1
|
Cruz NFSDA, Hudson JL, Sengillo JD, Shah SM, Lopez-Font F, Negron CI, Farah ME, Berrocal AM. Underlying Disease in Atypical Retinopathy of Prematurity. Am J Ophthalmol 2025; 274:67-75. [PMID: 40010420 DOI: 10.1016/j.ajo.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/18/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND AND OBJECTIVE Retinopathy of prematurity (ROP), familial exudative vitreoretinopathy (FEVR), and telomere biology disorders (TBD) are classified as distinct diseases. However, emerging genetic research and evidence on multimodal imaging suggest a spectrum along which ROP may overlap with FEVR or TBD. DESIGN Retrospective case series. METHODS This was an institutional review board-approved, retrospective study. A literature review was performed, and medical records of all patients with phenotypic ROP evaluated by the pediatric retina service at Bascom Palmer Eye Institute from March 1, 2019 to July 30, 2023 were analyzed. RESULTS Eighteen patients with phenotypic and genetically confirmed FEVR or TBD were identified. Of these, the initial diagnosis was ROP with preterm gestational age (n = 11, 57.9%) or ROP at moderate to late preterm gestational age (n = 8, 42.1%). Final diagnosis for 15 patients (78.9%) was FEVR, and final diagnosis for 4 patients (21.1%) was TBD. The most common genetic variants in the FEVR group were identified in the genes LRP5 (n = 5, 33.3%) and FZD4 (n = 3, 20%), and in the TBD group, CTC1 (n = 3; 75%). The mean age at diagnosis was 5.7 years old (range 0.3-36.7 years). CONCLUSIONS The authors reinforce the classification of ROPER (ROP and FEVR) and introduce the term, ROPMERE (ROP and TBD), to classify these patients in a way that reflects their clinical presentation and underlying genetic diagnosis. Identification of this subset of patients will allow for sustained surveillance of infants with these diseases.
Collapse
Affiliation(s)
- Natasha F S DA Cruz
- Department of Ophthalmology (N.D.C., J.H., J.S., S.S., F.L.F., C.N., A.B.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, United States; Department of Ophthalmology (N.D.C., M.F.), Federal University of São Paulo, Escola Paulista de Medicina, São Paulo, Brazil; Department of Ophthalmology, Centro Ocular (N.D.C.), Belém, Brazil
| | - Julia L Hudson
- Department of Ophthalmology (N.D.C., J.H., J.S., S.S., F.L.F., C.N., A.B.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Jesse D Sengillo
- Department of Ophthalmology (N.D.C., J.H., J.S., S.S., F.L.F., C.N., A.B.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Serena M Shah
- Department of Ophthalmology (N.D.C., J.H., J.S., S.S., F.L.F., C.N., A.B.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Francisco Lopez-Font
- Department of Ophthalmology (N.D.C., J.H., J.S., S.S., F.L.F., C.N., A.B.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Catherin I Negron
- Department of Ophthalmology (N.D.C., J.H., J.S., S.S., F.L.F., C.N., A.B.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Michel E Farah
- Department of Ophthalmology (N.D.C., M.F.), Federal University of São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Audina M Berrocal
- Department of Ophthalmology (N.D.C., J.H., J.S., S.S., F.L.F., C.N., A.B.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, United States.
| |
Collapse
|
2
|
Rayner JG, Marshall A, Adams DM, Kaiser J, Armenta K, Wilkinson GS. Sex Differences in Telomere Length in a Bat With Female-Biased Longevity. Ecol Evol 2025; 15:e71378. [PMID: 40370345 PMCID: PMC12076057 DOI: 10.1002/ece3.71378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
Telomeres, protective caps at the ends of linear chromosomes, are frequently found to shorten with age. Telomere length is commonly measured in wild populations to investigate age-related changes in somatic integrity and is considered a hallmark of ageing. Despite interest, there is no clear picture regarding sex differences in telomere length or rate of attrition across species. Bats are of considerable interest in studies of ageing and telomeres, owing to their remarkable longevity and the absence of age-associated telomere attrition observed in some species. Additionally, multiple bat species show evidence of sex differences in longevity. However, few studies of bat telomeres have included both sexes. We collected DNA from wild-caught males and females of the highly polygynous greater spear-nosed bat, Phyllostomus hastatus, in which mortality is strongly male-biased, and measured relative telomere lengths. We found that, while telomeres were shorter in older bats, there was no evidence of shorter telomeres in males. In fact, males tended to have longer telomeres. This runs counter to our prediction of shorter telomeres in the shorter-lived sex but is not completely unexpected in light of other observations, including that of shorter telomeres in longer lived species.
Collapse
Affiliation(s)
- Jack G. Rayner
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | - Abigail Marshall
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | | | - Jillian Kaiser
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | | | | |
Collapse
|
3
|
Zhang X, Dan H, Zhou Y, Sun W, Yang W, Zeng X. Extensive and persistent tongue ulceration is an early character of dyskeratosis congenita. Orphanet J Rare Dis 2025; 20:192. [PMID: 40259308 PMCID: PMC12012981 DOI: 10.1186/s13023-025-03721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a rare and fatal disease, presenting with a classic triad of skin pigmentation, nail dystrophy and oral leukoplakia. However, diagnosing DC is challenging based solely on the protean manifestations and multisystemic involvement. Therefore, it is urgent to identify an early feature facilitating initial suspicion of DC. RESULTS In this study, we enrolled a cohort of six male children diagnosed with DC, all of whom exhibited erosions or ulcers on the tongue, while five of them did not display the complete classic triad. Strikingly, oral erosions or ulcers have never been included in any existing clinical diagnostic criteria for DC. Through a retrospective analysis, we further demonstrated that extensive and persistent tongue ulceration emerges as an early and practicable clinical marker, provoking suspicion of DC even in the absence of the classic triad. CONCLUSIONS Our findings challenge prevailing diagnostic criteria and advocates for an expanded consideration of tongue ulceration as a primary and indicative manifestation of DC, thereby affording a strategic advantage for early detection and intervention of this lethal disease.
Collapse
Affiliation(s)
- Xuefeng Zhang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanxin Sun
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanchun Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Xu Z, Wang H, Tian H, Wang W, Hua D. Identification of telomere maintenance-driven molecular subtypes in hepatocellular carcinoma: implications for prognosis and targeted therapy via KPNA2. Discov Oncol 2025; 16:516. [PMID: 40214910 PMCID: PMC11992308 DOI: 10.1007/s12672-025-02311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Telomere maintenance (TM) plays a pivotal role in regulating the pathogenesis of hepatocellular carcinoma (HCC) and is crucial for defining the clinical characteristics of patients. Despite previous publications highlighting the correlation between individual TM-related genes and HCC, comprehensive exploration and systematic analysis of these genes are still lacking. METHODS Through the analysis of transcriptome data, we identified two distinct clusters (termed telomere maintenance-associated clusters, or TCs) that exhibited marked heterogeneity in clinical traits and the tumor microenvironment. Following this, we conducted an exhaustive screening process to select 15 prognostic genes related to telomere maintenance and developed corresponding TM scores for these genes. Additionally, we rigorously validated the expression and oncogenic functions of karyopherin subunit alpha 2 (KPNA2) in both HCC tissues and cell lines. RESULTS TC1 demonstrated a significant correlation with cellular differentiation and the fatty acid metabolism pathway, while also predicting a low tumor mutation burden (TMB) alongside favorable prognostic outcomes. In contrast, TC2 was intricately linked to TM, cell cycle regulation, and DNA repair. When examining the relationship between TMB and overall survival rates. Notably, substantial heterogeneity was observed among the various TCs. Furthermore, KPNA2 exhibited upregulation and has the potential to enhance HCC proliferation and migration. CONCLUSION In summary, through the integration of bioinformatics and functional experimentation, we have delineated two distinct molecular classifications predicated on their association with TM-related genes in HCC. This groundbreaking discovery holds the potential to introduce innovative concepts and novel biomarkers into clinical practice.
Collapse
Affiliation(s)
- Zhicheng Xu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu Province, China
| | - Hanyu Wang
- Department of Oncology, The Affiliated Children's Hospital of Jiangnan University, Wuxi, 214000, Jiangsu Province, China
| | - Haixia Tian
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu Province, China
| | - Weijing Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu Province, China
| | - Dong Hua
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu Province, China.
| |
Collapse
|
5
|
Ghoraba HH, Sears J, Traboulsi EI. Hereditary Vitreoretinopathies: Molecular Diagnosis, Clinical Presentation and Management. Clin Exp Ophthalmol 2025; 53:281-291. [PMID: 39837650 PMCID: PMC11962705 DOI: 10.1111/ceo.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Hereditary vitreoretinopathies (HVRs), also known as hereditary vitreoretinal degenerations comprise a heterogeneous group of inherited disorders of the retina and vitreous, collectively and variably characterised by vitreal abnormalities, such as fibrillary condensations, liquefaction or membranes, as well as peripheral retinal abnormalities, vascular changes in some, an increased risk of retinal detachment and early-onset cataract formation. The pathology often involves the vitreoretinal interface in some, while the major underlying abnormality is vascular in others. Recent advances in molecular diagnosis and identification of the responsible genes and have improved our understanding of the pathogenesis, risks and management of the HVRs. Clinically, HVRs can be classified according to the presence or absence of skeletal or other systemic abnormalities, retinal dysfunction or retinal vascular abnormalities [2]. There are some discrepancies in the literature regarding which diseases are included under the overarching term 'hereditary vitreoretinopathies'. Conditions such as Stickler syndrome, Wagner syndrome and familial exudative vitreoretinopathy are generally included, while others such as autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) and autosomal dominant vitreoretinochoroidapathy (ADVIRC) may not. In this review, we will discuss some historical aspects, the molecular pathogenesis, clinical features and management of diseases and syndromes commonly considered as HVRs.
