1
|
Xie X, Zhang Y, He J. Effects of irisin on ovariectomy-induced depression, anxiety, and bodyweight growth in female mice. Peptides 2025; 184:171349. [PMID: 39818251 DOI: 10.1016/j.peptides.2025.171349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Hormone replacement therapy (HRT) for postmenopausal syndrome (PMS) carries high risks of undesirable side effects. This study explores irisin as a potential alternative to HRT and investigates the underlying mechanisms. Ovariectomized (OVX) female mice was used as an animal model. The experimental mice were divided into sham, OVX, OVX + irisin (1, 3 μg/kg), OVX+ estradiol (0.5 mg/kg), and OVX + irisin + compound C (AMPK inhibitor) groups. Results showed that OVX induced depression, anxiety, and bodyweight growth in female mice. These OVX-induced abnormalities were reversed by irisin treatment, while AMPK inhibitor abolished irisin's function, indicating that irisin's therapeutic effects on OVX mice were achieved by activating AMPK. Moreover, irisin could increase pAMPK levels and ameliorate the overexpression of NF-κB and its downstream factors including inflammatory factors (IL-1β, IL-6, and TNF-α) and neurotoxic mediators (COX-2 and iNOS) in the hippocampus, frontal cortex, and serum of the OVX mice. However, irisin did not affect hypothalamus pAMPK level or food intake. These findings indicate that irisin's therapeutic effects on depression and anxiety may be linked to its inhibition of inflammatory factors and neurotoxic mediators in the serum and brain, occurring through the AMPK/NF-κB pathway. Additionally, irisin's effect of reducing bodyweight may be associated with an increase in serum pAMPK level, rather than a direct impact on food intake. Further mechanistic exploration revealed that the beneficial effects of irisin, including both the attenuation of bodyweight gain and the improvement of neurological deficits, are attributed to the activation of αVβ5 receptors.
Collapse
Affiliation(s)
- Xupei Xie
- Department of Quality Management, Shaoxing Second Hospital, Shaoxing 312000, China.
| | - Yanling Zhang
- Department of Nephrology, Shaoxing Second Hospital, Shaoxing, 312000, China
| | - Jianping He
- Department of Quality Management, Shaoxing Second Hospital, Shaoxing 312000, China
| |
Collapse
|
2
|
Drewe J, Boonen G, Culmsee C. Treat more than heat-New therapeutic implications of Cimicifuga racemosa through AMPK-dependent metabolic effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154060. [PMID: 35338990 DOI: 10.1016/j.phymed.2022.154060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cimicifuga racemosa extracts (CRE) have obtained a "well-established use status" in the treatment of postmenopausal (i.e., climacteric) complaints, which predominantly include vasomotor symptoms such as hot flushes and sweating, as well as nervousness, irritability, and metabolic changes. Although characteristic postmenopausal complaints are known for a very long time and the beneficial effects of CRE on climacteric symptoms are well accepted, both the pathophysiology of postmenopausal symptoms and the mechanism of action of CREs are not yet fully understood. In particular, current hypotheses suggest that changes in the α-adrenergic and serotonergic signaling pathways secondary to estrogen depletion are responsible for the development of hot flushes. PURPOSE Some of the symptoms associated with menopause cannot be explained by these hypotheses. Therefore, we attempted to extend our classic understanding of menopause by integrating of partly age-related metabolic impairments. METHODS A comprehensive literature survey was performed using the PubMed database for articles published through September 2021. The following search terms were used: (cimicifuga OR AMPK) AND (hot flush* OR hot flash* OR menopaus* OR osteoporos* OR cancer OR antioxida* OR cardiovasc*). No limits were set with respect to language, and the references cited in the articles retrieved were used to identify additional publications. RESULTS We found that menopause is a manifestation of the general aging process, with specific metabolic changes that aggravate menopausal symptoms, which are accelerated by estrogen depletion and associated neurotransmitter dysregulation. Cimicifuga extracts with their metabolic effects mitigate climacteric symptoms but may also modulate the aging process itself. Central to these effects are effects of CRE on the metabolic key regulator, the AMP-activated protein kinase (AMPK). CONCLUSIONS As an extension of this effect dimension, other off-label indications may appear attractive in the sense of repurposing of this herbal treatment.
