1
|
de Oliveira RDJ, de Oliveira RG, de Oliveira LC, Santos-Filho SD, Sá-Caputo DC, Bernardo-Filho M. Effectiveness of whole-body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2023; 34:29-52. [PMID: 36282343 DOI: 10.1007/s00198-022-06556-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/16/2022] [Indexed: 01/07/2023]
Abstract
The present study observed significant effects of whole-body vibration (WBV) on bone mineral density (BMD) in postmenopausal women, with high-quality evidence for high-frequency, low-magnitude, and high-cumulative-dose use. The aim was to update a previous systematic review with meta-analysis to observe the effects of WBV on BMD in postmenopausal women. For the meta-analysis, the weighted mean difference between WBV and control groups, or WBV and conventional exercise, was used for the area of bone mineral density (aBMD) of the lumbar spine, femoral neck, total hip, trochanter, intertrochanter, and Ward's area, or volumetric trabecular bone mineral density (vBMDt) of the radius and tibia. Methodological quality was assessed using the PEDro scale and the quality of evidence using the GRADE system. In total, 23 studies were included in the systematic review and 20 in the meta-analysis. Thirteen studies showed high methodological quality. WBV compared with control groups showed significant effects on aBMD in the primary analysis (lumbar spine and trochanter), sensitivity (lumbar spine), side-alternating vibration (lumbar spine and trochanter), synchronous vibration (lumbar spine), low frequency and high magnitude (lumbar spine and trochanter), high frequency and low magnitude (lumbar spine), high frequency and high magnitude (lumbar spine, trochanter, and Ward's area), high cumulative dose and low magnitude (lumbar spine), low cumulative dose and high magnitude (lumbar spine and trochanter), and positioning with semi-flexed knees (trochanter). Of these results, only high frequency associated with low magnitude and high cumulative dose with low magnitude showed high-quality evidence. At this time, considering the high quality of evidence, it is possible to recommend WBV using high frequency (≈ 30 Hz), low magnitude (≈ 0.3 g), and high cumulative dose (≈ 7000 min) to improve lumbar spine aBMD in postmenopausal women. Other parameters, although promising, need to be better investigated, considering, when applicable, the safety of the participants, especially in vibrations with higher magnitudes (≥ 1 g).
Collapse
Affiliation(s)
| | - Raphael Gonçalves de Oliveira
- Programa de Pós-Graduação em Ciências do Movimento Humano, Centro de Ciências da Saúde, Universidade Estadual do Norte do Paraná (UENP), Alameda Padre Magno, CEP: 86.400-000, Jacarezinho, Nova Alcântara PR, 841, Brazil.
| | - Laís Campos de Oliveira
- Programa de Pós-Graduação em Ciências do Movimento Humano, Centro de Ciências da Saúde, Universidade Estadual do Norte do Paraná (UENP), Alameda Padre Magno, CEP: 86.400-000, Jacarezinho, Nova Alcântara PR, 841, Brazil
| | - Sebastião David Santos-Filho
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danúbia Cunha Sá-Caputo
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mario Bernardo-Filho
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Azzouzi H, Ichchou L. Schmorl's nodes: demystification road of endplate defects-a critical review. Spine Deform 2022; 10:489-499. [PMID: 34825353 DOI: 10.1007/s43390-021-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Schmorl's nodes (SN) were the first vertebral endplate defects described. Debate continues about their epidemiology, physiopathology, and clinical significance. The purpose of this work was to summarize and discuss available literature about SN. METHODS We have searched for relevant papers about SN until April 2020, with 104 articles have been reviewed. RESULTS More than half of the available literature described the epidemiological aspects of SN or reported rare clinical presentations and treatment options. The lack of a consensual definition of SN, among other endplate defects, contributed to difficulties in literature results' interpretation. Summing up, SN is a frequent vertebral defect at the thoracolumbar juncture, with ethnic and gender influence. Lumbar Schmorl's nodes were frequently associated with disc degenerative disease and back pain. Their physiopathology remains unknown. However, strain energy changes in the spine along with morphological aspects of the vertebra, the genetic background, and the osteoimmunology may constitute possible clues. New SN could be confused in malignancy context with bone metastasis. The literature describes some imaging techniques to differentiate them, avoiding invasive approaches. Treatment options for rare painful presentations remain few with low evidence. Further studies are needed to establish a consensual definition for SN, understand clinical aspects, and provide adequate therapeutic strategies.
