance comparisons. We also comment on the difficulty of establishing the extent to which the X chromosome is enriched for intelligence genes and point out that their estimates of the proportion of genes influencing general intelligence that might be located on the X chromosome rely on some doubtful premises, especially concerning the likely equivalence of X-linked gene action in males and females. Finally, we discuss the increasingly compelling evidence for the accumulation of genes on the X chromosome that have selective benefit to males, including those implicated infertility and some manifestations of intelligence.
Collapse
Affiliation(s)
- Ian W Craig
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Claire M A Haworth
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Robert Plomin
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| |
Collapse
|
4
|
Mignon-Ravix C, Cacciagli P, Choucair N, Popovici C, Missirian C, Milh M, Mégarbané A, Busa T, Julia S, Girard N, Badens C, Sigaudy S, Philip N, Villard L. Intragenic rearrangements in X-linked intellectual deficiency: results of a-CGH in a series of 54 patients and identification of TRPC5 and KLHL15 as potential XLID genes. Am J Med Genet A 2014; 164A:1991-7. [PMID: 24817631 DOI: 10.1002/ajmg.a.36602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
High-resolution array comparative genomic hybridization (a-CGH) enables the detection of intragenic rearrangements, such as single exon deletion or duplication. This approach can lead to the identification of new disease genes. We report on the analysis of 54 male patients presenting with intellectual deficiency (ID) and a family history suggesting X-linked (XL) inheritance or maternal skewed X-chromosome inactivation (XCI), using a home-made X-chromosome-specific microarray covering the whole human X-chromosome at high resolution. The majority of patients had whole genome array-CGH prior to the selection and we did not include large rearrangements such as MECP2 and FMR1 duplications. We identified four rearrangements considered as causative or potentially pathogenic, corresponding to a detection rate of 8%. Two CNVs affected known XLID genes and were therefore considered as causative (IL1RAPL1 and OPHN1 intragenic deletions). Two new CNVs were considered as potentially pathogenic as they affected interesting candidates for ID. The first CNV is a deletion of the first exon of the TRPC5 gene, encoding a cation channel implicated in dendrite growth and patterning, in a child presenting with ID and an autism spectrum disorder (ASD). The second CNV is a partial deletion of KLHL15, in a patient with severe ID, epilepsy, and anomalies of cortical development. In both cases, in spite of strong arguments for clinical relevance, we were not able at this stage to confirm pathogenicity of the mutations, and the causality of the variants identified in XLID remains to be confirmed.
Collapse
Affiliation(s)
- Cécile Mignon-Ravix
- Inserm, UMR_S 910, Marseille, France; Aix Marseille Université, GMGF, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Willemsen MH, de Leeuw N, de Brouwer AP, Pfundt R, Hehir-Kwa JY, Yntema HG, Nillesen WM, de Vries BB, van Bokhoven H, Kleefstra T. Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies. Eur J Med Genet 2012; 55:586-98. [DOI: 10.1016/j.ejmg.2012.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 05/05/2012] [Accepted: 05/05/2012] [Indexed: 01/01/2023]
|
6
|
Abstract
In the past decade, we have witnessed a flood of reports about mutations that cause or contribute to intellectual disability (ID). This rapid progress has been driven in large part by the implementation of chromosomal microarray analysis and next-generation sequencing methods. The findings have revealed extensive genetic heterogeneity for ID, as well as examples of a common genetic etiology for ID and other neurobehavioral/psychiatric phenotypes. Clinical diagnostic application of these new findings is already well under way, despite incomplete understanding of non-Mendelian transmission patterns that are sometimes observed.