Collapse
Affiliation(s)
- Jürgen Drewe
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland.
| | - Georg Boonen
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, D-35043 Marburg, Germany; Center for Mind, Brain and Behavior, D-35032 Marburg, Germany
| |
Collapse
|
3
|
Metz L, Isacco L, Redman LM. Effect of oral contraceptives on energy balance in women: A review of current knowledge and potential cellular mechanisms. Metabolism 2022; 126:154919. [PMID: 34715118 DOI: 10.1016/j.metabol.2021.154919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022]
Abstract
Body weight management is currently of major concern as the obesity epidemic is still a worldwide challenge. As women face more difficulties to lose weight than men, there is an urgent need to better understand the underlying reasons and mechanisms. Recent data have suggested that the use of oral contraceptive (OC) could be involved. The necessity of utilization and development of contraceptive strategies for birth regulation is undeniable and contraceptive pills appear as a quite easy approach. Moreover, OC also represent a strategy for the management of premenstrual symptoms, acne or bulimia nervosa. The exact impact of OC on body weight remains not clearly established. Thus, after exploring the potential underlying mechanisms by which OC could influence the two side of energy balance, we then provide an overview of the available evidence regarding the effects of OC on energy balance (i.e. energy expenditure and energy intake). Finally, we highlight the necessity for future research to clarify the cellular effects of OC and how the individualization of OC prescriptions can improve long-term weight loss management.
Collapse
Affiliation(s)
- Lore Metz
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France.
| | - Laurie Isacco
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France
| | - Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
4
|
Krysiak R, Kowalcze K, Okopień B. The impact of metformin on prolactin levels in postmenopausal women. J Clin Pharm Ther 2021; 46:1433-1440. [PMID: 34216041 DOI: 10.1111/jcpt.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/26/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Metformin-induced reduction in prolactin levels is more pronounced in users of hormonal contraception than in non-users. The current study was aimed at investigating whether physiological concentrations of estradiol determine the impact of metformin on lactotrope secretory function. METHODS We studied two matched groups of postmenopausal women with elevated prolactin levels. Twenty-three women were on hormone replacement therapy (group 1), while the remaining ones (group 2, n = 23) did not use sex hormones. Because of coexistent prediabetes, all individuals received metformin (2.55-3 g daily) for the following six months. Circulating levels of total prolactin, monomeric prolactin, thyrotropin, gonadotropins, free thyroid hormones and estradiol were determined at the beginning and at the end of the study. RESULTS AND DISCUSSION Compared with group 1, group 2 was characterized by higher gonadotropin levels and lower estrogen levels. Although metformin reduced monomeric prolactin levels in both study groups, this effect was more pronounced in group 1 than in group 2. Only in group 1, metformin decreased total prolactin levels, while only in group 2 the drug reduced FSH levels. Metformin treatment did not affect circulating levels of the remaining hormones. The impact of metformin on total and monomeric prolactin levels correlated with baseline prolactin levels and with the degree of improvement in insulin sensitivity. WHAT IS NEW AND CONCLUSION The obtained results indicate that the impact of metformin on lactotrope secretory function is partially determined by the estrogen status of patients.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Karolina Kowalcze
- Department of Pediatrics in Bytom, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Krysiak R, Kowalcze K, Wolnowska M, Okopień B. The impact of oral hormonal contraception on metformin action on hypothalamic‐pituitary‐thyroid axis activity in women with diabetes and prediabetes: A pilot study. J Clin Pharm Ther 2020; 45:937-945. [DOI: 10.1111/jcpt.13105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology Medical University of Silesia Katowice Poland
| | - Karolina Kowalcze
- Department of Paediatrics in Bytom School of Health Sciences in Katowice Medical University of Silesia Katowice Poland
| | - Monika Wolnowska
- Department of Pediatrics Municipal Integrated Hospital in Częstochowa Częstochowa Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology Medical University of Silesia Katowice Poland
| |
Collapse
|
6
|
Hurtado-Carneiro V, Pérez-García A, Alvarez E, Sanz C. PAS Kinase: A Nutrient and Energy Sensor "Master Key" in the Response to Fasting/Feeding Conditions. Front Endocrinol (Lausanne) 2020; 11:594053. [PMID: 33391184 PMCID: PMC7775648 DOI: 10.3389/fendo.2020.594053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
The protein kinase with PAS domains (PASK) is a nutrient and energy sensor located in the cells of multiple organs. Many of the recent findings for understanding PASK functions in mammals have been reported in studies involving PASK-deficient mice. This minireview summarizes the PASK role in the control of fasting and feeding responses, focusing especially on the hypothalamus and liver. In 2013, PASK was identified in the hypothalamic areas involved in feeding behavior, and its expression was regulated under fasting/refeeding conditions. Furthermore, it plays a role in coordinating the activation/inactivation of the hypothalamic energy sensors AMPK and mTOR/S6K1 pathways in response to fasting. On the other hand, PASK deficiency prevents the development of obesity and non-alcoholic fatty liver in mice fed with a high-fat diet. This protection is explained by the re-establishment of several high-fat diet metabolic alterations produced in the expression of hepatic transcription factors and key enzymes that control the main metabolic pathways involved in maintaining metabolic homeostasis in fasting/feeding responses. This minireview covers the effects of PASK inactivation in the expression of certain transcription factors and target enzymes in several metabolic pathways under situations such as fasting and feeding with either a standard or a high-fat diet.