Collapse
|
6
|
Rattan P, Nguyen K, Penrice DD, Povero D, Simonetto DA. Underrecognized association of porto-sinusoidal vascular disorder and telomere biology disorders. J Hepatol 2025; 82:e199-e200. [PMID: 39461596 PMCID: PMC11911065 DOI: 10.1016/j.jhep.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Affiliation(s)
- Puru Rattan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Kianna Nguyen
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Daniel D Penrice
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Davide Povero
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Douglas A Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
da Cruz NFS, Sengillo JD, Shah SM, López-Font FJ, Negron CI, Berrocal AM. Telomere Biology Disorders: Clinical and Angiographic Findings. Ophthalmol Retina 2025; 9:272-277. [PMID: 39332705 DOI: 10.1016/j.oret.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
PURPOSE To evaluate the retinal vasculature in pediatric patients with telomere biology disorders (TBDs). DESIGN Retrospective consecutive case series. SUBJECTS Pediatric patients with a diagnosis of TBD who underwent widefield fluorescein angiography (FA). METHODS Electronic medical records of pediatric patients with TBD at a tertiary referral eye center were reviewed from January 2019 to July 2023. Vascular phenotype was assessed by reviewing FA images. MAIN OUTCOME MEASURES Incomplete peripheral vascularization, aneurysmal dilatation, terminal arborization, anastomotic loops, capillary dropout, neovascularization, tortuosity, leakage from tractional membranes, and blockage from hemorrhage. RESULTS Fourteen eyes from 7 patients were included. All patients were genetically confirmed for TBD. The most common genetic variants were in CTC1 (5 patients; 71.4%), ACD (1 patient; 14.3%), and RTEL1 (1 patient; 14.3%). On FA, the most common findings were incomplete peripheral vascularization (14 eyes, 100%), aneurysmal dilatation (12 eyes, 85.7%), terminal arborization (12 eyes, 85.7%), anastomotic loops (12 eyes, 85.7%), capillary dropout (10 eyes, 71.4%), and neovascularization (9 eyes, 64.3%). Regarding treatment, laser photocoagulation (14 eyes, 100%), intravitreal bevacizumab injection (13 eyes, 92.6%), and subtenon's Kenalog (11 eyes, 78.6%) were utilized. All patients managed with laser photocoagulation and bevacizumab required multiple treatments. CONCLUSIONS Our study describes a spectrum of vascular changes evidenced by widefield FA in pediatric patients with genetically confirmed TBD. Although further research is warranted to fully understand the etiology of these subtle vascular anomalies, widefield FA should be conducted in patients with genetically confirmed or suspected TBD. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Natasha F S da Cruz
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jesse D Sengillo
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Serena M Shah
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Francisco J López-Font
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Catherin I Negron
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Audina M Berrocal
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
8
|
Santacruz-Márquez R, Safar AM, Laws MJ, Fletcher EJ, Meling DD, Nowak RA, Raetzman LT, Flaws JA. Dietary exposure to di(2-ethylhexyl) phthalate for 6 months alters markers of female reproductive aging in mice†. Biol Reprod 2025; 112:191-202. [PMID: 39520286 DOI: 10.1093/biolre/ioae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system ages before any other physiological system, making it a sensitive indicator of aging. Early reproductive aging is associated with the early onset of infertility and an increased risk of several diseases. During aging, systemic and reproductive oxidative stress and inflammation levels increase through inflammasome activation, leading to ovarian follicle loss. Other markers of reproductive aging include increased fibrosis and shortening of telomeres in ovarian cells. The factors that accelerate reproductive aging are unclear, but likely involve exposure to endocrine-disrupting chemicals such as phthalates. Di(2-ethylhexyl) phthalate (DEHP) is a widely used phthalate and humans are exposed to it daily. Several studies show that DEHP induces reproductive toxicity by affecting estrous cyclicity, follicle numbers, and hormone levels. However, little is known about the mechanisms underlying DEHP-induced early onset of reproductive aging. Thus, this study tested the hypothesis that dietary exposure to DEHP induces early reproductive aging by affecting inflammation, fibrosis, and the expression of telomere regulators and antioxidant enzymes. Adult CD-1 female mice were exposed to vehicle (corn oil) or DEHP (0.5, 1.5, or 1500 ppm) via the chow for 6 months. Exposure to DEHP increased the expression of antioxidant enzymes and Caspase 3, increased expression of telomere-associated genes, and increased fibrosis levels in the ovary. In addition, DEHP exposure for 6 months altered ovarian and systemic inflammatory status. Collectively, our novel data suggest that 6-month dietary exposure to DEHP may accelerate reproductive aging by affecting several reproductive aging markers in female mice.
Collapse
Affiliation(s)
- Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Adira M Safar
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Endia J Fletcher
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Lori T Raetzman
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
9
|
Savage SA, Bertuch AA. Different phenotypes with different endings-Telomere biology disorders and cancer predisposition with long telomeres. Br J Haematol 2025; 206:69-73. [PMID: 39462986 PMCID: PMC11739769 DOI: 10.1111/bjh.19851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Rare germline pathogenic variants (GPVs) in genes essential in telomere length maintenance and function have been implicated in two broad classes of human disease. The telomere biology disorders (TBDs) are a spectrum of life-threatening conditions, including bone marrow failure, liver and lung disease, cancer and other complications caused by GPVs in telomere maintenance genes that result in short and/or dysfunctional telomeres and reduced cellular replicative capacity. In contrast, cancer predisposition with long telomeres (CPLT) is a disorder associated with elevated risk of a variety of cancers, primarily melanoma, thyroid cancer, sarcoma, glioma and lymphoproliferative neoplasms caused by GPVs in shelterin complex genes that lead to excessive telomere elongation and increased cellular replicative capacity. While telomeres are at the root of both disorders, the term TBD is used to convey the clinical phenotypes driven by critically short or otherwise dysfunctional telomeres and their biological consequences.
Collapse
Affiliation(s)
- Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | | |
Collapse
|
10
|
Çalişkan Kamiş Ş, Çil M, Yağci-Küpeli B. Hoyeraal-Hreidarsson syndrome: a case report of dyskeratosis congenita with a novel PARN gene mutation. Ann Med Surg (Lond) 2024; 86:7395-7397. [PMID: 39649862 PMCID: PMC11623859 DOI: 10.1097/ms9.0000000000002661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction and importance Dyskeratosis congenita (DC) is a rare multisystem disorder primarily characterized by bone marrow failure due to telomere shortening. Typical clinical features include oral leukoplakia, skin hyperpigmentation, and nail dystrophy, along with an increased risk of malignancies. Hoyeraal-Hreidarsson syndrome (HH), a severe variant of DC, is associated with profound neurological and immunological complications, emphasizing the importance of early diagnosis and genetic evaluation to guide appropriate management. Case presentation The authors present a case of a 2-year-old girl diagnosed with Hoyeraal-Hreidarsson syndrome, linked to a newly discovered mutation in the poly (A)-specific ribonuclease (PARN) gene. The patient exhibited intrauterine growth retardation (IUGR), congenital cytomegalovirus (CMV) infection, immunodeficiency, microcephaly, and cerebellar hypoplasia. Whole-exome sequencing (WES) identified a novel mutation in the PARN gene. Clinical discussion Hoyeraal-Hreidarsson syndrome, a severe form of DC, manifests with multisystem involvement and is genetically heterogeneous. Early genetic testing through techniques such as WES can aid in diagnosing rare syndromes like HH and guide treatment strategies, including bone marrow transplantation. Conclusion This case underscores the importance of genetic evaluation in complex, rare syndromes like HH. Whole-exome sequencing plays a crucial role in identifying pathogenic mutations and tailoring management. The patient's prognosis is being closely monitored following bone marrow transplantation.
Collapse
Affiliation(s)
- Şule Çalişkan Kamiş
- University of Health Sciences, Adana Faculty of Medicine, Adana City Education and Research Hospital, Department of Pediatric Hematology and Oncology, Adana, Turkey
| | | | | |
Collapse
|
11
|
Maillet F, Galimard JE, Borie R, Lainey E, Larcher L, Passet M, Plessier A, Leblanc T, Terriou L, Lebon D, Alcazer V, Cathebras P, Loschi M, Wadih AC, Marcais A, Marceau-Renaut A, Couque N, Lioure B, Soulier J, Ba I, Socié G, Peffault de Latour R, Kannengiesser C, Sicre de Fontbrune F. Haematological features of telomere biology disorders diagnosed in adulthood: A French nationwide study of 127 patients. Br J Haematol 2024; 205:1835-1847. [PMID: 39279213 DOI: 10.1111/bjh.19767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024]
Abstract
Data on haematological features of telomere biology disorders (TBD) remain scarce. We describe haematological, extra-haematological characteristics and prognosis of 127 genetically confirmed TBD patients diagnosed after the age of 15. Ninety-three index cases and 34 affected relatives were included. At diagnosis of TBD, 76.3% of index cases had haematological features, half pulmonary features and a third liver features. At diagnosis, bone marrow failure (BMF) was present in 59 (46.5%), myelodysplastic syndrome (MDS) in 22 (17.3%) and acute myeloid leukaemia (AML) in 2 (1.6%) while 13 (10.2%) developed or worsened bone marrow involvement during follow-up. At diagnosis, compared to MDS/AML patients, BMF patients were younger (median 23.1 years vs. 43.8, p = 0.007), and had a better outcome (4-year overall survival 76.3% vs. 31.8%, p < 0.001). While frequencies and burden of cytogenetical and somatic mutations increased significantly in myeloid malignancies, some abnormalities were also observed in patients with normal blood counts and BMF, notably somatic spliceosome variants. Solid cancers developed in 8.7% patients, mainly human papillomavirus-related cancers and hepatocellular carcinomas. TBD is a multiorgan progressive disease. While BMF is the main haematological disorder, high-risk myeloid malignancies are common, and are, together with age, the only factors associated with a worse outcome.
Collapse
Affiliation(s)
- François Maillet
- Hematology and Transplant Unit, French Reference Center for Aplastic Anemia, Saint-Louis Hospital, AP-HP, Université Paris Cité, Paris, France
| | | | - Raphaël Borie
- Service de Pneumologie A, Bichat Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Elodie Lainey
- Hematology Laboratory, Robert Debré Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Lise Larcher
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, St-Louis Research Institute, Saint-Louis Hospital, Paris, France
| | - Marie Passet
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, St-Louis Research Institute, Saint-Louis Hospital, Paris, France
| | - Aurélie Plessier
- Hepatology Department, Reference Center for Vascular Liver Diseases, Beaujon Hospital, AP-HP, Université Paris Cité, Clichy, France
| | - Thierry Leblanc
- Pediatric Hematology and Immunology Department, Robert Debré Hospital, AP-HP, French Reference Center for Aplastic Anemia, Université Paris Cité, Paris, France
| | - Louis Terriou
- Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, Université de Lille, Lille, France
| | - Delphine Lebon
- Hematology Department, University Hospital of Amiens-Picardie, Amiens, France
| | - Vincent Alcazer
- Hematology Department, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Pascal Cathebras
- Internal Medicine and Clinical Immunology Department, Nord Hospital, University of Saint-Etienne, Saint-Etienne, France
| | - Michael Loschi
- Hematology Department, University Hospital of Nice, Université de Nice, Nice, France
| | - Abou-Chahla Wadih
- Pediatric Hematology Department, University Hospital of Lille, Université de Lille, Lille, France
| | - Ambroise Marcais
- Hematology Department, Necker Hospital, Université de Paris, Paris, France
| | - Alice Marceau-Renaut
- Hematology Laboratory, University Hospital of Lille, Université de Lille, Lille, France
| | - Nathalie Couque
- Genetics Department, Robert Debré Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Bruno Lioure
- Hematology Department, Strasbourg University Hospital, Université de Strasbourg, Strasbourg, France
| | - Jean Soulier
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, St-Louis Research Institute, Saint-Louis Hospital, Paris, France
| | - Ibrahima Ba
- Genetics Department, French Expert Laboratory for Molecular Exploration of Telomere Biology Disorder, Bichat Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Gérard Socié
- Hematology and Transplant Unit, French Reference Center for Aplastic Anemia, Saint-Louis Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Regis Peffault de Latour
- Hematology and Transplant Unit, French Reference Center for Aplastic Anemia, Saint-Louis Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Caroline Kannengiesser
- Genetics Department, French Expert Laboratory for Molecular Exploration of Telomere Biology Disorder, Bichat Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Flore Sicre de Fontbrune
- Hematology and Transplant Unit, French Reference Center for Aplastic Anemia, Saint-Louis Hospital, AP-HP, Université Paris Cité, Paris, France
| |
Collapse
|
12
|
Virijevic M, Marjanovic I, Andjelkovic M, Jakovic L, Micic D, Bogdanovic A, Pavlovic S. Novel telomerase reverse transcriptase gene mutation in a family with aplastic anaemia. Fam Cancer 2024; 23:635-639. [PMID: 38795222 DOI: 10.1007/s10689-024-00399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024]
Abstract
Telomerase Reverse Transcriptase (TERT) encodes the telomerase reverse transcriptase enzyme and is the most frequently mutated gene in patients with telomeropathies. Heterozygous variants impair telomerase activity by haploinsufficiency and pathogenic variants are associated with bone marrow failure syndrome and predisposition to acute myeloid leukaemia. Owing to their rarity, telomeropathies are often unrecognised and misdiagnosed. Herein, we report a novel TERT gene variant, c.2605G > A p.(Asp869Asn) in a family with hereditary aplastic anaemia. This report emphasises the importance of routine deep genetic screening for rare TERT variants in patients with a family history of cytopenia or aplastic anaemia, which could identify clinically inapparent telomere disorders.