Collapse
Affiliation(s)
- Jay W Ellison
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington 99207, USA.
| | | | | |
Collapse
|
7
|
El-Hattab AW, Bournat J, Eng PA, Wu JBS, Walker BA, Stankiewicz P, Cheung SW, Brown CW. Microduplication of Xp11.23p11.3 with effects on cognition, behavior, and craniofacial development. Clin Genet 2011; 79:531-8. [PMID: 20662849 DOI: 10.1111/j.1399-0004.2010.01496.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report an ~1.3 Mb tandem duplication at Xp11.23p11.3 in an 11-year-old boy with pleasant personality, hyperactivity, learning and visual-spatial difficulties, relative microcephaly, long face, stellate iris pattern, and periorbital fullness. This clinical presentation is milder and distinct from that of patients with partially overlapping Xp11.22p11.23 duplications which have been described in males and females with intellectual disability, language delay, autistic behaviors, and seizures. The duplicated region harbors three known X-linked mental retardation genes: FTSJ1, ZNF81, and SYN1. Quantitative polymerase chain reaction from whole blood total RNA showed increased expression of three genes located in the duplicated region: EBP, WDR13, and ZNF81. Thus, over-expression of genes in the interval may contribute to the observed phenotype. Many of the features seen in this patient are present in individuals with Williams-Beuren syndrome (WBS). Interestingly, the SYN1 gene within the duplicated interval, as well as the STX1A gene, within the WBS critical region, co-localize to presynaptic active zones, and play important roles in neurotransmitter release.
Collapse
Affiliation(s)
- A W El-Hattab
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Iourov IY, Vorsanova SG, Yurov YB. Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics 2011; 9:452-65. [PMID: 19506734 PMCID: PMC2691674 DOI: 10.2174/138920208786241216] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/06/2008] [Accepted: 07/09/2008] [Indexed: 01/08/2023] Open
Abstract
Molecular cytogenetics is a promising field of biomedical research that has recently revolutionized our thinking on genome structure and behavior. This is in part due to discoveries of human genomic variations and their contribution to biodiversity and disease. Since these studies were primarily targeted at variation of the genome structure, it appears apposite to cover them by molecular cytogenomics. Human brain diseases, which encompass pathogenic conditions from severe neurodegenerative diseases and major psychiatric disorders to brain tumors, are a heavy burden for the patients and their relatives. It has been suggested that most of them, if not all, are of genetic nature and several recent studies have supported the hypothesis assuming them to be associated with genomic instabilities (i.e. single-gene mutations, gross and subtle chromosome imbalances, aneuploidy). The present review is focused on the intriguing relationship between genomic instability and human brain diseases. Looking through the data, we were able to conclude that both interindividual and intercellular genomic variations could be pathogenic representing, therefore, a possible mechanism for human brain malfunctioning. Nevertheless, there are still numerous gaps in our knowledge concerning the link between genomic variations and brain diseases, which, hopefully, will be filled by forthcoming studies. In this light, the present review considers perspectives of this dynamically developing field of neurogenetics and genomics.
Collapse
Affiliation(s)
- I Y Iourov
- National Research Center of Mental Health, Russian Academy of Medical Sciences
| | | | | |
Collapse
|
9
|
Epigenetics, copy number variation, and other molecular mechanisms underlying neurodevelopmental disabilities: new insights and diagnostic approaches. J Dev Behav Pediatr 2010; 31:582-91. [PMID: 20814257 DOI: 10.1097/dbp.0b013e3181ee384e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The diagnostic evaluation of children with intellectual disability (ID) and other neurodevelopmental disabilities (NDD) has become increasingly complex in recent years owing to a number of newly recognized genetic mechanisms and sophisticated methods to diagnose them. Previous studies have attempted to address the diagnostic yield of finding a genetic cause in ID. The results have varied widely from 10% to 81%, with the highest percentage being found in studies using new array comparative genomic hybridization methodology especially in autism. Although many cases of ID/NDD result from chromosomal aneuploidy or structural rearrangements, single gene disorders and new categories of genome modification, including epigenetics and copy number variation play an increasingly important role in diagnosis and testing. Epigenetic mechanisms, such as DNA methylation and modifications to histone proteins, regulate high-order DNA structure and gene expression. Aberrant epigenetic and copy number variation mechanisms are involved in several neurodevelopmental and neurodegenerative disorders including Rett syndrome, fragile X syndrome, and microdeletion syndromes. This review will describe a number of the molecular genetic mechanisms that play a role in disorders leading to ID/NDD and will discuss the categories and technologies for diagnostic testing of these conditions.