Collapse
Affiliation(s)
- Verónica Hurtado-Carneiro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University of Madrid, Institute of Medical Research at the Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Verónica Hurtado-Carneiro,
| | - Ana Pérez-García
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University of Madrid, Institute of Medical Research at the Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - Elvira Alvarez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University of Madrid, Institute of Medical Research at the Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - Carmen Sanz
- Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Sievers W, Rathner JA, Kettle C, Zacharias A, Irving HR, Green RA. The capacity for oestrogen to influence obesity through brown adipose tissue thermogenesis in animal models: A systematic review and meta-analysis. Obes Sci Pract 2019; 5:592-602. [PMID: 31890250 PMCID: PMC6934433 DOI: 10.1002/osp4.368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Pharmacological interventions to aid weight loss have historically targeted either appetite suppression or increased metabolic rate. Brown adipose tissue (BAT) possesses the capacity to expend energy in a futile cycle, thus increasing basal metabolic rate. In animal models, oestrogen has been implicated in the regulation of body weight, and it is hypothesized that oestrogen is acting by modulating BAT metabolism. A systematic search was performed, to identify research articles implementing in vivo oestrogen-related interventions and reporting outcome measures that provide direct or indirect measures of BAT metabolism. Meta-analyses were conducted where sufficient data were available. The final library of 67 articles were predominantly in rodent models and provided mostly indirect measures of BAT metabolism. Results of this review found that oestrogen's effects on body weight, in rats and possibly mice, are likely facilitated by both metabolic and appetitive mechanisms but are largely only found in ovariectomized models. There is a need for further studies to clarify the potential effects of oestrogen on BAT metabolism in gonad-intact and castrated male animal models.
Collapse
Affiliation(s)
- Will Sievers
- La Trobe Institute for Molecular Science, Department of Pharmacy and Biomedical SciencesLa Trobe UniversityBendigoVictoriaAustralia
| | - Joseph A. Rathner
- La Trobe Institute for Molecular Science, Department of Pharmacy and Biomedical SciencesLa Trobe UniversityBendigoVictoriaAustralia
- School of Biomedical Sciences, Department of PhysiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Christine Kettle
- La Trobe Institute for Molecular Science, Department of Pharmacy and Biomedical SciencesLa Trobe UniversityBendigoVictoriaAustralia
| | - Anita Zacharias
- La Trobe Institute for Molecular Science, Department of Pharmacy and Biomedical SciencesLa Trobe UniversityBendigoVictoriaAustralia
| | - Helen R. Irving
- La Trobe Institute for Molecular Science, Department of Pharmacy and Biomedical SciencesLa Trobe UniversityBendigoVictoriaAustralia
| | - Rodney A. Green
- La Trobe Institute for Molecular Science, Department of Pharmacy and Biomedical SciencesLa Trobe UniversityBendigoVictoriaAustralia
| |
Collapse
|
8
|
17-DMAG, an Hsp90 inhibitor, ameliorates ovariectomy-induced obesity in rats. Life Sci 2019; 232:116672. [DOI: 10.1016/j.lfs.2019.116672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
|
9
|
Grannell A, De Vito G, Murphy JC, le Roux CW. The influence of skeletal muscle on appetite regulation. Expert Rev Endocrinol Metab 2019; 14:267-282. [PMID: 31106601 DOI: 10.1080/17446651.2019.1618185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Fat-free mass, of which skeletal muscle is amajor component, correlates positively with energy intake at energy balance. This is due to the effects of metabolically active tissue on energy expenditure which in itself appears to signal to the brain adrive to eat to ensure cellular energy homeostasis. The mechanisms responsible for this drive to eat are unknown but are likely to be related to energy utilization. Here muscle imparts an indirect influence on hunger. The drive to eat is also enhanced after muscle loss secondary to intentional weight loss. The evidence suggests loss of both fat mass and skeletal muscle mass directly influences the trajectory and magnitude of weight regain highlighting their potential role in long-termappetite control. The mechanisms responsible for the potential direct drive to eat stemming from muscle loss are unknown. AREAS COVERED The literature pertaining to muscle and appetite at energy balance and after weight loss was examined. Aliterature search was conducted to identify studies related to appetite, muscle, exercise, and weight loss. EXPERT OPINION Understanding the mechanisms which link energy expenditure and muscle loss to hunger has the potential to positively impact both the prevention and the treatment of obesity.