Collapse
Affiliation(s)
- M Virijevic
- Clinic of Hematology, University Clinical Center of Serbia, Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - I Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Belgrade, Serbia
| | - M Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Belgrade, Serbia
| | - Lj Jakovic
- Clinic of Hematology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - D Micic
- Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", Belgrade, Serbia
| | - A Bogdanovic
- Clinic of Hematology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - S Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Zhao J, Zhou H, Wu R, Ruan C, Wang C, Ding J, Zhang T, Fang Z, Zheng H, Zhang L, Zhou J, Hu Z. Biological aging accelerates hepatic fibrosis: Insights from the NHANES 2017-2020 and genome-wide association study analysis. Ann Hepatol 2024; 30:101579. [PMID: 39426601 DOI: 10.1016/j.aohep.2024.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION AND OBJECTIVES This study aimed to investigate the association between biological aging and liver fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). MATERIALS AND METHODS We analyzed NHANES 2017-2020 data to calculate phenotypic age. Hepatic steatosis and fibrosis were identified using controlled attenuation parameters (CAP), fatty liver index (FLI) and transient elastography (TE). The odds ratios (ORs) and 95 % confidence intervals (CI) for significant MASLD fibrosis were calculated using multivariate logistic regression, and subgroup analyses were performed. We explored the potential causal relationship between telomere length and liver fibrosis using Mendelian randomization (MR). Additionally, we used the expression quantitative trait loci (eQTL) method and GSE197112 data to identify genes related to liver fibrosis and senescence. Finally, the APOLD1 expression was validated using GSE89632. RESULTS Phenotypic age was associated with liver fibrosis occurrence in MASLD (OR = 1.08, 95 % CI 1.05-1.12). Subgroup analyses by BMI and age revealed differences. For obese or young to middle-aged MASLD patients, phenotypic age is significantly associated with liver fibrosis. (OR = 1.14, 95 % CI 1.10-1.18; OR = 1.07, 95 % CI 1.01-1.14 and OR = 1.14, 95 % CI 1.07-1.22). MR revealed a negative association between telomere length and liver fibrosis (IVW method: OR = 0.63288, 95 % CI 0.42498-0.94249). The gene APOLD1 was identified as a potential target through the intersection of the GEO dataset and eQTL genes. CONCLUSIONS This study emphasized the link between biological aging and fibrosis in young to middle-aged obese MASLD patients. We introduced phenotypic age as a clinical indicator and identified APOLD1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Huiying Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Rui Wu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Chen Ruan
- Department of Acupuncture, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Cheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Jiawei Ding
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Tao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Zheyu Fang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Huilin Zheng
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resource Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310000, China
| | - Lei Zhang
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resource Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310000, China
| | - Jie Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China.
| | - Zhenhua Hu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
14
|
da Cruz NFS, Berrocal AM. Genetic Testing for Rare Retinal Diseases in Telomere Biology Disorders. JAMA Ophthalmol 2024; 142:878-879. [PMID: 39145950 DOI: 10.1001/jamaophthalmol.2024.2947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
- Natasha F S da Cruz
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Audina M Berrocal
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
15
|
Estep KN, Tobias JW, Fernandez RJ, Beveridge BM, Johnson FB. Telomeric DNA breaks in human induced pluripotent stem cells trigger ATR-mediated arrest and telomerase-independent telomere damage repair. J Mol Cell Biol 2024; 16:mjad058. [PMID: 37771090 PMCID: PMC11429528 DOI: 10.1093/jmcb/mjad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Although mechanisms of telomere protection are well-defined in differentiated cells, how stem cells sense and respond to telomere dysfunction, in particular telomeric double-strand breaks (DSBs), is poorly characterized. Here, we report the DNA damage signaling, cell cycle, and transcriptome changes in human induced pluripotent stem cells (iPSCs) in response to telomere-internal DSBs. We engineer human iPSCs with an inducible TRF1-FokI fusion protein to acutely induce DSBs at telomeres. Using this model, we demonstrate that TRF1-FokI DSBs activate an ATR-dependent DNA damage response, which leads to p53-independent cell cycle arrest in G2. Using CRISPR-Cas9 to cripple the catalytic domain of telomerase reverse transcriptase, we show that telomerase is largely dispensable for survival and lengthening of TRF1-FokI-cleaved telomeres, which instead are effectively repaired by robust homologous recombination (HR). In contrast to HR-based telomere maintenance in mouse embryonic stem cells, where HR causes ZSCAN4-dependent extension of telomeres beyond their initial lengths, HR-based repair of telomeric breaks is sufficient to maintain iPSC telomeres at a normal length, which is compatible with sustained survival of the cells over several days of TRF1-FokI induction. Our findings suggest a previously unappreciated role for HR in telomere maintenance in telomerase-positive iPSCs and reveal distinct iPSC-specific responses to targeted telomeric DNA damage.
Collapse
Affiliation(s)
- Katrina N Estep
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Quantiative Biosciences, Merck & Co., Inc., West Point, PA 19486, USA
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael J Fernandez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brinley M Beveridge
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Zhu S, Hao Z, Chen Q, Liu X, Wu W, Luo Y, Zhang F. Casual effects of telomere length on sarcoidosis: a bidirectional Mendelian randomization analysis. Front Med (Lausanne) 2024; 11:1408980. [PMID: 39086950 PMCID: PMC11288844 DOI: 10.3389/fmed.2024.1408980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Background Telomere length, crucial for genomic stability, have been implicated in various inflamm-aging diseases, but their role in sarcoidosis remains unexplored. Objective This study aims to explore the casual effects between TL and sarcoidosis via a bidirectional Mendelian Randomization (MR) study. Methods We examined single nucleotide polymorphisms (SNPs) associated with TL and sarcoidosis, utilizing available open-access genome-wide association study (GWAS) databases from the UK Biobank and FinnGen. We employed five MR techniques, including Inverse Variance Weighted (IVW), MR Egger, weighted median (WM), Robust adjusted profile score (RAPS), and Maximum likelihood, to assess causal relationships and explore pleiotropy. Results Summary data extracted from GWAS datasets of TL (n = 472,174) and (n = 217,758) of European ancestry. Employing 130 SNPs with genome-wide significance as instrumental factors for TL, we detect a significant negative correlation between TL and sarcoidosis (OR: 0.682, 95% confidence interval: 0.524-0.888, p : 0.0045). Similarly, utilizing 6 SNPs with genome-wide significance as instrumental factors for sarcoidosis, we fail to identify a noteworthy association between sarcoidosis and TL (OR: 0.992, 95% confidence interval: 0.979-1.005, p : 0.2424). Conclusion Our results suggest that longer telomeres may reduce the risk of sarcoidosis, highlighting TL as a potential biomarker for diagnosis and long-term monitoring. Understanding the critical role of telomere shortening enables more effective focus on diagnosing, treating, and curing sarcoidosis linked to telomeres. Clinical investigations into treatments that enhance TL are warranted.
Collapse
Affiliation(s)
- Shiben Zhu
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, Hong Kong SAR, China
| | - Ziyu Hao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qihang Chen
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, Hong Kong SAR, China
| | - Xiaoliu Liu
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Wenyan Wu
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Yanping Luo
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Fang Zhang
- Department of Science and Education, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Ji Y, Zhao J, Gong J, Sedlazeck FJ, Fan S. Unveiling novel genetic variants in 370 challenging medically relevant genes using the long read sequencing data of 41 samples from 19 global populations. Mol Genet Genomics 2024; 299:65. [PMID: 38972030 PMCID: PMC11955097 DOI: 10.1007/s00438-024-02158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND A large number of challenging medically relevant genes (CMRGs) are situated in complex or highly repetitive regions of the human genome, hindering comprehensive characterization of genetic variants using next-generation sequencing technologies. In this study, we employed long-read sequencing technology, extensively utilized in studying complex genomic regions, to characterize genetic alterations, including short variants (single nucleotide variants and short insertions and deletions) and copy number variations, in 370 CMRGs across 41 individuals from 19 global populations. RESULTS Our analysis revealed high levels of genetic variants in CMRGs, with 68.73% exhibiting copy number variations and 65.20% containing short variants that may disrupt protein function across individuals. Such variants can influence pharmacogenomics, genetic disease susceptibility, and other clinical outcomes. We observed significant differences in CMRG variation across populations, with individuals of African ancestry harboring the highest number of copy number variants and short variants compared to samples from other continents. Notably, 15.79% to 33.96% of short variants were exclusively detectable through long-read sequencing. While the T2T-CHM13 reference genome significantly improved the assembly of CMRG regions, thereby facilitating variant detection in these regions, some regions still lacked resolution. CONCLUSION Our results provide an important reference for future clinical and pharmacogenetic studies, highlighting the need for a comprehensive representation of global genetic diversity in the reference genome and improved variant calling techniques to fully resolve medically relevant genes.
Collapse
Affiliation(s)
- Yanfeng Ji
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Junfan Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Jiao Gong
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
18
|
Yan M, Zhang Z, Wang L, Huang H, Wang J, Zhu C, Li Z, Xu Z. Cross-talk of Three Molecular Subtypes of Telomere Maintenance Defines Clinical Characteristics and Tumor Microenvironment in Gastric Cancer. J Cancer 2024; 15:3227-3241. [PMID: 38706908 PMCID: PMC11064253 DOI: 10.7150/jca.92207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Telomere maintenance takes part in the regulation of gastric cancer (GC) pathogenesis and is essential for patients' clinical features. Though the correlation between a single telomere maintenance-related gene and GC has previously been published, comprehensive exploration and systematic analysis remain to be studied. Our study is aimed at determining telomere maintenance-related molecular subtypes and examining their role in GC. Methods: By analyzing the transcriptome data, we identified three telomere maintenance-associated clusters (TMCs) with heterogeneity in clinical features and tumor microenvironment (TME). Then, we screened five prognostic telomere maintenance-related genes and established corresponding TM scores. Additionally, the expression level and biological function of tubulin beta 6 class V (TUBB6) were validated in GC tissues and cells. Results: TMC1 was correlated with EMT and TGF-beta pathway and predicted low tumor mutation burden (TMB) as well as bad prognostic outcomes. TMC3 was associated with cell cycle and DNA repair. In terms of TMB and overall survival, TMC3 exhibited opposite results against TMC1. Significant heterogeneity was observed between TMCs. TUBB6 was upregulated and could promote GC proliferation, migration, and invasion. Conclusion: Altogether, combining bioinformatics and functional experiments, we identified three molecular subtypes based on telomere maintenance-associated genes in GC, which could bring new ideas and novel biomarkers to the clinic.
