1
|
Liu ZB, Zhu RR, Liu JL, Xu QR, Xu H, Liu JC, Zhou XL. NSD2 mediated H3K36me2 promotes pulmonary arterial hypertension by recruiting FOLR1 and metabolism reprogramming. Cell Signal 2025; 127:111594. [PMID: 39798773 DOI: 10.1016/j.cellsig.2025.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Pulmonary artery hypertension (PAH) is characterized by a cancer-like metabolic shift towards aerobic glycolysis. Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone methyltransferase, has been implicated in PAH, yet its precise role remains unclear. In this study, we induced PAH in C57BL/6 mice using monocrotaline (MCT) and observed increased FOLR1 expression in PAH tissues, which was suppressed by NSD2 knockdown. Silencing NSD2 or FOLR1 inhibited the proliferation and migration of pulmonary artery endothelial cells (PAECs) and alleviated PAH phenotypes, right ventricular dysfunction, and pulmonary artery remodeling. Mechanistically, NSD2 knockdown prevented nuclear translocation of FOLR1 and its interaction with H3K36me2. Metabolic analysis revealed that NSD2 or FOLR1 knockdown reversed the increased oxygen consumption rate, extracellular acidification rate, glucose consumption, lactate production, and G6PD activity in MCT-treated PAECs. Furthermore, NSD2 or FOLR1 silencing decreased the expression of key glycolytic genes (HK2, TIGAR, and G6PD) by suppressing their promoter activity and weakening the interaction between FOLR1/H3K36me2 and these gene promoters. Our findings suggest that NSD2-mediated H3K36me2 recruits FOLR1 to promote PAH, and FOLR1 acts as a transcriptional factor to upregulate glycolytic gene expression in PAECs.
Collapse
Affiliation(s)
- Zhi-Bo Liu
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rong-Rong Zhu
- Department of Cardiology, Jiangxi Hospital of traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jin-Long Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qi-Rong Xu
- Department of Thoracic Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hua Xu
- Department of Thoracic Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Xue-Liang Zhou
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Hu X, Ding N, Songchen W, Wang R, Chen J, Zhong A, Nan J, Zuo Y, Huang H, Tian D. Lung Transplantation for Pulmonary Arterial Hypertension: Optimized Referral and Listing Based on an Evolving Disease Concept. J Cardiovasc Dev Dis 2023; 10:350. [PMID: 37623363 PMCID: PMC10455552 DOI: 10.3390/jcdd10080350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Pulmonary hypertension (PH) was once a devastating and fatal disease entity, the outlook of which has been significantly improved by the continued progress of medical treatment algorithms. However, some patients still ultimately fail to achieve an adequate clinical response despite receiving maximal medical treatment. Historically, lung transplantation (LTx) has been the only effective therapeutic option that could lead to satisfactory outcomes and save these advanced patients' lives. However, patients with PH tend to have the highest mortality rates on the transplant waiting list; especially after comprehensive medical treatment, they continue to deteriorate very rapidly, eventually missing optimal transplantation windows. Balancing optimized medical treatment with the appropriate timing of referral and listing has been highly controversial in LTx for patients with PH. The 2021 consensus document for the selection of lung transplant candidates from the International Society for Heart and Lung Transplantation (ISHLT) updated the specific recommendations for the LTx referral and listing time for patients with PH based on objective risk stratification. Herein, we review the evolving PH-related concepts and highlight the optimization of LTx referral and listing for patients with PH, as well as their management on the waiting list.
Collapse
Affiliation(s)
- Xiaokun Hu
- Outpatient Department, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Ningying Ding
- Anesthesia Operation Center of West China Hospital/West China School of Nursing, Sichuan University, Chengdu 610041, China;
| | - Wanqiu Songchen
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Ruifeng Wang
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Jing Chen
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Ailing Zhong
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Jinzhu Nan
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Yujie Zuo
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Heng Huang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dong Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
SIRT6 inhibits hypoxia-induced pulmonary arterial smooth muscle cells proliferation via HIF-1α/PDK4 signaling. Life Sci 2022; 312:121192. [PMID: 36396113 DOI: 10.1016/j.lfs.2022.121192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
SIRT6 is an NAD+-dependent protein that plays a vital role in regulating the cell proliferation, differentiation and apoptosis. Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) in peripheral vascular is one of the major pathological findings of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). However, whether SIRT6 is involved in hypoxia-induced proliferation of PASMCs and its possible mechanisms remain unknown. In the present study, we found that the expression of SIRT6 was decreased in both hypoxia-induced PAH rats model and HPASMCs. Hypoxia promoted the proliferation of HPASMCs in a time-dependent manner, inhibited the activity of caspase-3 and the production of PDH, increased the activity of LDH, ROS level, mitochondrial membrane potential(MMP) and the expression of HIF-1α and PDK4, which induced glycolysis. SIRT6 over-expression could inhibit the proliferation of HPASMCs and increase the apoptosis rate, impelled the retardation of cell cycle in phase G1. Meanwhile, SIRT6 over-expression reduced LDH activity, the levels of ROS and MMP, which simultaneously increased the production of PDH, the expression of HIF-1α, PDK4, Cyclin D1 and PCNA in hypoxia-induced HPASMCs. Moreover, SIRT6 over-expression inhibited the transcriptional activation of HIF-1α/PDK4 signaling. In addition, SIRT6 knockdown with SIRT6 siRNA exhibited the same effect as hypoxia. Together, our results indicated that SIRT6 was participant in regulating hypoxia-induced imbalance of proliferation and apoptosis of HPASMCs, which was associated with the activation of HIF-1α/PDK4 signaling pathway. Targeting at SIRT6 gene and regulating the downstream metabolism signaling pathway may be a novel strategy for the treatment of hypoxia-induced PAH.
