1
|
Abstract
Neurodevelopmental disorders are the most prevalent chronic medical conditions encountered in pediatric primary care. In addition to identifying appropriate descriptive diagnoses and guiding families to evidence-based treatments and supports, comprehensive care for individuals with neurodevelopmental disorders includes a search for an underlying etiologic diagnosis, primarily through a genetic evaluation. Identification of an underlying genetic etiology can inform prognosis, clarify recurrence risk, shape clinical management, and direct patients and families to condition-specific resources and supports. Here we review the utility of genetic testing in patients with neurodevelopmental disorders and describe the three major testing modalities and their yields - chromosomal microarray, exome sequencing (with/without copy number variant calling), and FMR1 CGG repeat analysis for fragile X syndrome. Given the diagnostic yield of genetic testing and the potential for clinical and personal utility, there is consensus that genetic testing should be offered to all patients with global developmental delay, intellectual disability, and/or autism spectrum disorder. Despite this recommendation, data suggest that a minority of children with autism spectrum disorder and intellectual disability have undergone genetic testing. To address this gap in care, we describe a structured but flexible approach to facilitate integration of genetic testing into clinical practice across pediatric specialties and discuss future considerations for genetic testing in neurodevelopmental disorders to prepare pediatric providers to care for patients with such diagnoses today and tomorrow.
Collapse
Affiliation(s)
- Juliann M. Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, United States
| | | |
Collapse
|
2
|
Salo-Mullen EE, Lynn PB, Wang L, Walsh M, Gopalan A, Shia J, Tran C, Man FY, McBride S, Schattner M, Zhang L, Weiser MR, Stadler ZK. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome. Fam Cancer 2019; 17:71-77. [PMID: 28555354 DOI: 10.1007/s10689-017-0006-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.
Collapse
Affiliation(s)
- Erin E Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave., Box 295, New York, NY, 10065, USA
| | - Patricio B Lynn
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Lu Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Michael Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave., Box 295, New York, NY, 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Christina Tran
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave., Box 295, New York, NY, 10065, USA
| | - Fung Ying Man
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Sean McBride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Mark Schattner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave., Box 295, New York, NY, 10065, USA.,Department of Medicine, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA
| | - Liying Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Martin R Weiser
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA.,Department of Surgery, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave., Box 295, New York, NY, 10065, USA. .,Department of Medicine, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
3
|
Zhou JX, Yang X, Ning S, Wang L, Wang K, Zhang Y, Yuan F, Li F, Zhuo DD, Tang L, Zhuo D. Identification of KANSARL as the first cancer predisposition fusion gene specific to the population of European ancestry origin. Oncotarget 2017; 8:50594-50607. [PMID: 28881586 PMCID: PMC5584173 DOI: 10.18632/oncotarget.16385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
Gene fusion is one of the hallmarks of cancer. Recent advances in RNA-seq of cancer transcriptomes have facilitated the discovery of fusion transcripts. In this study, we report identification of a surprisingly large number of fusion transcripts, including six KANSARL (KANSL1-ARL17A) transcripts that resulted from the fusion between the KANSL1 and ARL17A genes using a RNA splicingcode model. Five of these six KANSARL fusion transcripts are novel. By systematic analysis of RNA-seq data of glioblastoma, prostate cancer, lung cancer, breast cancer, and lymphoma from different regions of the World, we have found that KANSARL fusion transcripts were rarely detected in the tumors of individuals from Asia or Africa. In contrast, they exist in 30 - 52% of the tumors from North Americans cancer patients. Analysis of CEPH/Utah Pedigree 1463 has revealed that KANSARL is a familially-inherited fusion gene. Further analysis of RNA-seq datasets of the 1000 Genome Project has indicated that KANSARL fusion gene is specific to 28.9% of the population of European ancestry origin. In summary, we demonstrated that KANSARL is the first cancer predisposition fusion gene associated with genetic backgrounds of European ancestry origin.
Collapse
Affiliation(s)
- Jeff Xiwu Zhou
- Department of Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaoyan Yang
- SplicingCodes.com, Biotailor Inc., Palmetto Bay, FL, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, East Tennessee State University, Johnson City, TN, USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Fengli Li
- Department of Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - David D Zhuo
- SplicingCodes.com, Biotailor Inc., Palmetto Bay, FL, USA
| | - Liren Tang
- SplicingCodes.com, Biotailor Inc., Palmetto Bay, FL, USA
| | - Degen Zhuo
- SplicingCodes.com, Biotailor Inc., Palmetto Bay, FL, USA
| |
Collapse
|
4
|
Velasco HM, Martin ÁM, Galvis J, Buelvas L, Sánchez Y, Umaña LA, Acosta J. [Clinical community genetics: exploring genetic disorders in Boyacá, Colombia]. Rev Salud Publica (Bogota) 2017; 19:32-38. [PMID: 30137152 DOI: 10.15446/rsap.v19n1.55238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 12/11/2016] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES To explore the incidence of syndromic genetic pathologies in Boyacá, Colombia, through a community genetics approach. MATERIALS AND METHODS A group made up by different medical specialists (geneticists, a pediatric neurologist, and a biochemical geneticist) developed clinical campaigns, in which patients with clinical suspicion of genetic diseases were involved. Demographic, epidemiological and clinical data were collected, and frequency calculations were made based on the collected data. Several training workshops for health personnel were done in each center visited. RESULTS Two genetic clusters were found: mucopolysaccharidosis type III, and Ellis-Van Creveld Syndrome, both of them with higher incidences than those found in the literature. Also, a high frequency of autosomal recessive diseases was found, as well as microdeletion/microduplication syndromes. CONCLUSIONS Conventional mechanisms of medical attention must be established, in order to facilitate the access to an appropriate diagnosis and treatment. This work intended to provide support to patients, families and health care services personnel through the workshops and clinical campaigns, and to become a starting point to develop primary and secondary prevention processes.