Collapse
Affiliation(s)
- Mengpei Yan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zhijun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Luyao Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Hongxin Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Jihuan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Chengjun Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Institute of Gastric Cancer, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
19
|
Lasho T, Patnaik MM. Adaptive and Maladaptive Clonal Hematopoiesis in Telomere Biology Disorders. Curr Hematol Malig Rep 2024; 19:35-44. [PMID: 38095828 DOI: 10.1007/s11899-023-00719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW Telomere biology disorders (TBDs) are germline-inherited conditions characterized by reduction in telomerase function, accelerated shortening of telomeres, predisposition to organ-failure syndromes, and increased risk of neoplasms, especially myeloid malignancies. In normal cells, critically short telomeres trigger apoptosis and/or cellular senescence. However, the evolutionary mechanism by which TBD-related telomerase-deficient cells can overcome this fitness constraint remains elusive. RECENT FINDINGS Preliminary data suggests the existence of adaptive somatic mosaic states characterized by variants in TBD-related genes and maladaptive somatic mosaic states that attempt to overcome hematopoietic fitness constraints by alternative methods leading to clonal hematopoiesis. TBDs are both rare and highly heterogeneous in presentation, and the association of TBD with malignant transformation is unclear. Understanding the clonal complexity and mechanisms behind TBD-associated molecular signatures that lead to somatic adaptation in the setting of defective hematopoiesis will help inform therapy and treatment for this set of diseases.
Collapse
Affiliation(s)
- Terra Lasho
- Division of Hematology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mrinal M Patnaik
- Division of Hematology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
20
|
Liu XY, Tan Q, Li LX. A pan-cancer analysis of Dyskeratosis congenita 1 (DKC1) as a prognostic biomarker. Hereditas 2023; 160:38. [PMID: 38082360 PMCID: PMC10712082 DOI: 10.1186/s41065-023-00302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Dyskeratosis congenita 1 (DKC1), a critical component of telomerase complex, is highly expressed in a variety of human cancers. However, the association of DKC1 with cancer occurrence and development stages is not clear, making a pan-cancer analysis crucial. METHODS We conducted a study using various bioinformatic databases such as TIMER, GEPIA, UALCAN, and KM plotter Analysis to examine the different expressions of DKC1 in multiple tissues and its correlation with pathological stages. Through KEGG analysis, GO enrichment analysis and Venn analysis, we were able to reveal DKC1-associated genes and signaling pathways. In addition, we performed several tests including the CCK, wound healing assay, cell cycle arrest assay, transwell assay and Sa-β-gal staining on DKC1-deleted MDA-231 cells. RESULTS Our study demonstrates that DKC1 has relatively low expression specificity in different tissues. Furthermore, we found that in ACC, KICH, KIRP and LIHC, the expression level of DKC1 is positively correlated with pathological stages. Conversely, in NHSC, KIRP, LGG, LIHC, MESO and SARC, we observed a negative influence of DKC1 expression level on the overall survival rate. We also found a significant positive correlation between DKC1 expression and Tumor Mutational Burden in 14 tumors. Additionally, we observed a significantly negative impact of DKC1 DNA methylation on gene expression at the promoter region in BRCA. We also identified numerous phosphorylation sites concentrated at the C-terminus of the DKC1 protein. Our GO analysis revealed a correlation between DKC1 and ribosomal biosynthesis pathways, and the common element UTP14A was identified. We also observed decreased rates of cell proliferation, migration and invasion abilities in DKC1-knockout MDA-MB-231 cell lines. Furthermore, DKC1-knockout induced cell cycle arrest and caused cell senescence. CONCLUSIONS Our findings suggest that the precise expression of DKC1 is closely associated with the occurrence and developmental stages of cancer in multiple tissues. Depletion of DKC1 can inhibit the abilities of cancer cells to proliferate, migrate, and invade by arresting the cell cycle and inducing cell senescence. Therefore, DKC1 may be a valuable prognostic biomarker for the diagnosis and treatment of cancer in various tissues.
Collapse
Affiliation(s)
- Xin-Ying Liu
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qing Tan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Lin-Xiao Li
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China.
| |
Collapse
|
21
|
Liang W, Ye L, Zhang F. A case report of dyskeratosis congenita caused by a novel TERC mutation. Ann Hematol 2023; 102:3629-3630. [PMID: 37684378 DOI: 10.1007/s00277-023-05424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Weiru Liang
- Anemia Therapeutic Centre, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Rd., Heping District, Tianjin, 300020, China
| | - Lei Ye
- Anemia Therapeutic Centre, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Rd., Heping District, Tianjin, 300020, China
| | - Fengkui Zhang
- Anemia Therapeutic Centre, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Rd., Heping District, Tianjin, 300020, China.
| |
Collapse
|
22
|
Wu Z, Young NS. Single-cell genomics in acquired bone marrow failure syndromes. Blood 2023; 142:1193-1207. [PMID: 37478398 PMCID: PMC10644099 DOI: 10.1182/blood.2022018581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023] Open
Abstract
Mechanistic studies of immune bone marrow failure are difficult because of the scarcity of residual cells, the involvement of multiple cell types, and the inherent complexities of hematopoiesis and immunity. Single-cell genomic technologies and bioinformatics allow extensive, multidimensional analysis of a very limited number of cells. We review emerging applications of single-cell techniques, and early results related to disease pathogenesis: effector and target cell populations and relationships, cell-autonomous and nonautonomous phenotypes in clonal hematopoiesis, transcript splicing, chromosomal abnormalities, and T-cell receptor usage and clonality. Dense and complex data from single-cell techniques provide insights into pathophysiology, natural history, and therapeutic drug effects.
Collapse
Affiliation(s)
- Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
23
|
Coman A, Murtagh P, Horgan N. Retinal vasoproliferative tumour: differential diagnoses and treatment considerations in a paediatric patient. BMJ Case Rep 2023; 16:e254859. [PMID: 37669818 PMCID: PMC10481748 DOI: 10.1136/bcr-2023-254859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
An early adolescent man was referred to the ocular oncology service for evaluation of a pale, raised fundus lesion in the inferotemporal quadrant of his right eye. Unaided visual acuities were 20/20 OD and 20/20 OS. He had no medical, ocular or family history of note. Retinal vasoproliferative tumour with progressive retinal exudation was the working diagnosis. Improvement in tumour features and exudation regression were noted following a combination of argon laser therapy, cryotherapy and intravitreal steroid injection. Paediatric intraocular tumours present a complex list of differential diagnoses and offer significant diagnostic and management challenges. Discussed here are the differential diagnoses and treatment considerations in the setting of an intraocular tumour in childhood.
Collapse
Affiliation(s)
- Amy Coman
- Ophthalmology, St Vincent's University Hospital, Dublin, Ireland
- Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Patrick Murtagh
- Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Noel Horgan
- Ophthalmology, St Vincent's University Hospital, Dublin, Ireland
- Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| |
Collapse
|
24
|
Bergantini L, Baldassarri M, d'Alessandro M, Brunelli G, Fabbri G, Zguro K, Degl'Innocenti A, Fallerini C, Bargagli E, Renieri A. Ultra-rare RTEL1 gene variants associate with acute severity of COVID-19 and evolution to pulmonary fibrosis as a specific long COVID disorder. Respir Res 2023; 24:158. [PMID: 37328761 DOI: 10.1186/s12931-023-02458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel coronavirus that caused an ongoing pandemic of a pathology termed Coronavirus Disease 19 (COVID-19). Several studies reported that both COVID-19 and RTEL1 variants are associated with shorter telomere length, but a direct association between the two is not generally acknowledged. Here we demonstrate that up to 8.6% of severe COVID-19 patients bear RTEL1 ultra-rare variants, and show how this subgroup can be recognized. METHODS A cohort of 2246 SARS-CoV-2-positive subjects, collected within the GEN-COVID Multicenter study, was used in this work. Whole exome sequencing analysis was performed using the NovaSeq6000 System, and machine learning methods were used for candidate gene selection of severity. A nested study, comparing severely affected patients bearing or not variants in the selected gene, was used for the characterisation of specific clinical features connected to variants in both acute and post-acute phases. RESULTS Our GEN-COVID cohort revealed a total of 151 patients carrying at least one RTEL1 ultra-rare variant, which was selected as a specific acute severity feature. From a clinical point of view, these patients showed higher liver function indices, as well as increased CRP and inflammatory markers, such as IL-6. Moreover, compared to control subjects, they present autoimmune disorders more frequently. Finally, their decreased diffusion lung capacity for carbon monoxide after six months of COVID-19 suggests that RTEL1 variants can contribute to the development of SARS-CoV-2-elicited lung fibrosis. CONCLUSION RTEL1 ultra-rare variants can be considered as a predictive marker of COVID-19 severity, as well as a marker of pathological evolution in pulmonary fibrosis in the post-COVID phase. This notion can be used for a rapid screening in hospitalized infected people, for vaccine prioritization, and appropriate follow-up assessment for subjects at risk. Trial Registration NCT04549831 ( www. CLINICALTRIAL org ).
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Miriana d'Alessandro
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
| | - Giulia Brunelli
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Gaia Fabbri
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
| | - Kristina Zguro
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Andrea Degl'Innocenti
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Chiara Fallerini
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Elena Bargagli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy.
| | - Alessandra Renieri
- Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy.
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy.
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100, Siena, Italy.
| |
Collapse
|
25
|
Gener-Ricos G, Gerstein YS, Hammond D, DiNardo CD. Germline Predisposition to Myelodysplastic Syndromes. Cancer J 2023; 29:143-151. [PMID: 37195770 DOI: 10.1097/ppo.0000000000000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT While germline predisposition to myelodysplastic syndromes is well-established, knowledge has advanced rapidly resulting in more cases of inherited hematologic malignancies being identified. Understanding the biological features and main clinical manifestations of hereditary hematologic malignancies is essential to recognizing and referring patients with myelodysplastic syndrome, who may underlie inherited predisposition, for appropriate genetic evaluation. Importance lies in individualized genetic counseling along with informed treatment decisions, especially with regard to hematopoietic stem cell transplant-related donor selection. Future studies will improve comprehension of these disorders, enabling better management of affected patients and their families.
Collapse
Affiliation(s)
| | - Yoheved S Gerstein
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
26
|
Buschulte K, Cottin V, Wijsenbeek M, Kreuter M, Diesler R. The world of rare interstitial lung diseases. Eur Respir Rev 2023; 32:32/167/220161. [PMID: 36754433 PMCID: PMC9910344 DOI: 10.1183/16000617.0161-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/21/2022] [Indexed: 02/10/2023] Open
Abstract
The world of rare interstitial lung diseases (ILDs) is diverse and complex. Diagnosis and therapy usually pose challenges. This review describes a selection of rare and ultrarare ILDs including pulmonary alveolar proteinosis, pulmonary alveolar microlithiasis and pleuroparenchymal fibroelastosis. In addition, monogenic ILDs or ILDs in congenital syndromes and various multiple cystic lung diseases will be discussed. All these conditions are part of the scope of the European Reference Network on rare respiratory diseases (ERN-LUNG). Epidemiology, pathogenesis, diagnostics and treatment of each disease are presented.