Collapse
Affiliation(s)
- Andrew Grannell
- a Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences , University College Dublin , Dublin , Ireland
- b MedFit Proactive Healthcare, Blackrock , Dublin , Ireland
| | - Giuseppe De Vito
- c School of Public Health, Physiotherapy and Sports Science , University College Dublin , Dublin , Ireland
| | - John C Murphy
- b MedFit Proactive Healthcare, Blackrock , Dublin , Ireland
| | - Carel W le Roux
- a Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences , University College Dublin , Dublin , Ireland
| |
Collapse
|
10
|
Krysiak R, Szkróbka W, Okopień B. The Impact of Ethinyl Estradiol on Metformin Action on Prolactin Levels in Women with Hyperprolactinemia. Exp Clin Endocrinol Diabetes 2019; 129:22-28. [DOI: 10.1055/a-0921-6420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Background Metformin reduced prolactin levels only in women with hyperprolactinemia.
Objective The purpose of this case-control study was to compare metformin action on lactoctrope function between women receiving oral contraceptive pills and women not using hormonal contraception.
Methods The study included two groups of matched women with elevated prolactin levels and new-onset prediabetes or diabetes. The first group consisted of 20 women using oral contraceptive pills for at least 12 months before entering the study, while the second group included 20 patients not using any hormonal contraception. Over the whole study period, all women were treated with metformin (1.7–3 g daily). Circulating levels of glucose, insulin, prolactin, thyrotropin, free thyroid hormones, adrenocorticotropic hormone, gonadotropins and insulin-like growth factor-1 were measured at the beginning and at the end of the study (16 weeks later).
Results Thirty-eight patients completed the study. Metformin reduced plasma glucose levels and improved insulin sensitivity but the latter effect was stronger in women receiving oral contraceptive pills than in women not using any contraception. Although metformin treatment decreased plasma prolactin levels in both study groups, this effect was stronger in women taking oral contraceptive pills. Only in this group of women, metformin increased plasma luteinizing hormone levels. The changes in plasma prolactin correlated with their baseline insulin sensitivity and the effect of metformin on insulin sensitivity. Metformin did not affect plasma levels of thyrotropin, free thyroxine, free triiodothyronine, follicle-stimulating hormone, adrenocorticotropic hormone and insulin-like growth factor-1.