Collapse
Affiliation(s)
- Harvy M Velasco
- MD., Esp. Genética Médica, M. Sc. Ciencias Biológicas, M. Sc. Genética Humana, Departamento de Morfología, Universidad Nacional de Colombia.
| | - Ángela M Martin
- MD., M. Sc. Genética Humana. Departamento de Morfología, Universidad Nacional de Colombia.
| | - Johanna Galvis
- MD., M. Sc. Genética Humana., M. Sc. Genética Humana, Departamento de Morfología, Universidad Nacional de Colombia.
| | - Lina Buelvas
- MD., M. Sc. Genética Humana. Departamento de Morfología, Universidad Nacional de Colombia.
| | - Yasmín Sánchez
- MD., Esp. Neuropediatría. Facultad de Medicina, Universidad Pedagógica y Tecnológica de Colombia. Hospital San Rafael. Tunja, Boyacá, Colombia.
| | - Luis A Umaña
- MD., Esp. Pediatría. Esp. Genética Clínica. Esp. Genética Bioquímica Médica. Department of Pediatrics, Division of Genetics and Metabolism, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Johanna Acosta
- MD., Esp. Genética Médica. Instituto de Ortopedia Roosevelt. M. Sc. Genética Humana, Departamento de Morfología, Universidad Nacional de Colombia.
| |
Collapse
|
5
|
McGee RB, Nichols KE. Introduction to cancer genetic susceptibility syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:293-301. [PMID: 27913494 PMCID: PMC6142512 DOI: 10.1182/asheducation-2016.1.293] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The last 30 years have witnessed tremendous advances in our understanding of the cancer genetic susceptibility syndromes, including those that predispose to hematopoietic malignancies. The identification and characterization of families affected by these syndromes is enhancing our knowledge of the oncologic and nononcologic manifestations associated with predisposing germ line mutations and providing insights into the underlying disease mechanisms. Here, we provide an overview of the cancer genetic susceptibility syndromes, focusing on aspects relevant to the evaluation of patients with leukemia and lymphoma. Guidance is provided to facilitate recognition of these syndromes by hematologists/oncologists, including descriptions of the family history features, tumor genotype, and physical or developmental findings that should raise concern for an underlying cancer genetic syndrome. The clinical implications and management challenges associated with cancer susceptibility syndromes are also discussed.
Collapse
Affiliation(s)
- Rose B McGee
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, TN
| | - Kim E Nichols
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
6
|
Lefebvre M, Sanlaville D, Marle N, Thauvin-Robinet C, Gautier E, Chehadeh SE, Mosca-Boidron AL, Thevenon J, Edery P, Alex-Cordier MP, Till M, Lyonnet S, Cormier-Daire V, Amiel J, Philippe A, Romana S, Malan V, Afenjar A, Marlin S, Chantot-Bastaraud S, Bitoun P, Heron B, Piparas E, Morice-Picard F, Moutton S, Chassaing N, Vigouroux-Castera A, Lespinasse J, Manouvrier-Hanu S, Boute-Benejean O, Vincent-Delorme C, Petit F, Meur NL, Marti-Dramard M, Guerrot AM, Goldenberg A, Redon S, Ferrec C, Odent S, Caignec CL, Mercier S, Gilbert-Dussardier B, Toutain A, Arpin S, Blesson S, Mortemousque I, Schaefer E, Martin D, Philip N, Sigaudy S, Busa T, Missirian C, Giuliano F, Benailly HK, Kien PKV, Leheup B, Benneteau C, Lambert L, Caumes R, Kuentz P, François I, Heron D, Keren B, Cretin E, Callier P, Julia S, Faivre L. Genetic counselling difficulties and ethical implications of incidental findings from array-CGH: a 7-year national survey. Clin Genet 2016; 89:630-5. [PMID: 26582393 DOI: 10.1111/cge.12696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022]
Abstract
Microarray-based comparative genomic hybridization (aCGH) is commonly used in diagnosing patients with intellectual disability (ID) with or without congenital malformation. Because aCGH interrogates with the whole genome, there is a risk of being confronted with incidental findings (IF). In order to anticipate the ethical issues of IF with the generalization of new genome-wide analysis technologies, we questioned French clinicians and cytogeneticists about the situations they have faced regarding IF from aCGH. Sixty-five IF were reported. Forty corresponded to autosomal dominant diseases with incomplete penetrance, 7 to autosomal dominant diseases with complete penetrance, 14 to X-linked diseases, and 4 were heterozygotes for autosomal recessive diseases with a high prevalence of heterozygotes in the population. Therapeutic/preventive measures or genetic counselling could be argued for all cases except four. These four IF were intentionally not returned to the patients. Clinicians reported difficulties in returning the results in 29% of the cases, mainly when the question of IF had not been anticipated. Indeed, at the time of the investigation, only 48% of the clinicians used consents mentioning the risk of IF. With the emergence of new technologies, there is a need to report such national experiences; they show the importance of pre-test information on IF.