Collapse
Affiliation(s)
- Katharina Buschulte
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), ERN-LUNG, Heidelberg, Germany
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, ERN-LUNG, Lyon, France
| | - Marlies Wijsenbeek
- Center for Interstitial Lung Diseases and Sarcoidosis, Department of Respiratory Medicine, Erasmus MC-University Medical Center, ERN-LUNG, Rotterdam, The Netherlands
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), ERN-LUNG, Heidelberg, Germany
| | - Rémi Diesler
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, ERN-LUNG, Lyon, France
| |
Collapse
|
27
|
Galtier J, Dimicoli-Salazar S, Trimouille A, Lainey E, Revy P, Bidet A, Vial Y, Forcade E, Negrier-Leibreich ML, Rivière E, Tinat J, Le Meur N, Ménard C, Pigneux A, Leguay T, Dumas PY, Ibrahima B, Kannengiesser C. First clinical description of a pedigree with complete NAF1 deletion. Leuk Lymphoma 2023; 64:487-490. [PMID: 36416722 DOI: 10.1080/10428194.2022.2148377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jean Galtier
- Service D'Hématologie et Thérapie Cellulaire, CHU de Bordeaux, Pessac, France
| | | | - Aurélien Trimouille
- Département d'Anatomopathologie, CHU de Bordeaux, Bordeaux, France.,Maladies Rares: Génétique et Métabolisme (MRGM), U1211 INSERM, CHU Bordeaux, Bordeaux, France
| | - Elodie Lainey
- Hématologie Biologique, Hôpital Robert-Debré, APHP, Paris, France
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, Université de Paris, Paris, France
| | - Audrey Bidet
- Service d'Hématologie Biologique, CHU de Bordeaux, Pessac, France
| | - Yoann Vial
- Génétique Moléculaire, Hôpital Robert-Debré, APHP, Paris, France
| | - Edouard Forcade
- Service D'Hématologie et Thérapie Cellulaire, CHU de Bordeaux, Pessac, France
| | | | - Etienne Rivière
- Service de Médecine Interne et Maladie Infectieuse, CHU de Bordeaux, Pessac, France
| | - Julie Tinat
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | | | - Christelle Ménard
- Département de Génétique, Hôpital Xavier Bichat-Claude Bernard, APHP, Paris, France
| | - Arnaud Pigneux
- Service D'Hématologie et Thérapie Cellulaire, CHU de Bordeaux, Pessac, France
| | - Thibaut Leguay
- Service D'Hématologie et Thérapie Cellulaire, CHU de Bordeaux, Pessac, France
| | - Pierre-Yves Dumas
- Service D'Hématologie et Thérapie Cellulaire, CHU de Bordeaux, Pessac, France
| | - Ba Ibrahima
- Département de Génétique, Hôpital Xavier Bichat-Claude Bernard, APHP, Paris, France
| | | |
Collapse
|
28
|
Short telomeres impede germ cell specification by upregulating MAPK and TGFβ signaling. SCIENCE CHINA. LIFE SCIENCES 2023; 66:324-339. [PMID: 36125668 DOI: 10.1007/s11427-022-2151-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/21/2022] [Indexed: 10/14/2022]
Abstract
Functional telomeres protect chromosome ends and play important roles in stem cell maintenance and differentiation. Short telomeres negatively impact germ cell development and can contribute to age-associated infertility. Moreover, telomere syndrome resulting from mutations of telomerase or telomere-associated genes exhibits short telomeres and reduced fertility. It remains elusive whether and how telomere lengths affect germ cell specification. We report that functional telomere is required for the coordinated germ cell and somatic cell fate decisions. Using telomerase gene Terc deficient mice as a model, we show that short telomeres restrain germ cell specification of epiblast cells but promote differentiation towards somatic lineage. Short telomeres increase chromatin accessibility to elevate TGFβ and MAPK/ERK signaling for somatic cell differentiation. Notably, elevated Fst expression in TGFβ pathway represses the BMP4-pSmad signaling pathway, thus reducing germ cell formation. Re-elongation of telomeres by targeted knock-in of Terc restores normal chromatin accessibility to suppress TGFβ and MAPK signaling, thereby facilitating germ cell formation. Taken together, our data reveal that functional telomeres are required for germ cell specification by repressing TGFβ and MAPK signaling.
Collapse
|
29
|
Welfer GA, Borin VA, Cortez LM, Opresko PL, Agarwal PK, Freudenthal BD. Altered Nucleotide Insertion Mechanisms of Disease-Associated TERT Variants. Genes (Basel) 2023; 14:281. [PMID: 36833208 PMCID: PMC9957172 DOI: 10.3390/genes14020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Telomere biology disorders (TBDs) are a spectrum of diseases that arise from mutations in genes responsible for maintaining telomere integrity. Human telomerase reverse transcriptase (hTERT) adds nucleotides to chromosome ends and is frequently mutated in individuals with TBDs. Previous studies have provided insight into how relative changes in hTERT activity can lead to pathological outcomes. However, the underlying mechanisms describing how disease-associated variants alter the physicochemical steps of nucleotide insertion remain poorly understood. To address this, we applied single-turnover kinetics and computer simulations to the Tribolium castaneum TERT (tcTERT) model system and characterized the nucleotide insertion mechanisms of six disease-associated variants. Each variant had distinct consequences on tcTERT's nucleotide insertion mechanism, including changes in nucleotide binding affinity, rates of catalysis, or ribonucleotide selectivity. Our computer simulations provide insight into how each variant disrupts active site organization, such as suboptimal positioning of active site residues, destabilization of the DNA 3' terminus, or changes in nucleotide sugar pucker. Collectively, this work provides a holistic characterization of the nucleotide insertion mechanisms for multiple disease-associated TERT variants and identifies additional functions of key active site residues during nucleotide insertion.
Collapse
Affiliation(s)
- Griffin A. Welfer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- University of Kansas Cancer Center, Kansas City, KS 66103, USA
| | - Veniamin A. Borin
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, OK 74077, USA
| | - Luis M. Cortez
- University of Kansas Cancer Center, Kansas City, KS 66103, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Patricia L. Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Pratul K. Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, OK 74077, USA
| | - Bret D. Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- University of Kansas Cancer Center, Kansas City, KS 66103, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
30
|
Dyskeratosis congenita and telomere biology disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:637-648. [PMID: 36485133 PMCID: PMC9821046 DOI: 10.1182/hematology.2022000394] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous genetic discoveries and the advent of clinical telomere length testing have led to the recognition of a spectrum of telomere biology disorders (TBDs) beyond the classic dyskeratosis congenita (DC) triad of nail dysplasia, abnormal skin pigmentation, and oral leukoplakia occurring with pediatric bone marrow failure. Patients with DC/TBDs have very short telomeres for their age and are at high risk of bone marrow failure, cancer, pulmonary fibrosis (PF), pulmonary arteriovenous malformations, liver disease, stenosis of the urethra, esophagus, and/or lacrimal ducts, avascular necrosis of the hips and/or shoulders, and other medical problems. However, many patients with TBDs do not develop classic DC features; they may present in middle age and/or with just 1 feature, such as PF or aplastic anemia. TBD-associated clinical manifestations are progressive and attributed to aberrant telomere biology caused by the X-linked recessive, autosomal dominant, autosomal recessive, or de novo occurrence of pathogenic germline variants in at least 18 different genes. This review describes the genetics and clinical manifestations of TBDs and highlights areas in need of additional clinical and basic science research.
Collapse
|
31
|
Faingelernt Y, Nassar R, Ling G, Kodman Y, Feuerstein T, Yerushalmi B. Early-life liver cirrhosis and variable clinical presentation in telomere disease. Acta Paediatr 2022; 111:2416-2421. [PMID: 36070080 DOI: 10.1111/apa.16539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
AIM Telomeres are DNA sequences of tandem TTAGGG repeats that protect chromosome ends from degradation and instability. Constitutional loss-of-function telomerase mutations result in rapid telomere shortening, premature senescence and cell death. Liver cirrhosis is rare and has only been reported in adults. We present five family members of Bedouin-Muslim origin, all of which carry the same mutation, and yet demonstrate an extremely variable phenotypical presentation, including liver cirrhosis during early childhood. METHODS A multidisciplinary long-term follow-up of two healthy and three affected patients was analysed. The mutation (r.95G>C) was identified in all patients using Sanger sequencing. Telomere length samples were obtained and analysed. RESULTS Clinical phenotypes were extremely variable, including age at first symptoms, organ involvement, disease severity and patient prognosis. The most prominent clinical phenotype is liver involvement, including end-stage liver disease early in life, which affects three members of the family. Affected patients had markedly shorter telomeres. CONCLUSION We describe an unusual presentation of early liver failure in telomere disease patients. Little, if any, is known about the association between the genotype and phenotype among children with telomere disease and whether the mutation we have described (r.95G>C) is predisposed to early severe hepatic involvement.
Collapse
Affiliation(s)
- Yaniv Faingelernt
- Paediatric Gastroenterology Unit, Soroka University Medical Centre, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Raouf Nassar
- Paediatric Gastroenterology Unit, Soroka University Medical Centre, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Galina Ling
- Paediatric Gastroenterology Unit, Soroka University Medical Centre, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Yona Kodman
- Immune Phenotype Laboratory, Department of Haematology-Oncology, Schneider Children's Medical Centre of Israel, Petach Tikva, Israel
| | - Tamar Feuerstein
- Immune Phenotype Laboratory, Department of Haematology-Oncology, Schneider Children's Medical Centre of Israel, Petach Tikva, Israel
| | - Baruch Yerushalmi
- Paediatric Gastroenterology Unit, Soroka University Medical Centre, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
32
|
Verma AK, Singh P, Al-Saeed FA, Ahmed AE, Kumar S, Kumar A, Dev K, Dohare R. Unravelling the role of telomere shortening with ageing and their potential association with diabetes, cancer, and related lifestyle factors. Tissue Cell 2022; 79:101925. [DOI: 10.1016/j.tice.2022.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/18/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022]
|
33
|
Thompson C, Ariagno S, Kohorst MA. Pediatric Germline Predisposition to Myeloid Neoplasms. Curr Hematol Malig Rep 2022; 17:266-274. [PMID: 36117229 DOI: 10.1007/s11899-022-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Advances in the understanding of germline predisposition to pediatric cancers, particularly myeloid neoplasms, have increased rapidly over the last 20 years. Here, we highlight the most up-to-date knowledge regarding known pathogenic germline variants that contribute to the development of myeloid neoplasms in children. RECENT FINDINGS This discussion enumerates the most notable myeloid neoplasm-causing germline mutations. These mutations may be organized based on their molecular underpinnings-transcriptional control, splicing and signal transduction control, and a group of heterogeneous bone marrow failure syndromes. We review recent findings related to the biochemical mechanisms that predispose to malignant transformation in each condition. Key genetic discoveries such as novel mutations, degrees of penetrance, principles of the two-hit hypothesis, and co-occurrence of multiple mutations are shared. Clinical pearls, such as information regarding epidemiology, natural history, or prognosis, are also discussed. Germline mutations predisposing to pediatric myeloid neoplasms are frequent, but underrecognized. They hold major clinical implications regarding prognosis, treatment strategies, and screening for other malignancies. Further research is warranted to better characterize each of these conditions, as well as identify additional novel germline pathogenic variants of interest.