Conclusions The obtained results suggest that the effect of metformin on overactive lactotropes depends on estrogen levels.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Witold Szkróbka
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
11
|
Lee YH, Lim W, Sung MK. Carnosic Acid Modulates Increased Hepatic Lipogenesis and Adipocytes Differentiation in Ovariectomized Mice Fed Normal or High-Fat Diets. Nutrients 2018; 10:nu10121984. [PMID: 30558262 PMCID: PMC6315337 DOI: 10.3390/nu10121984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/24/2022] Open
Abstract
As postmenopausal women experience a rapid increase in cardiovascular disease (CVD) risk with an increase in abdominal fat, dietary interventions to reduce CVD risk have been emphasized. This study was aimed at investigating the effect of a high-fat diet (HFD) in combination with an ovariectomy on liver and adipose tissue fat metabolism. The efficacy of carnosic acid (CA) supplementation in the suppression of HFD- and ovariectomy-induced obesity was also evaluated. Ovariectomized (OVX) or sham-operated mice at eight weeks of age were fed with a normal diet (ND), HFD, ND and 0.02% CA, or HFD and 0.02% CA for 12 weeks. All of the animals were sacrificed at the age of 20 weeks. The blood and tissue markers of the lipogenesis and adipocyte differentiation were measured. As expected, ovariectomy decreased the uterus weight and serum 17β-estradiol concentration. The HFD and ovariectomy significantly contributed to increases in the body weight and total fat mass, which were effectively inhibited by CA supplementation. The circulating concentrations of insulin, leptin, and TG (triglyceride) were significantly higher in the HFD group, and the concentrations were two to five times higher in the OVX and HFD group compared with those of the ND group. The CA supplementation significantly lowered the insulin, leptin, and TG concentrations in the OVX and HFD mice. The hepatic protein expressions of pAMPK and pACC were up-regulated by CA supplementation in OVX mice fed either ND or HFD. The expressions of hepatic SREBP1c and FAS mRNA were the highest in the OVX and HFD group, which were suppressed by CA supplementation. The adipose tissue PPARγ, aP2, and lipoprotein lipase (LPL) mRNA expressions were up-regulated by a HFD or ovariectomy, while they were significantly reduced in the mice fed a CA supplemented diet. The TNF-α and IL-6 mRNA levels in the adipose tissue were decreased by providing CA in the OVX groups. These results suggest that HFD and ovariectomy independently contribute to body fat accumulation, and CA effectively alleviated the ovariectomy-induced increases in lipogenesis and adipocyte differentiation. Further human trials are required in order to evaluate the efficacy of rosemary-derive CA as natural anti-adipogenic compounds, especially in postmenopausal women.
Collapse
Affiliation(s)
- Yoon-Hee Lee
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Chungpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea.
| | - Whasun Lim
- Department of Biomedical Science, Catholic Kwandong University, 24 Beomil-ro 579 beon-gil, Gangneung-si, Gangwon-do 210-701, Republic of Korea.
| | - Mi-Kyung Sung
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Chungpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea.
| |
Collapse
|
12
|
Abstract
AMP-activated protein kinase (AMPK) is the main cellular energy sensor. Activated following a depletion of cellular energy stores, AMPK will restore the energy homoeostasis by increasing energy production and limiting energy waste. At a central level, the AMPK pathway will integrate peripheral signals (mostly hormones and metabolites) through neuronal networks. Hypothalamic AMPK is directly implicated in feeding behaviour, brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). It also participates in other metabolic functions: glucose and muscle metabolisms, as well as hepatic function. Numerous anti-obesity and/or antidiabetic agents, such as nicotine, metformin and liraglutide, are known to induce their effects through a modulation of AMPK pathway, either at central or at peripheral levels. Moreover, the weight-gaining side effects of antipsychotic drugs, such as olanzapine, are also mediated by hypothalamic AMPK. Therefore, considering hypothalamic AMPK as a therapeutic target in metabolic diseases appears as an interesting strategy due to its implication in feeding and energy expenditure, the two sides of the energy balance equation.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| |
Collapse
|
13
|
Congdon EE. Sex Differences in Autophagy Contribute to Female Vulnerability in Alzheimer's Disease. Front Neurosci 2018; 12:372. [PMID: 29988365 PMCID: PMC6023994 DOI: 10.3389/fnins.2018.00372] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with over 5. 4 million cases in the US alone (Alzheimer's Association, 2016). Clinically, AD is defined by the presence of plaques composed of Aβ and neurofibrillary pathology composed of the microtubule associated protein tau. Another key feature is the dysregulation of autophagy at key steps in the pathway. In AD, disrupted autophagy contributes to disease progression through the failure to clear pathological protein aggregates, insulin resistance, and its role in the synthesis of Aβ. Like many psychiatric and neurodegenerative diseases, the risk of developing AD, and disease course are dependent on the sex of the patient. One potential mechanism through which these differences occur, is the effects of sex hormones on autophagy. In women, the loss of hormones with menopause presents both a risk factor for developing AD, and an obvious example of where sex differences in AD can stem from. However, because AD pathology can begin decades before menopause, this does not provide the full answer. We propose that sex-based differences in autophagy regulation during the lifespan contribute to the increased risk of AD, and greater severity of pathology seen in women.