Collapse
Affiliation(s)
- Hamida Azzouzi
- Department of Rheumatology, Faculty of Medicine, Mohammed VI University Hospital of Oujda, Université Mohammed Premier, Oujda, Morocco.
| | - Linda Ichchou
- Department of Rheumatology, Faculty of Medicine, Mohammed VI University Hospital of Oujda, Université Mohammed Premier, Oujda, Morocco
| |
Collapse
|
3
|
Cheung WH, Wong RMY, Choy VMH, Li MCM, Cheng KYK, Chow SKH. Enhancement of osteoporotic fracture healing by vibration treatment: The role of osteocytes. Injury 2021; 52 Suppl 2:S97-S100. [PMID: 32654846 DOI: 10.1016/j.injury.2020.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 02/02/2023]
Abstract
The prevalence of osteoporotic fracture is high due to global aging problem. Delayed and impaired healing in osteoporotic fractures increase the socioeconomic burden significantly. Through intensive animal and clinical research in recent years, the pathogenesis of osteoporotic fracture healing is unveiled, including decreased inflammatory response, reduced mesenchymal stem cells and deteriorated angiogenesis, etc. The enhancement of osteoporotic fracture healing is important in shortening hospitalization, thus reducing related complications. Mechanical stimulation is currently the most well-accepted approach for rehabilitation of osteoporotic fracture patients. Some new interventions providing mechanical signals were explored extensively in recent years, including vibration treatment, and osteoporotic fracture healing was found to respond very well to these signals. Vibration treatment could accelerate osteoporotic fracture healing with improved callus formation, mineralization and remodeling. However, the mechanism of how osteoporotic fracture bones sense mechanical signals and relay to bone formation remains unanswered. Osteocytes are the most abundant cells in bone tissues. Cumulative evidence confirm that osteocyte is a type of mechanosensory cell and shows altered morphology and reduced cell density during aging. Meanwhile, osteocytes serve as endocrine cells to regulate bone and mineral homeostasis. However, the contribution of osteocytes in osteoporotic fracture healing is largely unknown. A recent in vivo study was conducted to examine the morphological and functional changes of osteocytes after vibration treatment in an osteoporotic metaphyseal fracture rat model. The findings demonstrated that vibration treatment induced significant outgrowth of canaliculi and altered expression of various proteins (E11, DMP1, FGF23 and sclerostin), particularly osteocyte-specific dentin matrix protein 1 (DMP1) which was greatly increased. DMP1 may play a major role in relaying mechanical signals to bone formation, which may require further experiments to consolidate. Most importantly, vibration treatment significantly increased the mineralization and accelerated the osteoporotic fracture healing in metaphyseal fracture model. In summary, osteocyte is the major cell type to sense mechanical signals and facilitate downstream healing in osteoporotic fracture bone. Vibration treatment has good potential to be translated for clinical application to benefit osteoporotic fracture patients, while randomized controlled trials are required to validate its efficacy.
Collapse
Affiliation(s)
- Wing Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Victoria Man Huen Choy
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meng Chen Michelle Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Keith Yu Kin Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Histological and Radiological Evaluation of Low-Intensity Pulsed Ultrasound Versus Whole Body Vibration on Healing of Mandibular Bone Defects in Rats. ACTA ACUST UNITED AC 2020; 56:medicina56090457. [PMID: 32911827 PMCID: PMC7558129 DOI: 10.3390/medicina56090457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Background and Objectives: Mechanical stimulation can improve the structural properties of the fracture site and induce the differentiation of different cell types for bone regeneration. This study aimed to compare the effect of low-intensity pulsed ultrasound stimulation (LIPUS) versus whole body vibration (WBV) on healing of mandibular bone defects. Materials and Methods: A mandibular defect was created in 66 rats. The rats were randomly divided into two groups of rats. Each group was subdivided randomly by three groups (n = 11) as follows: (I) control group, (II) treatment with LIPUS, and (III) treatment with WBV. The radiographic changes in bone density, the ratio of lamellar bone to the entire bone volume, the ratio of the newly formed bone to the connective tissue and inflammation grade were evaluated after 1 and 2 months. Results: LIPUS significantly increased the radiographic bone density change compared to the control group at the first and second month postoperatively (p < 0.01). WBV only significantly increased the bone density compared to the control group at the second month after the surgery (p < 0.01). Conclusions: Application of LIPUS and WBV may enhance the regeneration of mandibular bone defects in rats. Although LIPUS and WBV are effective in mandibular bone healing, the effects of LIPUS are faster and greater than WBV.