Collapse
Affiliation(s)
- Christineil Thompson
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Sydney Ariagno
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Mira A Kohorst
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
34
|
Abstract
Germline genetic defects impairing telomere length maintenance may result in severe medical conditions in humans, from aplastic anemia and myeloid neoplasms to interstitial lung disease and liver cirrhosis, from childhood (dyskeratosis congenita) to old age (pulmonary fibrosis). The molecular mechanisms underlying these clinically distinct disorders are pathologically excessive telomere erosion, limiting cell proliferation and differentiation, tissue regeneration, and increasing genomic instability. Recent findings also indicate that telomere shortening imbalances stem cell fate and is associated with an abnormal inflammatory response and the senescent-associated secretory phenotype. Bone marrow failure is the most common phenotype in patients with telomere diseases. Pulmonary fibrosis is a typical phenotype in older patients, and disease progression appears faster than in pulmonary fibrosis not associated with telomeropathies. Liver cirrhosis may present in isolation or in combination with other phenotypes. Diagnosis is based on clinical suspicion and may be confirmed by telomere length measurement and genetic testing. Next-generation sequencing (NGS) techniques have improved genetic testing; today, at least 16 genes have been implicated in telomeropathies. NGS also allows tracking of clonal hematopoiesis and malignant transformation. Patients with telomere diseases are at high risk of developing cancers, including myeloid neoplasms and head and neck cancer. However, treatment options are still limited. Transplant modalities (bone marrow, lung, and liver) may be definitive to the respective organ involvement but limited by donor availability, comorbidities, and impact on other affected organs. In clinical trials, androgens elongate telomeres of peripheral blood leukocytes and improve hematopoiesis. Further understanding of how telomere erosion impairs organ function and how somatic mutations evolve in the hematopoietic tissue may help develop new strategies to treat and prevent telomere diseases.
Collapse
Affiliation(s)
- Vinicius S Carvalho
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Willian R Gomes
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
35
|
Zia S, Khan N, Tehreem K, Rehman N, Sami R, Baty RS, Tayeb FJ, Almashjary MN, Alsubhi NH, Alrefaei GI, Shahid R. Transcriptomic Analysis of Conserved Telomere Maintenance Component 1 (CTC1) and Its Association with Leukemia. J Clin Med 2022; 11:jcm11195780. [PMID: 36233645 PMCID: PMC9571731 DOI: 10.3390/jcm11195780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Telomere length (TEL) regulation is important for genome stability and is governed by the coordinated role of shelterin proteins, telomerase (TERT), and CST (CTC1/OBFC1/TEN1) complex. Previous studies have shown the association of telomerase expression with the risk of acute lymphoblastic leukemia (ALL). However, no data are available for CST association with the ALL. The current pilot study was designed to evaluate the CST expression levels in ALL. In total, 350 subjects were recruited, including 250 ALL cases and 100 controls. The subjects were stratified by age and categorized into pediatrics (1–18 years) and adults (19–54 years). TEL and expression patterns of CTC1, OBFC1, and TERT genes were determined by qPCR. The univariable logistic regression analysis was performed to determine the association of gene expression with ALL, and the results were adjusted for age and sex in multivariable analyses. Pediatric and adult cases did not reflect any change in telomere lengths relative to controls. However, expression of CTC1, OBFC1, and TERT genes were induced among ALL cases. Multivariable logistic regression analyses showed association of CTC1 with ALL in pediatric [β estimate (standard error (SE)= −0.013 (0.007), p = 0.049, and adults [0.053 (0.023), p = 0.025]. The association of CTC1 remained significant when taken together with OBFC1 and TERT in a multivariable model. Furthermore, CTC1 showed significant association with B-cell ALL [−0.057(0.017), p = 0.002) and T-cell ALL [−0.050 (0.018), p = 0.008] in pediatric group while no such association was noted in adults. Together, our findings demonstrated that telomere modulating genes, particularly CTC1, are strongly associated with ALL. Therefore, CTC1 can potentially be used as a risk biomarker for the identification of ALL in both pediatrics and adults.
Collapse
Affiliation(s)
- Saadiya Zia
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Netasha Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Komal Tehreem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Nazia Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Roua S. Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Faris J. Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Nouf H. Alsubhi
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
- Correspondence:
| |
Collapse
|
36
|
Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, van ‘t Hek R, Wegman-Ostrosky T, Frías S, Rodríguez A. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol 2022; 12:949435. [PMID: 36091172 PMCID: PMC9453478 DOI: 10.3389/fonc.2022.949435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Collapse
Affiliation(s)
- Moisés Ó. Fiesco-Roa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | | | - Paula Leal-Anaya
- Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Renée van ‘t Hek
- Facultad de Medicina, Universidad Nacional Autoínoma de Meíxico (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Genética de la Nutrición, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| |
Collapse
|
37
|
Abstract
Shelterin is a multiprotein complex that plays central roles in telomere biology. Mutations in shelterin result in premature aging diseases and familial cancer predisposition. Mechanistic understanding of these so-called telomereopathies is hampered by our lack of knowledge regarding the structure and stoichiometry of shelterin. Here, we use multiple methods to probe the stoichiometry and conformational states of shelterin and reveal that it forms a fully dimeric complex with extensive conformational heterogeneity. Our results highlight the dynamic nature of this essential complex and explain why its high-resolution structure determination has yet to be achieved. Human shelterin is a six-subunit complex—composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1—that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits. By combining negative-stain electron microscopy (EM), cross-linking mass spectrometry (XLMS), AlphaFold modeling, mass photometry, and native mass spectrometry (MS), we obtain stoichiometries as well as domain-scale architectures of shelterin subcomplexes and determine that they feature extensive conformational heterogeneity. For POT1/TPP1 and POT1/TPP1/TIN2, we observe high variability in the positioning of the POT1 DNA-binding domain, the TPP1 oligonucleotide/oligosaccharide–binding (OB) fold, and the TIN2 TRFH domain with respect to the C-terminal domains of POT1. Truncation of unstructured linker regions in TIN2, TPP1, and POT1 did not reduce the conformational variability of the heterotrimer. Shelterin and TRF1-containing subcomplexes form fully dimeric stoichiometries, even in the absence of DNA substrates. Shelterin and its subcomplexes showed extensive conformational variability, regardless of the presence of DNA substrates. We conclude that shelterin adopts a multitude of conformations and argue that its unusual architectural variability is beneficial for its many functions at telomeres.
Collapse
|
38
|
Ren HL, Zheng YC, He GQ, Gao J, Guo X. A Rare Heterozygous TINF2 Deletional Frameshift Mutation in a Chinese Pedigree With a Spectrum of TBDs Phenotypes. Front Genet 2022; 13:913133. [PMID: 35873475 PMCID: PMC9300939 DOI: 10.3389/fgene.2022.913133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Telomere biology disorders (TBDs) induced by TINF2 mutations manifest clinically with a spectrum of phenotypes, from silent carriers to a set of overlapping conditions. A rare TINF2 frameshift mutation (c.591delG) encoding a truncated mutant TIN2 protein (p.W198fs) was identified in a 6-years-and-3-month-old Chinese girl with neuroblastoma (NB) by next generation sequencing and confirmed by Sanger sequencing. To explore the possible implications of TINF2 mutations in TBDs development, the TINF2 mutant was transfected into the human embryonic kidney (HEK) 293T cells, and mRNA expression of the shelterin complex components as well as the cellular distribution of mutant TIN2 were examined. The TINF2 mutation was phenotypically associated with short stature in the proband, nail dystrophy and spotted hypopigmentation in her mother, and psoriasis in her older brother. I-TASSER modeling analysis revealed conformational changes of the mutant TIN2 protein and loss of pivotal domains downstream of the 198th amino acid. Additionally, mRNA expression of the shelterin components was downregulated, and TIN2 mutant protein expression was reduced in HEK293T cells transfected with mutant TINF2. Furthermore, instead of being restricted to the nucleus, the mutant TIN2 was identified in both the cytoplasm and the nucleus. The TINF2 gene mutation might impair the function of the shelterin complex and the telomere maintenance mechanisms, both of which are involved in the development of TBDs. TBDs have been associated with increased cancer risk. To the best of our knowledge, this is the first report of NB in patients with TBDs. The relationship between the TINF2 mutation and NB may need to further study.
Collapse
Affiliation(s)
- Hai-Long Ren
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying-Chun Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guo-Qian He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- *Correspondence: Ju Gao, ; Xia Guo,
| | - Xia Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- *Correspondence: Ju Gao, ; Xia Guo,
| |
Collapse
|
39
|
Atmar K, Ruivenkamp CAL, Hooimeijer L, Nibbeling EAR, Eckhardt CL, Huisman EJ, Lankester AC, Bartels M, Santen GWE, Smiers FJ, van der Burg M, Mohseny AB. Diagnostic Value of a Protocolized In-Depth Evaluation of Pediatric Bone Marrow Failure: A Multi-Center Prospective Cohort Study. Front Immunol 2022; 13:883826. [PMID: 35572556 PMCID: PMC9094492 DOI: 10.3389/fimmu.2022.883826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Severe multilineage cytopenia in childhood caused by bone marrow failure (BMF) often represents a serious condition requiring specific management. Patients are at risk for invasive infections and bleeding complications. Previous studies report low rates of identifiable causes of pediatric BMF, rendering most patients with a descriptive diagnosis such as aplastic anemia (AA). Methods We conducted a multi-center prospective cohort study in which an extensive diagnostic approach for pediatric patients with suspected BMF was implemented. After exclusion of malignant and transient causes of BMF, patients entered thorough diagnostic evaluation including bone marrow analysis, whole exome sequencing (WES) including copy number variation (CNV) analysis and/or single nucleotide polymorphisms (SNP) array analysis. In addition, functional and immunological evaluation were performed. Here we report the outcomes of the first 50 patients (2017-2021) evaluated by this approach. Results In 20 patients (40%) a causative diagnosis was made. In this group, 18 diagnoses were established by genetic analysis, including 14 mutations and 4 chromosomal deletions. The 2 remaining patients had short telomeres while no causative genetic defect was found. Of the remaining 30 patients (60%), 21 were diagnosed with severe aplastic anemia (SAA) based on peripheral multi-lineage cytopenia and hypoplastic bone marrow, and 9 were classified as unexplained cytopenia without bone marrow hypoplasia. In total 28 patients had undergone hematopoietic stem cell transplantation (HSCT) of which 22 patients with an unknown cause and 6 patients with an identified cause for BMF. Conclusion We conclude that a standardized in-depth diagnostic protocol as presented here, can increase the frequency of identifiable causes within the heterogeneous group of pediatric BMF. We underline the importance of full genetic analysis complemented by functional tests of all patients as genetic causes are not limited to patients with typical (syndromal) clinical characteristics beyond cytopenia. In addition, it is of importance to apply genome wide genetic analysis, since defects in novel genes are frequently discovered in this group. Identification of a causal abnormality consequently has implications for the choice of treatment and in some cases prevention of invasive therapies.