Collapse
Affiliation(s)
- M Lefebvre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, Dijon, France.,Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France.,FHU-TRANSLAD, Université de Bourgogne, Dijon, France
| | - D Sanlaville
- Genetics Service, Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, and Eastern Biology and Pathology Centre, Lyon, France
| | - N Marle
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, Dijon, France.,Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - C Thauvin-Robinet
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, Dijon, France.,Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France.,FHU-TRANSLAD, Université de Bourgogne, Dijon, France
| | - E Gautier
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, Dijon, France.,FHU-TRANSLAD, Université de Bourgogne, Dijon, France
| | - S E Chehadeh
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, Dijon, France.,Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - A-L Mosca-Boidron
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, Dijon, France.,Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - J Thevenon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, Dijon, France.,Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France.,FHU-TRANSLAD, Université de Bourgogne, Dijon, France
| | - P Edery
- Genetics Service, Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, and Eastern Biology and Pathology Centre, Lyon, France
| | - M-P Alex-Cordier
- Genetics Service, Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, and Eastern Biology and Pathology Centre, Lyon, France
| | - M Till
- Genetics Service, Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, and Eastern Biology and Pathology Centre, Lyon, France
| | - S Lyonnet
- Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France
| | - V Cormier-Daire
- Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France
| | - J Amiel
- Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France
| | - A Philippe
- Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France
| | - S Romana
- Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France
| | - V Malan
- Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France
| | - A Afenjar
- Service de Génétique, Hôpital Pitié Salpêtrière, Paris, France
| | - S Marlin
- Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France
| | - S Chantot-Bastaraud
- APHP, Hôpital Armand Trousseau, Service de Génétique et d'Embryologie Médicales, Paris, France
| | - P Bitoun
- Service de Pédiatrie, Hôpital Jean Verdier, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - B Heron
- Department of Neuropediatrics, Armand Trousseau Hospital, APHP, Paris, France
| | - E Piparas
- Cytogenetics Laboratory, Jean Verdier Hospital, Bondy, France
| | - F Morice-Picard
- Department of Clinical Genetics, Bordeaux Children's Hospital, CHU de Bordeaux, Bordeaux, France
| | - S Moutton
- Department of Clinical Genetics, Bordeaux Children's Hospital, CHU de Bordeaux, Bordeaux, France
| | - N Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Université Paul Sabatier Toulouse, Toulouse, France
| | - A Vigouroux-Castera
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Université Paul Sabatier Toulouse, Toulouse, France
| | - J Lespinasse
- Cytogenetics Laboratory, Chambery Hospital, Chambery, France
| | - S Manouvrier-Hanu
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHRU, Lille, France
| | - O Boute-Benejean
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHRU, Lille, France
| | - C Vincent-Delorme
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHRU, Lille, France
| | - F Petit
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHRU, Lille, France
| | - N L Meur
- Cytogenetics Laboratory, Etablissement Français du Sang de Normandie, Rouen, France
| | - M Marti-Dramard
- Unité de Génétique Clinique, Hôpital Nord, CHU, Amiens, France
| | - A-M Guerrot
- Service de Pédiatrie Néonatale et Réanimation, Centre D'éducation Fonctionnelle de l'enfant, CHU de Rouen, Rouen, France
| | - A Goldenberg
- Unité de Génétique Médicale, CHU Rouen, Rouen, France
| | - S Redon
- Laboratoire de Génétique Moléculaire, CHU, Brest, France
| | - C Ferrec
- Laboratoire de Génétique Moléculaire, CHU, Brest, France
| | - S Odent
- Service de Génétique Clinique, CLAD-Ouest, Hôpital Sud, Rennes, France
| | - C L Caignec
- Service de Génétique Médicale, Unité de Génétique Clinique, CLAD-Ouest, CHU de Nantes, Nantes, France
| | - S Mercier
- Service de Génétique Médicale, Unité de Génétique Clinique, CLAD-Ouest, CHU de Nantes, Nantes, France
| | | | - A Toutain
- Service de Génétique, Centre Hospitalo-Universitaire, Tours, France
| | - S Arpin
- Service de Génétique, Centre Hospitalo-Universitaire, Tours, France
| | - S Blesson
- Service de Génétique, Centre Hospitalo-Universitaire, Tours, France
| | - I Mortemousque
- Service de Génétique, Centre Hospitalo-Universitaire, Tours, France
| | - E Schaefer
- Service de Génétique Médicale, Hôpital de Hautepierre, Strasbourg, France
| | - D Martin
- Service de Génétique Médicale, Hôpital du Mans, Le Mans, France
| | - N Philip
- Département de Génétique Médicale, Hôpital d'Enfants de La Timone, Marseille, France
| | - S Sigaudy
- Département de Génétique Médicale, Hôpital d'Enfants de La Timone, Marseille, France
| | - T Busa
- Département de Génétique Médicale, Hôpital d'Enfants de La Timone, Marseille, France
| | - C Missirian
- Département de Génétique Médicale, Hôpital d'Enfants de La Timone, Marseille, France