Collapse
Affiliation(s)
- Erin E Congdon
- Neuroscience and Physiology, School of Medicine, New York University, New York City, NY, United States
| |
Collapse
|
14
|
Leu SY, Chen YC, Tsai YC, Hung YW, Hsu CH, Lee YM, Cheng PY. Raspberry Ketone Reduced Lipid Accumulation in 3T3-L1 Cells and Ovariectomy-Induced Obesity in Wistar Rats by Regulating Autophagy Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10907-10914. [PMID: 29164883 DOI: 10.1021/acs.jafc.7b03831] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aimed to determine the antiobesity effects of raspberry ketone (RK), one of the major aromatic compounds contained in raspberry, and its underlying mechanisms. During adipogenesis of 3T3-L1 cells, RK (300 μM) significantly reduced lipid accumulation and downregulated the expression of CCAAT/enhancer-binding protein α (C/EBPα), peroxisome proliferation-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), and fatty acid synthase (FAS). RK also reduced the expression of light chain 3B (LC3B), autophagy-related protein 12 (Atg12), sirtuin 1 (SIRT1), and phosphorylated-tuberous sclerosis complex 2 (TSC2), whereas it increased the level of p62 and phosphorylated-mammalian target of rapamycin (mTOR). Daily administration of RK decreased the body weight (ovariectomy [Ovx] + RK, 352.6 ± 5 vs Ovx, 386 ± 5.8 g; P < 0.05), fat mass (Ovx + RK, 3.2 ± 0.05 vs Ovx, 5.0 ± 0.4 g; P < 0.05), and fat cell size (Ovx + RK, 6.4 ± 0.6 vs Ovx, 11.1 ± 0.7 × 103 μm2; P < 0.05) in Ovx-induced obesity in rats. The expression of PPARγ, C/EBPα, FAS, and FABP4 was significantly reduced in the Ovx + RK group compared with that in the Ovx group. Similar patterns were observed in autophagy-related proteins and endoplasmic reticulum stress proteins. These results suggest that RK inhibited lipid accumulation by regulating autophagy in 3T3-L1 cells and Ovx-induced obese rats.
Collapse
Affiliation(s)
- Sy-Ying Leu
- Graduate Institute of Life Sciences, National Defense Medical Center , 114 Taipei, Taiwan
| | - Yi-Chen Chen
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center , 114 Taipei, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center , Tainan, Taiwan
- Department of Medicine, Taipei Medical University , 11031 Taipei, Taiwan
- Department of Sport Management, Chia Nan University of Pharmacy and Science , 71710 Tainan, Taiwan
| | - Yao-Wen Hung
- Institute of Preventive Medicine, National Defense Medical Center , Taipei, Taiwan
| | - Chih-Hsiung Hsu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center , 114 Taipei, Taiwan
| | - Yen-Mei Lee
- Department of Pharmacology, National Defense Medical Center , 114 Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center , 114 Taipei, Taiwan
| |
Collapse
|
15
|
López M. EJE PRIZE 2017: Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol 2017; 176:R235-R246. [PMID: 28232370 PMCID: PMC5425938 DOI: 10.1530/eje-16-0927] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/26/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
AMP-activated protein kinase (AMPK) is a cellular gauge that is activated under conditions, such as low energy, increasing energy production and reducing energy waste. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence links hypothalamic AMPK with feeding, brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), as well as muscle metabolism, hepatic function and glucose homeostasis. The relevance of these data is interesting from a therapeutic point of view as several agents with potential anti-obesity and/or antidiabetic effects, some currently in clinical use, such as nicotine, metformin and liraglutide are known to act through AMPK, either peripherally or centrally. Furthermore, the orexigenic and weight-gaining effects of the worldwide use of antipsychotic drugs (APDs), such as olanzapine, are also mediated by hypothalamic AMPK. Overall, this evidence makes hypothalamic AMPK signaling an interesting target for the drug development, with its potential for controlling both sides of the energy balance equation, namely feeding and energy expenditure through defined metabolic pathways.
Collapse
Affiliation(s)
- Miguel López
- Department of PhysiologyNeurObesity Group, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Correspondence should be addressed to M López;
| |
Collapse
|
16
|
López M, Tena-Sempere M. Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment? Pharmacol Ther 2017; 178:109-122. [PMID: 28351720 DOI: 10.1016/j.pharmthera.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
Abstract
In addition to their prominent roles in the control of reproduction, estrogens are important modulators of energy balance, as evident in conditions of deficiency of estrogens, which are characterized by increased feeding and decreased energy expenditure, leading to obesity. AMP-activated protein kinase (AMPK) is a ubiquitous cellular energy gauge that is activated under conditions of low energy, increasing energy production and reducing energy wasting. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. As a result of those actions, hypothalamic AMPK modulates feeding, as well as brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). Here, we will review the central actions of estrogens on energy balance, with particular focus on hypothalamic AMPK. The relevance of this interaction is noteworthy, because some agents with known actions on metabolic homeostasis, such as nicotine, metformin, liraglutide, olanzapine and also natural molecules, such as resveratrol and flavonoids, exert their actions by modulating AMPK. This evidence highlights the possibility that hypothalamic AMPK might be a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
17
|
Hypothalamic AMPK as a Regulator of Energy Homeostasis. Neural Plast 2016; 2016:2754078. [PMID: 27547453 PMCID: PMC4980534 DOI: 10.1155/2016/2754078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022] Open
Abstract
Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration.