Collapse
|
5
|
Pyatin VF, Shirolapov IV. [Neuromuscular stimulation in conditions of vibrational physical activity for the prevention of osteoporosis]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2020; 97:87-93. [PMID: 32592575 DOI: 10.17116/kurort20209703187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The review discusses the modern possibilities of non-drug rehabilitation of patients with osteoporosis. Osteopenia (osteoporosis) and osteoporosis-associated bone fractures are a global public health problem, and an intensive search is undergoing for new methods of treatment, prevention, diagnosis and screening of this disease. Innovative technologies for influencing bone remodeling using vibration training seem to be an effective method that allows you to simultaneously positively affect maintaining bone density, increasing muscle strength and improving coordination, especially in elderly patients. The evolution of study of the effects of intense neuromuscular stimulation under accelerated physical exertion, which began with fundamental work on experimental animals, now includes numerous clinical studies. Vibrational physical activity is one of the methods of biomechanical stimulation, which is considered as an innovative method in the field of rehabilitation and physiotherapy. The physiological basis of this effect is intensive neuromuscular stimulation, which causes a reflex reaction of skeletal muscles. This scientific review describes the results of both monotherapy and combined methods of exposure to vibrational stimulation using modern pharmacotherapy. Attention is focused on the positions of importance in the design of the study and the planning of rehabilitation programs of uniformly accelerated training.
Collapse
Affiliation(s)
- V F Pyatin
- Samara state medical university, Samara, Russia
| | | |
Collapse
|
6
|
Oroszi T, van Heuvelen MJ, Nyakas C, van der Zee EA. Vibration detection: its function and recent advances in medical applications. F1000Res 2020; 9:F1000 Faculty Rev-619. [PMID: 32595943 PMCID: PMC7308885 DOI: 10.12688/f1000research.22649.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrations are all around us. We can detect vibrations with sensitive skin mechanoreceptors, but our conscious awareness of the presence of vibrations is often limited. Nevertheless, vibrations play a role in our everyday life. Here, we briefly describe the function of vibration detection and how it can be used for medical applications by way of whole body vibration. Strong vibrations can be harmful, but milder vibrations can be beneficial, although to what extent and how large the clinical relevance is are still controversial. Whole body vibration can be applied via a vibrating platform, used in both animal and human research. Recent findings make clear that the mode of action is twofold: next to the rather well-known exercise (muscle) component, it also has a sensory (skin) component. Notably, the sensory (skin) component stimulating the brain has potential for several purposes including improvements in brain-related disorders. Combining these two components by selecting the optimal settings in whole body vibration has clear potential for medical applications. To realize this, the field needs more standardized and personalized protocols. It should tackle what could be considered the "Big Five" variables of whole body vibration designs: vibration amplitude, vibration frequency, method of application, session duration/frequency, and total intervention duration. Unraveling the underlying mechanisms by translational research can help to determine the optimal settings. Many systematic reviews on whole body vibration end with the conclusion that the findings are promising yet inconclusive. This is mainly because of the large variation in the "Big Five" settings between studies and incomplete reporting of methodological details hindering reproducibility. We are of the opinion that when (part of) these optimal settings are being realized, a much better estimate can be given about the true potential of whole body vibration as a medical application.
Collapse
Affiliation(s)
- Tamás Oroszi
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Marieke J.G. van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Wagner DR, Karnik S, Gunderson ZJ, Nielsen JJ, Fennimore A, Promer HJ, Lowery JW, Loghmani MT, Low PS, McKinley TO, Kacena MA, Clauss M, Li J. Dysfunctional stem and progenitor cells impair fracture healing with age. World J Stem Cells 2019; 11:281-296. [PMID: 31293713 PMCID: PMC6600851 DOI: 10.4252/wjsc.v11.i6.281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.
Collapse
Affiliation(s)
- Diane R Wagner
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Sonali Karnik
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Zachary J Gunderson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Alanna Fennimore
- Department of Physical Therapy, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Hunter J Promer
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, United States
| | - Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, United States
| | - M Terry Loghmani
- Department of Physical Therapy, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 United States
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, United States
| | - Matthias Clauss
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jiliang Li
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| |
Collapse
|