| | - F Giuliano
- Service de Génétique Médicale, Hôpital de l'Archet II, CHU de Nice, Nice, France
| | - H K Benailly
- Service de Génétique Médicale, Hôpital de l'Archet II, CHU de Nice, Nice, France
| | - P K V Kien
- Service de Génétique Médicale, Hôpital Caremeau, CHU de Nimes, Nimes, France
| | - B Leheup
- CHU de Nancy Pole Enfant, Centre de Référence Maladies Rares CLAD Est, Service de Médecine Infantile III et Génétique Clinique, Nancy, France
| | - C Benneteau
- CHU de Nancy Pole Enfant, Centre de Référence Maladies Rares CLAD Est, Service de Médecine Infantile III et Génétique Clinique, Nancy, France
| | - L Lambert
- CHU de Nancy Pole Enfant, Centre de Référence Maladies Rares CLAD Est, Service de Médecine Infantile III et Génétique Clinique, Nancy, France
| | - R Caumes
- APHP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France
| | - P Kuentz
- Service de génétique, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | | | - D Heron
- Service de Génétique, APHP, Groupe Hospitalier de la Pitié-Salpétrière, Paris, France
| | - B Keren
- Service de Génétique, APHP, Groupe Hospitalier de la Pitié-Salpétrière, Paris, France
| | - E Cretin
- FHU-TRANSLAD, Université de Bourgogne, Dijon, France.,Espace Régional Éthique Bourgogne-Franche Comté, CHU, Besançon, France
| | - P Callier
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, Dijon, France.,Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France.,FHU-TRANSLAD, Université de Bourgogne, Dijon, France
| | - S Julia
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Université Paul Sabatier Toulouse, Toulouse, France
| | - L Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, Dijon, France.,Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France.,FHU-TRANSLAD, Université de Bourgogne, Dijon, France
| |
Collapse
|
7
|
Hamm JA, Mikhail FM, Hollenbeck D, Farmer M, Robin NH. Incidental detection of cancer predisposition gene copy number variations by array comparative genomic hybridization. J Pediatr 2014; 165:1057-9.e1-4. [PMID: 25201531 DOI: 10.1016/j.jpeds.2014.07.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/20/2014] [Accepted: 07/23/2014] [Indexed: 02/06/2023]
Abstract
We describe 2 pediatric patients who presented to medical genetics clinic for evaluation and were incidentally found via array comparative genomic hybridization to have pathogenic copy number variations of cancer predisposition genes. We subsequently reviewed 3554 previous array comparative genomic hybridization results to estimate the frequency of similar incidental findings.
Collapse
Affiliation(s)
- J Austin Hamm
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Dana Hollenbeck
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Meagan Farmer
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Nathaniel H Robin
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL; Department of Otolarnygology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
8
|
Tao VQ, Chan KYK, Chu YWY, Mok GTK, Tan TY, Yang W, Lee SL, Tang WF, Tso WWY, Lau ET, Kan ASY, Tang MH, Lau YL, Chung BHY. The clinical impact of chromosomal microarray on paediatric care in Hong Kong. PLoS One 2014; 9:e109629. [PMID: 25333781 PMCID: PMC4198120 DOI: 10.1371/journal.pone.0109629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/03/2014] [Indexed: 01/27/2023] Open
Abstract
Objective To evaluate the clinical impact of chromosomal microarray (CMA) on the management of paediatric patients in Hong Kong. Methods We performed NimbleGen 135k oligonucleotide array on 327 children with intellectual disability (ID)/developmental delay (DD), autism spectrum disorders (ASD), and/or multiple congenital anomalies (MCAs) in a university-affiliated paediatric unit from January 2011 to May 2013. The medical records of patients were reviewed in September 2013, focusing on the pathogenic/likely pathogenic CMA findings and their “clinical actionability” based on established criteria. Results Thirty-seven patients were reported to have pathogenic/likely pathogenic results, while 40 had findings of unknown significance. This gives a detection rate of 11% for clinically significant (pathogenic/likely pathogenic) findings. The significant findings have prompted clinical actions in 28 out of 37 patients (75.7%), while the findings with unknown significance have led to further management recommendation in only 1 patient (p<0.001). Nineteen out of the 28 management recommendations are “evidence-based” on either practice guidelines endorsed by a professional society (n = 9, Level 1) or peer-reviewed publications making medical management recommendation (n = 10, Level 2). CMA results impact medical management by precipitating referral to a specialist (n = 24); diagnostic testing (n = 25), surveillance of complications (n = 19), interventional procedure (n = 7), medication (n = 15) or lifestyle modification (n = 12). Conclusion The application of CMA in children with ID/DD, ASD, and/or MCAs in Hong Kong results in a diagnostic yield of ∼11% for pathogenic/likely pathogenic results. Importantly the yield for clinically actionable results is 8.6%. We advocate using diagnostic yield of clinically actionable results to evaluate CMA as it provides information of both clinical validity and clinical utility. Furthermore, it incorporates evidence-based medicine into the practice of genomic medicine. The same framework can be applied to other genomic testing strategies enabled by next-generation sequencing.