Collapse
|
18
|
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
19
|
Saisavoey T, Palaga T, Malaivijitnond S, Jaroenporn S, Thongchul N, Sangvanich P, Karnchanatat A. Anti-osteoclastogenic, estrogenic, and antioxidant activities of cell suspension cultures and tuber root extracts from Pueraria mirifica. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0172-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Cavalcanti-de-Albuquerque JPA, Salvador IC, Martins EL, Jardim-Messeder D, Werneck-de-Castro JPS, Galina A, Carvalho DP. Role of estrogen on skeletal muscle mitochondrial function in ovariectomized rats: a time course study in different fiber types. J Appl Physiol (1985) 2014; 116:779-89. [PMID: 24458744 DOI: 10.1152/japplphysiol.00121.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postmenopausal women are prone to develop obesity and insulin resistance, which might be related to skeletal muscle mitochondrial dysfunction. In a rat model of ovariectomy (OVX), skeletal muscle mitochondrial function was examined at short- and long-term periods after castration. Mitochondrial parameters in the soleus and white gastrocnemius muscle fibers were analyzed. Three weeks after surgery, there were no differences in coupled mitochondrial respiration (ATP synthesis) with pyruvate, malate, and succinate; proton leak respiration; or mitochondrial reactive oxygen species production. However, after 3 wk of OVX, the soleus and white gastrocnemius muscles of the OVX animals showed a lower use of palmitoyl-carnitine and glycerol-phosphate substrates, respectively, and decreased peroxisome proliferator-activated receptor-γ coactivator-1α expression. Estrogen replacement reverted all of these phenotypes. Eight weeks after OVX, ATP synthesis was lower in the soleus and white gastrocnemius muscles of the OVX animals than in the sham-operated and estrogen-treated animals; however, when normalized by citrate synthase activity, these differences disappeared, indicating a lower muscle mitochondria content. No differences were observed in the proton leak parameter. Mitochondrial alterations did not impair the treadmill exercise capacity of the OVX animals. However, blood lactate levels in the OVX animals were higher after the physical test, indicating a compensatory extramitochondrial ATP synthesis system, but this phenotype was reverted by estrogen replacement. These results suggest early mitochondrial dysfunction related to lipid substrate use, which could be associated with the development of the overweight phenotype of ovariectomized animals.
Collapse
Affiliation(s)
- J P A Cavalcanti-de-Albuquerque
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Iwasa T, Matsuzaki T, Matsui S, Munkhzaya M, Tungalagsuvd A, Kawami T, Murakami M, Kato T, Kuwahara A, Yasui T, Irahara M. The effects of LPS-induced endotoxemia on the expression of adiponectin and its receptors in female rats. Endocr J 2014; 61:891-900. [PMID: 24974879 DOI: 10.1507/endocrj.ej14-0042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Adiponectin (APN), secreted by white adipose tissue (WAT), acts as a protective factor against inflammatory conditions. However, the changes in the expression levels of endogenous APN and the two types of APN receptor (AdipoR1 and AdipoR2) induced by acute inflammatory conditions have not been fully elucidated. In this study, the changes in peripheral and/or central APN and AdipoR expression caused by lipopolysaccharide (LPS)-induced sepsis were examined in gonadal-intact (Sham) and ovariectomized (OVX) female rats. As it has been reported that APN and AdipoR suppress the production of inflammatory cytokines to prevent excessive inflammation, the mRNAs of these molecules were also examined. LPS injection induced increases in visceral WAT APN mRNA without affecting the serum APN level in both the Sham and OVX rats. OVX rats exhibited higher serum APN levels than Sham rats. LPS injection increased the subcutaneous WAT APN mRNA in OVX rats. In both Sham and OVX rats, LPS injection led to a decrease in hepatic AdipoR2 mRNA and an increase in hypothalamic AdipoR2 mRNA. Hypothalamic AdipoR2 mRNA was upregulated 24 h after LPS injection in OVX but not Sham rats. Serum TNF-α level at 6 h after LPS injection and hypothalamic and hepatic IL-6 and TNF-α mRNA at 24 h after LPS injection were significantly higher in Sham than OVX rats. These results suggest that APN and AdipoR play roles in modulating inflammation under septic conditions in female rats.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Anukulthanakorn K, Jareonporn S, Malaivijitnond S. Simple, sensitive and reliable in vivo assays to evaluate the estrogenic activity of endocrine disruptors. Reprod Med Biol 2013; 13:37-45. [PMID: 29699148 DOI: 10.1007/s12522-013-0161-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/04/2013] [Indexed: 11/24/2022] Open