Collapse
|
10
|
Kaufman L, Ayub M, Vincent JB. The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord 2010; 2:182-209. [PMID: 21124998 PMCID: PMC2974911 DOI: 10.1007/s11689-010-9055-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/25/2010] [Indexed: 11/06/2022] Open
Abstract
Intellectual disability (ID), also referred to as mental retardation (MR), is frequently the result of genetic mutation. Where ID is present together with additional clinical symptoms or physical anomalies, there is often sufficient information available for the diagnosing physician to identify a known syndrome, which may then educe the identification of the causative defect. However, where co-morbid features are absent, narrowing down a specific gene can only be done by ‘brute force’ using the latest molecular genetic techniques. Here we attempt to provide a systematic review of genetic causes of cases of ID where no other symptoms or co-morbid features are present, or non-syndromic ID. We attempt to summarize commonalities between the genes and the molecular pathways of their encoded proteins. Since ID is a common feature of autism, and conversely autistic features are frequently present in individuals with ID, we also look at possible overlaps in genetic etiology with non-syndromic ID.
Collapse
|
11
|
Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Mol Psychiatry 2010; 15:767-76. [PMID: 19238151 DOI: 10.1038/mp.2009.14] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in the UPF3B gene, which encodes a protein involved in nonsense-mediated mRNA decay, have recently been described in four families with specific (Lujan-Fryns and FG syndromes), nonspecific X-linked mental retardation (XLMR) and autism. To further elucidate the contribution of UPF3B to mental retardation (MR), we screened its coding sequence in 397 families collected by the EuroMRX consortium. We identified one nonsense mutation, c.1081C>T/p.Arg361(*), in a family with nonspecific MR (MRX62) and two amino-acid substitutions in two other, unrelated families with MR and/or autism (c.1136G>A/p.Arg379His and c.1103G>A/p.Arg368Gln). Functional studies using lymphoblastoid cell lines from affected patients revealed that c.1081C>T mutation resulted in UPF3B mRNA degradation and consequent absence of the UPF3B protein. We also studied the subcellular localization of the wild-type and mutated UPF3B proteins in mouse primary hippocampal neurons. We did not detect any obvious difference in the localization between the wild-type UPF3B and the proteins carrying the two missense changes identified. However, we show that UPF3B is widely expressed in neurons and also presents in dendritic spines, which are essential structures for proper neurotransmission and thus learning and memory processes. Our results demonstrate that in addition to Lujan-Fryns and FG syndromes, UPF3B protein truncation mutations can cause also nonspecific XLMR. We also identify comorbidity of MR and autism in another family with UPF3B mutation. The neuronal localization pattern of the UPF3B protein and its function in mRNA surveillance suggests a potential function in the regulation of the expression and degradation of various mRNAs present at the synapse.
Collapse
|
12
|
Lugtenberg D, de Brouwer APM, Oudakker AR, Pfundt R, Hamel BCJ, van Bokhoven H, Bongers EMHF. Xq13.2q21.1 duplication encompassing the ATRX gene in a man with mental retardation, minor facial and genital anomalies, short stature and broad thorax. Am J Med Genet A 2009; 149A:760-6. [PMID: 19291773 DOI: 10.1002/ajmg.a.32742] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In a man with severe mental retardation, minor facial and genital anomalies, disproportionate short stature and a broad thorax, we identified a de novo Xq13.2q21.1 duplication by array CGH. This 7 Mb duplication encompasses 23 known genes, including the X-linked mental retardation (XLMR) genes ATRX and SLC16A2. The phenotype of this patient is similar to that described in more than 10 previously reported patients with overlapping Xq duplications. Detailed comparison of the clinical characteristics and the function of the genes located in the commonly duplicated regions of these patients led us to the hypothesis that an increased dosage of ATRX and perhaps of other genes is involved in the pathogenetic mechanism of this XLMR phenotype, including mental retardation, short stature, and genital abnormalities comprising cryptorchidism and/or a small penis.