Collapse
Affiliation(s)
- Victoria Q. Tao
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelvin Y. K. Chan
- Department of Obstetrics and Gynecology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Yoyo W. Y. Chu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gary T. K. Mok
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tiong Y. Tan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Royal Children's Hospital, Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - So Lun Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wing Fai Tang
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Winnie W. Y. Tso
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Elizabeth T. Lau
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anita S. Y. Kan
- Department of Obstetrics and Gynecology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Mary H. Tang
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yu-lung Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Brian H. Y. Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- * E-mail:
| |
Collapse
|
9
|
Shen J, Lincoln S, Miller DT. Advances in Genetic Discovery and Implications for Counseling of Patients and Families with Autism Spectrum Disorders. CURRENT GENETIC MEDICINE REPORTS 2014; 2:124-134. [PMID: 30345165 PMCID: PMC6192539 DOI: 10.1007/s40142-014-0047-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The prevalence of autism spectrum disorders (ASD) continues to increase. Genetic factors play an important role in the etiology of ASD, although specific genetic causes are identified in only a minority of cases. Recent advances have accelerated the discovery of genes implicated in ASD through convergent genomic analysis of genome-wide association studies, chromosomal microarray, exome sequencing, genome sequencing, and gene networks. Hundreds of candidate genes for ASD have been reported, yet only a handful have proven causative. Symptoms are complex and highly variable, and most cases are likely due to cumulative genetic factors, the interactions among them, as well as environmental factors. Here we summarize recent findings in genomic research regarding discovery of candidate genes, describe the major molecular processes in neural development that may be disrupted in ASD, and discuss the implication of research findings in clinical genetic diagnostic testing and counseling. Continued advances in genetic research will eventually translate into innovative approaches to prevention and treatment of ASD.
Collapse
Affiliation(s)
- Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Sharyn Lincoln
- Division of Genetics, Boston Children's Hospital, Boston, MA 02115
| | - David T Miller
- Harvard Medical School, Boston, MA 02115
- Division of Genetics, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
10
|
Patel A, Bi W. Incidental Finding in Copy Number Variation (CNV) Analysis. CURRENT GENETIC MEDICINE REPORTS 2014. [DOI: 10.1007/s40142-014-0050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Helm BM, Langley K, Spangler B, Vergano S. Three clinical experiences with SNP array results consistent with parental incest: a narrative with lessons learned. J Genet Couns 2013; 23:489-95. [PMID: 24222483 DOI: 10.1007/s10897-013-9669-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/31/2013] [Indexed: 02/05/2023]
Abstract
Single nucleotide polymorphism microarrays have the ability to reveal parental consanguinity which may or may not be known to healthcare providers. Consanguinity can have significant implications for the health of patients and for individual and family psychosocial well-being. These results often present ethical and legal dilemmas that can have important ramifications. Unexpected consanguinity can be confounding to healthcare professionals who may be unprepared to handle these results or to communicate them to families or other appropriate representatives. There are few published accounts of experiences with consanguinity and SNP arrays. In this paper we discuss three cases where molecular evidence of parental incest was identified by SNP microarray. We hope to further highlight consanguinity as a potential incidental finding, how the cases were handled by the clinical team, and what resources were found to be most helpful. This paper aims to contribute further to professional discourse on incidental findings with genomic technology and how they were addressed clinically. These experiences may provide some guidance on how others can prepare for these findings and help improve practice. As genetic and genomic testing is utilized more by non-genetics providers, we also hope to inform about the importance of engaging with geneticists and genetic counselors when addressing these findings.