Collapse
Affiliation(s)
- Khaled Atmar
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Louise Hooimeijer
- Department of Pediatric Hematology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Esther A R Nibbeling
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Corien L Eckhardt
- Department of Pediatric Hematology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Elise J Huisman
- Department of Pediatric Hematology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Arjan C Lankester
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Marije Bartels
- Department of Pediatric Hematology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Frans J Smiers
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Alexander B Mohseny
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
40
|
Kim HY, Kim HJ, Kim SH. Genetics and genomics of bone marrow failure syndrome. Blood Res 2022; 57:86-92. [PMID: 35483932 PMCID: PMC9057661 DOI: 10.5045/br.2022.2022056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Inherited bone marrow failure syndrome (IBMFS) is a group of clinically heterogeneous disorders characterized by significant hematological cytopenias of one or more hematopoietic cell lineages and is associated with an increased risk of cancer. The genetic etiology of IBMFS includes germline mutations impacting several key biological processes, such as DNA repair, telomere biology, and ribosome biogenesis, which may cause four major syndromes: Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome. Although the clinical features of some patients may be typical of a particular IBMFS, overlapping and atypical clinical manifestations and variable penetrance pose diagnostic challenges. Here, we review the clinical and genetic features of the major forms of IBMFS and discuss their molecular genetic diagnosis. Next-generation sequencing-based gene panel testing or whole exome sequencing will help elucidate the genetic causes and underlying mechanisms of this genetically heterogeneous group of diseases.
Collapse
Affiliation(s)
- Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Howell MP, Jones CW, Herman CA, Mayne CV, Fernandez C, Theall KP, Esteves KC, Drury SS. Impact of prenatal tobacco smoking on infant telomere length trajectory and ADHD symptoms at 18 months: a longitudinal cohort study. BMC Med 2022; 20:153. [PMID: 35477473 PMCID: PMC9047258 DOI: 10.1186/s12916-022-02340-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Prenatal maternal tobacco smoking is a predictor of child attention-deficit/hyperactivity disorder (ADHD) and is associated with offspring telomere length (TL). In this study, we examine the relationship between maternal prenatal smoking, infant TL, and maternal report of early childhood symptoms of ADHD. METHODS One-hundred and eighty-one mother-infant dyads were followed prospectively for the infant's first 18 months of life. Prenatal smoking was assessed from maternal report and medical records. TL was measured from infant buccal swab DNA obtained across the first 18 months of life. ADHD symptoms were obtained from maternal report on the Child Behavior Check List. Multiple regression models tested the relation between prenatal smoking and both ADHD symptoms and infant TL. Additional analyses tested whether the change in infant TL influenced the relation between prenatal smoking and ADHD symptoms. RESULTS Sixteen percent of mothers reported prenatal smoking. Infant TL at 4, 12, and 18 months of age were correlated. Consistent with previous cross-sectional studies linking shorter offspring TL to maternal prenatal smoking, maternal prenatal smoking predicted greater telomere shortening from four to 18 months of infant age (β = - 5.797, 95% CI [-10.207, -1.386]; p = 0.010). Maternal depression was positively associated with both prenatal smoking (odds ratio (OR): 4.614, 95% CI [1.733, 12.282]; p = 0.002) and child ADHD symptoms (β = 4.713, 95% CI [2.073, 7.354]; p = 0.0006). To prevent confounding, analyses examined the relation between TL, ADHD symptoms, and prenatal smoking only in non-depressed mothers. In non-depressed mothers, infant TL attrition across the first 18 months moderated the relation between smoking and child ADHD. CONCLUSIONS The findings extend previous studies linking prenatal smoking to shorter infant TL by providing data demonstrating the effect on TL trajectory. The relation between prenatal smoking and early infant ADHD symptoms was moderated by the change in TL. The findings provide novel initial evidence suggesting that TL dynamics are one mechanistic pathway influencing the relation between maternal prenatal smoking and ADHD.
Collapse
Affiliation(s)
- Meghan P Howell
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA
| | - Christopher W Jones
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cade A Herman
- Tufts University School of Medicine, Boston, MA, USA
| | - Celia V Mayne
- Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA
| | - Camilo Fernandez
- Department of Orthopedic Surgery, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA.,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Katherine P Theall
- Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA
| | - Kyle C Esteves
- Clinical Neuroscience Research Center, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA
| | - Stacy S Drury
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA. .,Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA.
| |
Collapse
|
42
|
Functional interaction between compound heterozygous TERT mutations causes severe telomere biology disorder. Blood Adv 2022; 6:3779-3791. [PMID: 35477117 DOI: 10.1182/bloodadvances.2022007029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Telomere biology disorders (TBDs) are a spectrum of multisystem inherited disorders characterized by bone marrow failure, resulting from mutations in genes encoding telomerase or other proteins involved in maintaining telomere length and integrity. Pathogenicity of variants in these genes can be hard to evaluate, since TBD mutations show highly variable penetrance and genetic anticipation due to inheritance of shorter telomeres with each generation. Thus, detailed functional analysis of newly identified variants is often essential. Here we describe a patient with compound heterozygous variants in the TERT gene, which encodes the catalytic subunit of telomerase, hTERT; this patient has the extremely severe Hoyeraal-Hreidarsson form of TBD, although his heterozygous parents are clinically unaffected. Molecular dynamic modeling and detailed biochemical analyses demonstrate that 1 allele (L557P) affects association of hTERT with its cognate RNA component hTR, while the other (K1050E) affects the binding of telomerase to its DNA substrate and enzyme processivity. Unexpectedly, the data demonstrate a functional interaction between the proteins encoded by the 2 alleles, with WT hTERT able to rescue the effect of K1050E on processivity, whereas L557P hTERT cannot. These data contribute to the mechanistic understanding of telomerase, indicating that RNA binding in 1 hTERT molecule affects the processivity of telomere addition by the other molecule. This work emphasizes the importance of functional characterization of TERT variants to reach a definitive molecular diagnosis for TBD patients, and in particular it illustrates the importance of analyzing the effects of compound heterozygous variants in combination to reveal interallelic effects.
Collapse
|
43
|
Are Dyskeratosis Congenita Patients at Higher Risk of Symptomatic COVID-19? Med Hypotheses 2022; 163:110843. [PMID: 35464998 PMCID: PMC9011900 DOI: 10.1016/j.mehy.2022.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
Dyskeratosis Congenita (DC) is a rare and heterogeneous disease. This disorder is resulted from a defect in the telomere maintenance in stem cells. Telomerase RNA component, shelterin complex, and telomerase reverse transcriptase are mutated in this disease. Many studies have previously confirmed shorter leukocyte telomere length in DC. On the other hand, the association between telomere length and Coronavirus disease 2019 (COVID-19) indicated that people with a short telomere background mostly show more severe symptoms related to COVID-19, and the mortality rate among them increases as well. Because patients with DC have an abnormally short telomere length, in the current study, we hypothesized that they are at higher risk of developing symptomatic COVID-19 that requires further clinical care.
Collapse
|
44
|
Multisystemic Manifestations in Rare Diseases: The Experience of Dyskeratosis Congenita. Genes (Basel) 2022; 13:genes13030496. [PMID: 35328050 PMCID: PMC8953471 DOI: 10.3390/genes13030496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Dyskeratosis congenital (DC) is the first genetic syndrome described among telomeropathies. Its classical phenotype is characterized by the mucocutaneous triad of reticulated pigmentation of skin lace, nail dystrophy and oral leukoplakia. The clinical presentation, however, is heterogeneous and serious clinical complications include bone marrow failure, hematological and solid tumors. It may also involve immunodeficiencies, dental, pulmonary and liver disorders, and other minor complication. Dyskeratosis congenita shows marked genetic heterogeneity, as at least 14 genes are responsible for the shortening of telomeres characteristic of this disease. This review discusses clinical characteristics, molecular genetics, disease evolution, available therapeutic options and differential diagnosis of dyskeratosis congenita to provide an interdisciplinary and personalized medical assessment that includes family genetic counseling.
Collapse
|
45
|
Mehmetbeyoglu E, Kianmehr L, Borlu M, Yilmaz Z, Basar Kılıc S, Rajabi-Maham H, Taheri S, Rassoulzadegan M. Decrease in RNase HII and Accumulation of lncRNAs/DNA Hybrids: A Causal Implication in Psoriasis? Biomolecules 2022; 12:biom12030368. [PMID: 35327560 PMCID: PMC8945458 DOI: 10.3390/biom12030368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Functional long non-coding RNAs (lncRNAs) have been in the limelight in aging research because short telomeres are associated with higher levels of TERRA (Telomeric Repeat containing RNA). The genomic instability, which leads to short telomeres, is a mechanism observed in cell aging and in a class of cancer cells. Psoriasis, a skin disease, is a disorder of epidermal keratinocytes, with altered telomerase activity. Research on the fraction of nascent RNAs in hybrid with DNA offers avenues for new strategies. Skin and blood samples from patients were fractionated to obtain the RNA associated with DNA as a R-loop structure. The higher amount of TERRA levels attached with each chromosome end was found with psoriasis patients in blood and skin. In addition to telomeric TERRA, we evidenced accumulation of others non-coding RNA, such as non-telomeric TERRA and centromeric transcripts. Increased levels of non-coding RNAs attached to DNA correlates with a decreased in Ribonuclease HII (RNase-HII) transcript which means that overall unresolved DNA–RNA hybrids can ultimately weaken DNA and cause skin lesions. Since the genome is actively transcribed, cellular RNase-HII is essential for removing RNA from the DNA–RNA hybrid in controls of genome stability and epigenome shaping and can be used as a causal prognostic marker in patients with psoriasis.
Collapse
Affiliation(s)
- Ecmel Mehmetbeyoglu
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, 38280 Kayseri, Turkey; (E.M.); (Z.Y.)
- Department of Medical Biology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey
| | - Leila Kianmehr
- Animal Sciences and Marine Biology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983963411, Iran; (H.R.-M.); (L.K.)
| | - Murat Borlu
- Dermatology and Venereology Department, Medical School, Erciyes University, 38280 Kayseri, Turkey;
| | - Zeynep Yilmaz
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, 38280 Kayseri, Turkey; (E.M.); (Z.Y.)
- Department of Medical Biology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey
| | - Seyma Basar Kılıc
- Dermatology and Venereology Department, Training and Research Hospital, Aksaray University, 68000 Aksaray, Turkey;
| | - Hassan Rajabi-Maham
- Animal Sciences and Marine Biology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983963411, Iran; (H.R.-M.); (L.K.)
| | - Serpil Taheri
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, 38280 Kayseri, Turkey; (E.M.); (Z.Y.)
- Department of Medical Biology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey
- Correspondence: (S.T.); (M.R.)
| | - Minoo Rassoulzadegan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, 38280 Kayseri, Turkey; (E.M.); (Z.Y.)