Abstract
Purpose We compared three in vivo assays, determining changes of body weight, and uterotropic and vaginal cytology assays, for the evaluation of estrogenic activity of an estrogen disrupting compound, Pueraria mirifica (PM), in comparison with 17β-estradiol (E). Methods Female rats were ovariectomized and gavaged with distilled water, 0.01, 0.1, 1, 10 and 20 mg/kg BW/day of E and 100 and 1,000 mg/kg BW/day of PM for 14 days. Body weights were measured weekly, and vaginal epithelium cells were monitored daily. The uterus was dissected at the end of the treatment period, weighed and examined for histomorphometry. Results There were a decrease in body weight and an increase in uterine weight, uterine, endometrium and myometrium areas, uterine gland numbers, and percent of cornified cell which were dependent on doses of E and PM treatments. Conclusions Of the three assays proposed, although all are reliable and had critical read-out, measurements of body and uterine weights is likely convenient and simple, but the uterotropic assay needs to kill the animals. Vaginal cytology assay appears most promising for sensitivity and shortening the duration of the assay. Compared to those of E, the estrogenic activity of PM at concentrations of 100 and 1,000 mg/kg BW was in the range of 14 to >20 mg/kg BW.
Collapse
Affiliation(s)
- Kanya Anukulthanakorn
- Biological Sciences Program, Faculty of Science Chulalongkorn University 10330 Bangkok Thailand.,Primate Research Unit, Department of Biology, Faculty of Science Chulalongkorn University 254 Phayathai Road 10330 Bangkok Thailand
| | - Sukanya Jareonporn
- Primate Research Unit, Department of Biology, Faculty of Science Chulalongkorn University 254 Phayathai Road 10330 Bangkok Thailand
| | - Suchinda Malaivijitnond
- Primate Research Unit, Department of Biology, Faculty of Science Chulalongkorn University 254 Phayathai Road 10330 Bangkok Thailand
| |
Collapse
|
23
|
Blanco Martínez de Morentin P, González CR, Saha AK, Martins L, Diéguez C, Vidal-Puig A, Tena-Sempere M, López M. Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Rev Endocr Metab Disord 2011; 12:127-40. [PMID: 21347863 DOI: 10.1007/s11154-011-9165-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The AMP-activated protein kinase (AMPK) is the downstream constituent of a kinase cascade that acts as a sensor of cellular energy levels. Current data unequivocally indicate that hypothalamic AMPK plays a key role in the control of the whole body energy balance, by integrating peripheral signals, such as hormones and metabolites, with central signals, such as neuropeptides, and eliciting allostatic changes in energy homeostasis. Although the molecular details of these interactions are not fully understood, recent evidence has suggested that the interaction between AMPK with hypothalamic lipid metabolism and other metabolic sensors, such as the uncoupling protein 2 (UCP-2), the mammalian target of rapamycin (mTOR) and the deacetylase sirtuin 1 (SIRT1), may play a main role in the hypothalamic control of feeding and energy expenditure. Here, we summarize the role of hypothalamic AMPK as whole body energy gauge. Understanding this key molecule and especially its functions at central level may provide new therapeutic targets for the treatment of metabolic alterations and obesity.
Collapse
Affiliation(s)
- Pablo Blanco Martínez de Morentin
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, A Coruña, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Reciprocal effects of α-lipoic acid on adenosine monophosphate-activated protein kinase activity in obesity induced by ovariectomy in rats. Menopause 2011; 18:1010-7. [DOI: 10.1097/gme.0b013e31820db576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|