Collapse
Affiliation(s)
- Benjamin M Helm
- Department of Medical Genetics and Metabolism, Children's Hospital of the King's Daughters/Eastern Virginia Medical School, 601 Children's Lane, 2nd Floor Pediatrics, Norfolk, VA, 23507, USA,
| | | | | | | |
Collapse
|
12
|
Riggs E, Wain K, Riethmaier D, Smith-Packard B, Faucett W, Hoppman N, Thorland E, Patel V, Miller D. Chromosomal microarray impacts clinical management. Clin Genet 2013; 85:147-53. [DOI: 10.1111/cge.12107] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 11/30/2022]
Affiliation(s)
- E.R. Riggs
- Department of Human Genetics; Emory University School of Medicine; Atlanta GA USA
| | - K.E. Wain
- Department of Laboratory Medicine & Pathology; Mayo Clinic; Rochester MN USA
| | | | | | | | - N. Hoppman
- Department of Laboratory Medicine & Pathology; Mayo Clinic; Rochester MN USA
| | - E.C. Thorland
- Department of Laboratory Medicine & Pathology; Mayo Clinic; Rochester MN USA
| | - V.C. Patel
- Department of Human Genetics; Emory University School of Medicine; Atlanta GA USA
| | - D.T. Miller
- Department of Laboratory Medicine; Children's Hospital Boston; Boston MA USA
| |
Collapse
|
13
|
Desale M, Worden LT, Cohen JS, Wilms Floet AM, Hoon AH. Diagnostic evaluation in children with developmental delay: a cautionary tale for genetic testing. Clin Pediatr (Phila) 2012; 51:1208-10. [PMID: 23034944 DOI: 10.1177/0009922812460916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Ellison JW, Ravnan JB, Rosenfeld JA, Morton SA, Neill NJ, Williams MS, Lewis J, Torchia BS, Walker C, Traylor RN, Moles K, Miller E, Lantz J, Valentin C, Minier SL, Leiser K, Powell BR, Wilks TM, Shaffer LG. Clinical utility of chromosomal microarray analysis. Pediatrics 2012; 130:e1085-95. [PMID: 23071206 DOI: 10.1542/peds.2012-0568] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To test the hypothesis that chromosomal microarray analysis frequently diagnoses conditions that require specific medical follow-up and that referring physicians respond appropriately to abnormal test results. METHODS A total of 46,298 postnatal patients were tested by chromosomal microarray analysis for a variety of indications, most commonly intellectual disability/developmental delay, congenital anomalies, dysmorphic features, and neurobehavioral problems. The frequency of detection of abnormalities associated with actionable clinical features was tallied, and the rate of physician response to a subset of abnormal tests results was monitored. RESULTS A total of 2088 diagnoses were made of more than 100 different disorders that have specific clinical features that warrant follow-up. The detection rate for these conditions using high-resolution whole-genome microarrays was 5.4%, which translates to 35% of all clinically significant abnormal test results identified in our laboratory. In a subset of cases monitored for physician response, appropriate clinical action was taken more than 90% of the time as a direct result of the microarray finding. CONCLUSIONS The disorders diagnosed by chromosomal microarray analysis frequently have clinical features that need medical attention, and physicians respond to the diagnoses with specific clinical actions, thus arguing that microarray testing provides clinical utility for a significant number of patients tested.
Collapse
Affiliation(s)
- Jay W Ellison
- Signature Genomic Laboratories, PerkinElmer, Inc, Spokane, Washington 99207, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Coughlin CR, Scharer GH, Shaikh TH. Clinical impact of copy number variation analysis using high-resolution microarray technologies: advantages, limitations and concerns. Genome Med 2012; 4:80. [PMID: 23114084 PMCID: PMC3580449 DOI: 10.1186/gm381] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copy number variation (CNV) analysis has had a major impact on the field of medical genetics, providing a mechanism to identify disease-causing genomic alterations in an unprecedented number of diseases and phenotypes. CNV analysis is now routinely used in the clinical diagnostic laboratory, and has led to a significant increase in the detection of chromosomal abnormalities. These findings are used for prenatal decision making, clinical management and genetic counseling. Although a powerful tool to identify genomic alterations, CNV analysis may also result in the detection of genomic alterations that have unknown clinical significance or reveal unintended information. This highlights the importance of informed consent and genetic counseling for clinical CNV analysis. This review examines the advantages and limitations of CNV discovery in the clinical diagnostic laboratory, as well as the impact on the clinician and family.
Collapse
Affiliation(s)
- Curtis R Coughlin
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, CO 80045, USA
| | - Gunter H Scharer
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, CO 80045, USA ; Intellectual and Developmental Disabilities Research Center, University of Colorado Denver, Aurora, CO 80045, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, CO 80045, USA ; Intellectual and Developmental Disabilities Research Center, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Incidental copy-number variants identified by routine genome testing in a clinical population. Genet Med 2012; 15:45-54. [PMID: 22878507 DOI: 10.1038/gim.2012.95] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Mutational load of susceptibility variants has not been studied on a genomic scale in a clinical population, nor has the potential to identify these mutations as incidental findings during clinical testing been systematically ascertained. METHODS Array comparative genomic hybridization, a method for genome-wide detection of DNA copy-number variants, was performed clinically on DNA from 9,005 individuals. Copy-number variants encompassing or disrupting single genes were identified and analyzed for their potential to confer predisposition to dominant, adult-onset disease. Multigene copy-number variants affecting dominant, adult-onset cancer syndrome genes were also assessed. RESULTS In our cohort, 83 single-gene copy-number variants affected 40 unique genes associated with dominant, adult-onset disorders and unrelated to the patients' referring diagnoses (i.e., incidental) were found. Fourteen of these copy-number variants are likely disease-predisposing, 25 are likely benign, and 44 are of unknown clinical consequence. When incidental copy-number variants spanning up to 20 genes were considered, 27 copy-number variants affected 17 unique genes associated with dominant, adult-onset cancer predisposition. CONCLUSION Copy-number variants potentially conferring susceptibility to adult-onset disease can be identified as incidental findings during routine genome-wide testing. Some of these mutations may be medically actionable, enabling disease surveillance or prevention; however, most incidentally observed single-gene copy-number variants are currently of unclear significance to the patient.