- INSERM-CNRS, Université de Nice, 06000 Nice, France
- Correspondence: (S.T.); (M.R.)
| |
Collapse
|
46
|
Utility of Telomerase Gene Mutation Testing in Patients with Idiopathic Pulmonary Fibrosis in Routine Practice. Cells 2022; 11:cells11030372. [PMID: 35159182 PMCID: PMC8834025 DOI: 10.3390/cells11030372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Recent studies have suggested that causative variants in telomerase complex genes (TCGs) are present in around 10% of individuals with idiopathic pulmonary fibrosis (IPF) regardless of family history of the disease. However, the studies used a case-control rare variant enrichment study design which is not directly translatable to routine practice. To validate the prevalence results and to establish the individual level, routine clinical practice, and utility of those results we performed next generation sequencing of TCGs on a cohort of well-characterized consecutive individuals with IPF (diagnosis established according to ATS/ERS/JRS/ALAT guidelines). Of 27 IPF patients, three had a family history of idiopathic interstitial pneumonia (familial IPF) and 24 did not (sporadic IPF). Pathogenic/likely-pathogenic variants (according to American College of Medical Genetics criteria) in TCG were found in three individuals (11.1%) of the whole cohort; specifically, they were present in 2 out of 24 (8.3%) of the sporadic and in 1 out of 3 (33.3%) of the patients with familial IPF. Our results, which were established on an individual-patient level study design and in routine clinical practice (as opposed to the case-control study design), are roughly in line with the around 10% prevalence of causative TCG variants in patients with IPF.
Collapse
|
47
|
Çepni E, Satkın NB, Moheb LA, Rocha ME, Kayserili H. Biallelic TERT variant leads to Hoyeraal-Hreidarsson syndrome with additional dyskeratosis congenita findings. Am J Med Genet A 2021; 188:1226-1232. [PMID: 34890115 DOI: 10.1002/ajmg.a.62602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 11/07/2022]
Abstract
Short telomere syndromes constitute a heterogeneous group of clinical conditions characterized by short telomeres and impaired telomerase activity due to pathogenic variants in the essential telomerase components. Dyskeratosis congenita (DC) is a rare, multisystemic telomere biology disorder characterized by abnormal skin pigmentation, oral leukoplakia and nail dysplasia along with various somatic findings. Hoyeraal-Hreidarsson syndrome (HHS) is generally an autosomal recessively inherited subgroup showing growth retardation, microcephaly, cerebellar hypoplasia and severe immunodeficiency. We here report on a consanguineous family from Turkey, in which a missense variant in the reverse transcriptase domain of the TERT gene segregated with short telomere lengths and was associated with full-blown short telomere syndrome phenotype in the index; and heterogeneous adult-onset manifestations in heterozygous individuals.
Collapse
Affiliation(s)
- Ece Çepni
- Institute of Health Sciences, Koç University, Istanbul, Turkey
| | - Nihan Bilge Satkın
- Genetic Diseases Evaluation Center, Koç University Hospital, Istanbul, Turkey
| | | | | | - Hülya Kayserili
- Institute of Health Sciences, Koç University, Istanbul, Turkey.,Genetic Diseases Evaluation Center, Koç University Hospital, Istanbul, Turkey.,Medical Genetics Department, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
48
|
Graniel JV, Bisht K, Friedman A, White J, Perkey E, Vanderbeck A, Moroz A, Carrington LJ, Brandstadter JD, Allen F, Shami AN, Thomas P, Crayton A, Manzor M, Mychalowych A, Chase J, Hammoud SS, Keegan CE, Maillard I, Nandakumar J. Differential impact of a dyskeratosis congenita mutation in TPP1 on mouse hematopoiesis and germline. Life Sci Alliance 2021; 5:5/1/e202101208. [PMID: 34645668 PMCID: PMC8548261 DOI: 10.26508/lsa.202101208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022] Open
Abstract
A TPP1 mutation known to cause telomere shortening and bone marrow failure in humans recapitulates telomere loss but results in severe germline defects in mice without impacting murine hematopoiesis. Telomerase extends chromosome ends in somatic and germline stem cells to ensure continued proliferation. Mutations in genes critical for telomerase function result in telomeropathies such as dyskeratosis congenita, frequently resulting in spontaneous bone marrow failure. A dyskeratosis congenita mutation in TPP1 (K170∆) that specifically compromises telomerase recruitment to telomeres is a valuable tool to evaluate telomerase-dependent telomere length maintenance in mice. We used CRISPR-Cas9 to generate a mouse knocked in for the equivalent of the TPP1 K170∆ mutation (TPP1 K82∆) and investigated both its hematopoietic and germline compartments in unprecedented detail. TPP1 K82∆ caused progressive telomere erosion with increasing generation number but did not induce steady-state hematopoietic defects. Strikingly, K82∆ caused mouse infertility, consistent with gross morphological defects in the testis and sperm, the appearance of dysfunctional seminiferous tubules, and a decrease in germ cells. Intriguingly, both TPP1 K82∆ mice and previously characterized telomerase knockout mice show no spontaneous bone marrow failure but rather succumb to infertility at steady-state. We speculate that telomere length maintenance contributes differently to the evolutionary fitness of humans and mice.
Collapse
Affiliation(s)
- Jacqueline V Graniel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kamlesh Bisht
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Oncology Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Ann Friedman
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - James White
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Eric Perkey
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alina Moroz
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Léolène J Carrington
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua D Brandstadter
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Frederick Allen
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Adrienne Niederriter Shami
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peedikayil Thomas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Aniela Crayton
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Mariel Manzor
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Jennifer Chase
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Catherine E Keegan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA .,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Reilly CR, Myllymäki M, Redd R, Padmanaban S, Karunakaran D, Tesmer V, Tsai FD, Gibson CJ, Rana HQ, Zhong L, Saber W, Spellman SR, Hu ZH, Orr EH, Chen MM, De Vivo I, DeAngelo DJ, Cutler C, Antin JH, Neuberg D, Garber JE, Nandakumar J, Agarwal S, Lindsley RC. The clinical and functional effects of TERT variants in myelodysplastic syndrome. Blood 2021; 138:898-911. [PMID: 34019641 PMCID: PMC8432045 DOI: 10.1182/blood.2021011075] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022] Open
Abstract
Germline pathogenic TERT variants are associated with short telomeres and an increased risk of developing myelodysplastic syndrome (MDS) among patients with a telomere biology disorder. We identified TERT rare variants in 41 of 1514 MDS patients (2.7%) without a clinical diagnosis of a telomere biology disorder who underwent allogeneic transplantation. Patients with a TERT rare variant had shorter telomere length (P < .001) and younger age at MDS diagnosis (52 vs 59 years, P = .03) than patients without a TERT rare variant. In multivariable models, TERT rare variants were associated with inferior overall survival (P = .034) driven by an increased incidence of nonrelapse mortality (NRM; P = .015). Death from a noninfectious pulmonary cause was more frequent among patients with a TERT rare variant. Most variants were missense substitutions and classified as variants of unknown significance. Therefore, we cloned all rare missense variants and quantified their impact on telomere elongation in a cell-based assay. We found that 90% of TERT rare variants had severe or intermediate impairment in their capacity to elongate telomeres. Using a homology model of human TERT bound to the shelterin protein TPP1, we inferred that TERT rare variants disrupt domain-specific functions, including catalysis, protein-RNA interactions, and recruitment to telomeres. Our results indicate that the contribution of TERT rare variants to MDS pathogenesis and NRM risk is underrecognized. Routine screening for TERT rare variants in MDS patients regardless of age or clinical suspicion may identify clinically inapparent telomere biology disorders and improve transplant outcomes through risk-adapted approaches.
Collapse
Affiliation(s)
| | - Mikko Myllymäki
- Division of Hematological Malignancies, Department of Medical Oncology, and
| | - Robert Redd
- Department of Data Sciences, Dana Farber Cancer Institute, Boston MA
| | - Shilpa Padmanaban
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Druha Karunakaran
- Division of Hematological Malignancies, Department of Medical Oncology, and
| | - Valerie Tesmer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Frederick D Tsai
- Division of Hematological Malignancies, Department of Medical Oncology, and
| | | | - Huma Q Rana
- Division of Population Sciences, Center for Cancer Genetics and Prevention, and
| | - Liang Zhong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston MA
- Harvard Stem Cell Institute, Boston MA
| | - Wael Saber
- Center for International Blood andMarrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Zhen-Huan Hu
- Center for International Blood andMarrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Esther H Orr
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; and
| | - Maxine M Chen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; and
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; and
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Daniel J DeAngelo
- Division of Hematological Malignancies, Department of Medical Oncology, and
| | - Corey Cutler
- Division of Hematological Malignancies, Department of Medical Oncology, and
| | - Joseph H Antin
- Division of Hematological Malignancies, Department of Medical Oncology, and
| | - Donna Neuberg
- Department of Data Sciences, Dana Farber Cancer Institute, Boston MA
| | - Judy E Garber
- Division of Population Sciences, Center for Cancer Genetics and Prevention, and
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Suneet Agarwal
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston MA
- Harvard Stem Cell Institute, Boston MA
| | - R Coleman Lindsley
- Division of Hematological Malignancies, Department of Medical Oncology, and
| |
Collapse
|
50
|
Roake CM, Juntilla M, Agarwal-Hashmi R, Artandi S, Kuo CS. Tissue-specific telomere shortening and degenerative changes in a patient with TINF2 mutation and dyskeratosis congenita. HUMAN PATHOLOGY: CASE REPORTS 2021; 25:200517. [PMID: 34522616 PMCID: PMC8437149 DOI: 10.1016/j.ehpc.2021.200517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Dyskeratosis congenita is a disease of impaired tissue maintenance downstream of telomere dysfunction. Characteristically, patients present with the clinical triad of nail dystrophy, oral leukoplakia, and skin pigmentation defects, but the disease involves degenerative changes in multiple organs. Mutations in telomere-binding proteins such as TINF2 (TRF1-interacting nuclear factor 2) or in telomerase, the enzyme that counteracts age related telomere shortening, are causative in dyskeratosis congenita. We present a patient who presented with severe hypoxemia at age 13. The patient had a history of myelodysplastic syndrome treated with bone marrow transplant at the age of 5. At age 18 she was hospitalized for an acute pneumonia progressing to respiratory failure, developed renal failure and ultimately, she and her family opted to withdraw support as she was not a candidate for a lung transplant. Sequencing of the patient's TINF2 locus revealed a heterozygous mutation (c.844C > T, Arg282Cys) which has previously been reported in a subset of dyskeratosis congenita patients. Tissue sections from multiple organs showed degenerative changes including disorganized bone remodeling, diffuse alveolar damage and small vessel proliferation in the lung, and hyperkeratosis with hyperpigmentation of the skin. Autopsy samples revealed a bimodal distribution of telomere length, with telomeres from donor hematopoietic tissues being an age-appropriate length and those from patient tissues showing pathogenic shortening, with the shortest telomeres in lung, liver, and kidney. We report for the first time a survey of degenerative changes and telomere lengths in multiple organs in a patient with dyskeratosis congenita.
Collapse
Affiliation(s)
- Caitlin M Roake
- Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Marisa Juntilla
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Rajni Agarwal-Hashmi
- Department of Pediatrics, Stem-cell Transplantation, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Steven Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Christin S Kuo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|