Collapse
Affiliation(s)
- Dorien Lugtenberg
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Miller DT, Shen Y, Wu BL. Oligonucleotide microarrays for clinical diagnosis of copy number variation. ACTA ACUST UNITED AC 2008; Chapter 8:Unit 8.12. [PMID: 18633976 DOI: 10.1002/0471142905.hg0812s58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Detection of genomic copy number variation is now considered the standard of care in the evaluation of children with developmental delay, and is used for other clinical indications such as multiple congenital anomalies and autism spectrum disorders. Fluorescence in situ hybridization (FISH) was the first molecular method for detection of submicroscopic genomic copy number variation, but microarray based comparative genomic hybridization (array CGH) offers several advantages as an adjunct to traditional cytogenetic methods such as karyotype and FISH. This unit focuses on oligonucleotide arrays, but includes background information on basic differences between oligonucleotide arrays and bacterial artificial chromosome (BAC) arrays. Array sensitivity is influenced by probe coverage or density, probe location, and choice of oligo array formats (i.e., targeted versus whole genome). Array platform influences the likelihood of detecting variants of unknown significance. Clinical interpretation of such variants is discussed.
Collapse
Affiliation(s)
- David T Miller
- Department of Laboratory Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | | | | |
Collapse
|
14
|
Ropers HH. Genetics of intellectual disability. Curr Opin Genet Dev 2008; 18:241-50. [DOI: 10.1016/j.gde.2008.07.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 07/15/2008] [Indexed: 11/16/2022]
|
15
|
Froyen G, Corbett M, Vandewalle J, Jarvela I, Lawrence O, Meldrum C, Bauters M, Govaerts K, Vandeleur L, Van Esch H, Chelly J, Sanlaville D, van Bokhoven H, Ropers HH, Laumonnier F, Ranieri E, Schwartz CE, Abidi F, Tarpey PS, Futreal PA, Whibley A, Raymond FL, Stratton MR, Fryns JP, Scott R, Peippo M, Sipponen M, Partington M, Mowat D, Field M, Hackett A, Marynen P, Turner G, Gécz J. Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation. Am J Hum Genet 2008; 82:432-43. [PMID: 18252223 DOI: 10.1016/j.ajhg.2007.11.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/17/2007] [Accepted: 11/01/2007] [Indexed: 11/16/2022] Open
Abstract
Submicroscopic copy-number imbalances contribute significantly to the genetic etiology of human disease. Here, we report a novel microduplication hot spot at Xp11.22 identified in six unrelated families with predominantly nonsyndromic XLMR. All duplications segregate with the disease, including the large families MRX17 and MRX31. The minimal, commonly duplicated region contains three genes: RIBC1, HSD17B10, and HUWE1. RIBC1 could be excluded on the basis of its absence of expression in the brain and because it escapes X inactivation in females. For the other genes, expression array and quantitative PCR analysis in patient cell lines compared to controls showed a significant upregulation of HSD17B10 and HUWE1 as well as several important genes in their molecular pathways. Loss-of-function mutations of HSD17B10 have previously been associated with progressive neurological disease and XLMR. The E3 ubiquitin ligase HUWE1 has been implicated in TP53-associated regulation of the neuronal cell cycle. Here, we also report segregating sequence changes of highly conserved residues in HUWE1 in three XLMR families; these changes are possibly associated with the phenotype. Our findings demonstrate that an increased gene dosage of HSD17B10, HUWE1, or both contribute to the etiology of XLMR and suggest that point mutations in HUWE1 are associated with this disease too.
Collapse
Affiliation(s)
- Guy Froyen
- Human Genome Laboratory, Department for Molecular and Developmental Genetics, VIB, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|