Collapse
|
17
|
Abstract
The diagnostic benefits of array comparative genomic hybridisation (CGH) have been demonstrated, with this technique now being applied as the first-line test for patients with intellectual disabilities and/or multiple congenital anomalies in numerous laboratories. There are no technical barriers preventing the introduction of array CGH to prenatal diagnosis. The question is rather how this is best implemented, and for whom. The challenges lie in the interpretation of copy number variations, particularly those which exhibit reduced penetrance or variable expression, and how to deal with incidental findings, which are not related to the observed foetal anomalies, or unclassified variants which are currently of uncertain clinical significance. Recently, applications of array technologies to the field of pre-implantation genetic diagnosis have also been demonstrated. It is important to address the ethical questions raised concerning the genome-wide analysis of prenatal samples to ensure the maximum benefit for patients. We provide an overview of the recent developments on the use of array CGH in the prenatal setting, and address the challenges posed.
Collapse
|
18
|
Rostasy K, Fauth C, Gautsch K, Laimer I, Krabichler B, Wimmer K, Frühmesser A, Kotzot D, Moshir S. Modification of risk for cancer as a coincidental finding in DNA array investigation. Clin Genet 2012; 83:284-7. [PMID: 22428932 DOI: 10.1111/j.1399-0004.2012.01881.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The high resolution of modern DNA arrays has the implification of unintended coincidental detection of gene deletions predisposing to late-onset neurological and oncological disorders. Here, we report the case of an 18-year-old girl with mild intellectual disability, facial dysmorphisms, and a microdeletion of approximately 6.3 Mb on 22q12.1q12.3 including NF2, the gene for neurofibromatosis type 2, and CHEK2, a modifier gene for breast cancer. Subsequent magnetic resonance imaging of the brain showed she had already developed bilateral vestibular schwannomas. The challenge of DNA arrays and the consequences for genetic counselling and informed consent will be discussed in the light of this unique case with a microdeletion including both a high risk and a moderate risk cancer predisposition gene.
Collapse
Affiliation(s)
- K Rostasy
- Clinical Department of Pediatrics IV, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
O'Leary RE, Shih JC, Hyland K, Kramer N, Asher YJT, Graham JM. De novo microdeletion of Xp11.3 exclusively encompassing the monoamine oxidase A and B genes in a male infant with episodic hypotonia: a genomics approach to personalized medicine. Eur J Med Genet 2012; 55:349-53. [PMID: 22365943 DOI: 10.1016/j.ejmg.2012.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/01/2012] [Indexed: 02/07/2023]
Abstract
Monoamine oxidase A and B (MAOA and MAOB) play key roles in deaminating neurotransmitters and various other biogenic amines. Patients deficient in one or both enzymes have distinct metabolic and neurologic profiles. MAOB deficient patients exhibit normal clinical characteristics and behavior, while MAOA deficient patients have borderline intellectual deficiency and impaired impulse control. Patients who lack both MAOA and MAOB have the most extreme laboratory values (urine, blood, and CSF serotonin 4-6 times normal, with elevated O-methylated amine metabolites and reduced deaminated metabolites) in addition to severe intellectual deficiency and behavioral problems. Mice lacking maoa and moab exhibit decreased proliferation of neural stem cells beginning in late gestation and persisting into adulthood. These mice show significantly increased monoamine levels, particularly serotonin, as well as anxiety-like behaviors as adults, suggesting that brain maturation in late embryonic development is adversely affected by elevated serotonin levels. We report the case of a male infant with a de novo Xp11.3 microdeletion exclusively encompassing the MAOA and MAOB genes. This newly recognized X-linked disorder is characterized by severe intellectual disability and unusual episodes of hypotonia, which resemble atonic seizures, but have no EEG correlate. A customized low dietary amine diet was implemented in an attempt to prevent the cardiovascular complications that can result from the excessive intake of these compounds. This is the second report of this deletion and the first attempt to maintain the patient's cardiovascular health through dietary manipulation. Even though a diet low in tyramine, phenylethylamine, and dopa/dopamine is necessary for long-term management, it will not rescue the abnormal monoamine profile seen in combined MAOA and MAOB deficiency. Our patient displays markedly elevated levels of serotonin in blood, serum, urine, and CSF while on this diet. Serotonin biosynthesis inhibitors like para-chlorophenylalanine and p-ethynylphenylalanine may be needed to lower serotonin levels in patients with absent monoamine oxidase enzymes.
Collapse
Affiliation(s)
- Ryan E O'Leary
- Medical Genetics Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med 2011; 13:680-5. [PMID: 21681106 DOI: 10.1097/gim.0b013e3182217a3a] [Citation(s) in RCA: 688] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genomic microarrays used to assess DNA copy number are now recommended as first-tier tests for the postnatal evaluation of individuals with intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. Application of this technology has resulted in the discovery of widespread copy number variation in the human genome, both polymorphic variation in healthy individuals and novel pathogenic copy number imbalances. To assist clinical laboratories in the evaluation of copy number variants and to promote consistency in interpretation and reporting of genomic microarray results, the American College of Medical Genetics has developed the following professional guidelines for the interpretation and reporting of copy number variation. These guidelines apply primarily to evaluation of constitutional copy number variants detected in the postnatal setting.
Collapse
Affiliation(s)
- Hutton M Kearney
- Fullerton Genetics Center, Mission Health System, 267 McDowell St., Asheville, NC 28803, USA.
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
|
23
|
Abstract
Chromosome imbalances are the leading cause of intellectual and developmental disabilities in the population. This paper reviews the current methods used to diagnose chromosome abnormalities in children including karyotyping, fluorescence in situ hybridization and microarray technologies. Advances in molecular cytogenetics, especially with the use of microarrays, have substantially increased the detection of chromosome abnormalities in children with disabilities and congenital anomalies above that achievable with conventional cytogenetic banding and light microscopy.
Collapse
|
24
|
Abstract
Array technology, here termed molecular karyotyping, is an attractive alternative to conventional karyotyping for prenatal diagnosis given the increase in resolution as well as faster report times. We review the benefits and limitations of this technique for the detection of pathogenic genomic imbalances, address the challenges raised in the interpretation of copy number variations, discuss practical considerations for the routine implementation of molecular karyotyping in prenatal diagnosis, and identify areas where more research is desired to enable large scale introduction of the technique(s).
Collapse
|
25
|
Manning M, Hudgins L. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med 2010; 12:742-5. [PMID: 20962661 PMCID: PMC3111046 DOI: 10.1097/gim.0b013e3181f8baad] [Citation(s) in RCA: 421] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Laboratory evaluation of patients with developmental delay/intellectual disability, congenital anomalies, and dysmorphic features has changed significantly in the last several years with the introduction of microarray technologies. Using these techniques, a patient's genome can be examined for gains or losses of genetic material too small to be detected by standard G-banded chromosome studies. This increased resolution of microarray technology over conventional cytogenetic analysis allows for identification of chromosomal imbalances with greater precision, accuracy, and technical sensitivity. A variety of array-based platforms are now available for use in clinical practice, and utilization strategies are evolving. Thus, a review of the utility and limitations of these techniques and recommendations regarding present and future application in the clinical setting are presented in this study.
Collapse
Affiliation(s)
- Melanie Manning
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
26
|
Cottrell CE, Prior TW, Pyatt R, Astbury C, Reshmi S, Bartholomew D, Atkin J, Manickam K, Thrush DL, Pastore M, Mendell J, Tsao CY, al-Dahhak R, Newmeyer A, Gastier-Foster JM. Unexpected detection of dystrophin gene deletions by array comparative genomic hybridization. Am J Med Genet A 2010; 152A:2301-7. [DOI: 10.1002/ajmg.a.33532] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Abstract
During the past five years, copy number variation (CNV) has emerged as a highly prevalent form of genomic variation, bridging the interval between long-recognised microscopic chromosomal alterations and single-nucleotide changes. These genomic segmental differences among humans reflect the dynamic nature of genomes, and account for both normal variations among us and variations that predispose to conditions of medical consequence. Here, we place CNVs into their historical and medical contexts, focusing on how these variations can be recognised, documented, characterised and interpreted in clinical diagnostics. We also discuss how they can cause disease or influence adaptation to an environment. Various clinical exemplars are drawn out to illustrate salient characteristics and residual enigmas of CNVs, particularly the complexity of the data and information associated with CNVs relative to that of single-nucleotide variation. The potential is immense for CNVs to explain and predict disorders and traits that have long resisted understanding. However, creative solutions are needed to manage the sudden and overwhelming burden of expectation for laboratories and clinicians to assay and interpret these complex genomic variations as awareness permeates medical practice. Challenges remain for understanding the relationship between genomic changes and the phenotypes that might be predicted and prevented by such knowledge.
Collapse
|
28
|
Alliman S, Coppinger J, Marcadier J, Thiese H, Brock P, Shafer S, Weaver C, Asamoah A, Leppig K, Dyack S, Morash B, Schultz R, Torchia BS, Lamb AN, Bejjani BA. Clinical and molecular characterization of individuals with recurrent genomic disorder at 10q22.3q23.2. Clin Genet 2010; 78:162-8. [PMID: 20345475 DOI: 10.1111/j.1399-0004.2010.01373.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The identification of genomic imbalances in young patients can affect medical management by allowing early intervention for developmental delay and by identifying patients at risk for unexpected medical complications. Using a 105K-feature oligonucleotide array, we identified a 7.25 Mb deletion at 10q22.3q23.2 in six unrelated patients. Deletions of this region have been described in individuals with cognitive and behavioral abnormalities, including autistic features, and may represent a recurring genetic syndrome. All four patients in this study for whom clinical information was available had mild dysmorphic features and three had developmental delay. Of note is the emerging clinical phenotype in these individuals with similar dysmorphic features such as macrocephaly, hypertelorism, and arachnodactyly, and neurodevelopmental delay that includes failure to thrive, hypotonia, and feeding difficulties in the neonatal period, and receptive and expressive language delay with global neurodevelopmental delay after the neonatal period. However, there is no pattern of abnormalities, craniofacial, behavioral, or otherwise, that would have aroused clinical suspicion of a specific syndrome. Finally, the patients' deletions encompass BMPR1A but not PTEN, and these patients may be at risk for colon cancer and should be referred for appropriate prophylactic care and surveillance. Of the two patients in this study who had colonoscopy following the array results, neither had polyps. Therefore, the magnitude of the increased risk for colon cancer is currently unknown.
Collapse
Affiliation(s)
- S Alliman
- Signature Genomics, Spokane, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|