Collapse
|
4
|
Zhu HR, Kuang HY, Li Q, Ji XJ. Effects of oral targeted treatments in pulmonary arterial hypertension: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:915470. [PMID: 35983180 PMCID: PMC9378982 DOI: 10.3389/fcvm.2022.915470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background Although pulmonary arterial hypertension (PAH) is a fatal disease, specific drugs have been used to treat PAH. These drugs predominantly target these three pathobiological pathways: Endothelin receptor antagonist (ERA), nitric oxide (NO), and prostanoids pathways. In this review, we aimed to analyze the efficacy and safety of oral targeted treatments for PAH. Methods The national library of medicine (MEDLINE), excerpta medica database (EMBASE), and Cochrane Central Register of Controlled Trials databases were searched. Randomized controlled trials that compared the oral targeted drugs with placebos were selected. We calculated odds ratios (ORs) with 95% confidence intervals (CIs) for variables with dichotomous outcomes, and standardized mean differences with continuous outcomes variables. Additionally, the mean of the differences for the 6-min walk distance (6MWD) was analyzed. Results In total, 23 studies involving 7,121 patients were included in this study. These studies show that orally PAH-specific drugs could decrease the risk of clinical worsening events, with an OR of 0.55 (p < 0.001). Furthermore, these drugs could improve exercise capacity, showing a 21.74-m increase in 6MWD (95% CI: 17.53–25.95 m) and cause a greater amelioration of functional class (OR = 0.60, 95% CI: 0.47–0.76). Additionally, subgroup analysis indicated that compared with placebo, ERAs, and drugs in the NO pathway were most effective and safe, which are associated with an improvement in exercise capacity, 6MWD, and worsening events-free survival rate. Conclusion Nitric oxide exhibited the most prominent clinical effect on exercise tolerance. However, in the subgroup analysis, oral targeted drugs of different pathways show applicability to different populations, which highlights the need for precise treatment in the clinical setting. Systematic Review Registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=297946], identifier [CRD 42022297946].
Collapse
Affiliation(s)
- Hui-ru Zhu
- National Clinical Research Center for Child Health and Disorders, Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Hong-yu Kuang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Li
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-juan Ji
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- *Correspondence: Xiao-juan Ji,
| |
Collapse
|
5
|
Flores K, Siques P, Brito J, Arribas SM. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms23116205. [PMID: 35682884 PMCID: PMC9181235 DOI: 10.3390/ijms23116205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pulmonary artery pressure produced by vasoconstriction and hyperproliferative remodeling of the pulmonary artery and subsequent right ventricular hypertrophy (RVH). The search for therapeutic targets for cardiovascular pathophysiology has extended in many directions. However, studies focused on mitigating high-altitude pulmonary hypertension (HAPH) have been rare. Because AMP-activated protein kinase (AMPK) is involved in cardiovascular and metabolic pathology, AMPK is often studied as a potential therapeutic target. AMPK is best characterized as a sensor of cellular energy that can also restore cellular metabolic homeostasis. However, AMPK has been implicated in other pathways with vasculoprotective effects. Notably, cellular metabolic stress increases the intracellular ADP/ATP or AMP/ATP ratio, and AMPK activation restores ATP levels by activating energy-producing catabolic pathways and inhibiting energy-consuming anabolic pathways, such as cell growth and proliferation pathways, promoting cardiovascular protection. Thus, AMPK activation plays an important role in antiproliferative, antihypertrophic and antioxidant pathways in the pulmonary artery in HPH. However, AMPK plays contradictory roles in promoting HPH development. This review describes the main findings related to AMPK participation in HPH and its potential as a therapeutic target. It also extrapolates known AMPK functions to discuss the less-studied HAPH context.
Collapse
Affiliation(s)
- Karen Flores
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
- Correspondence: ; Tel.: +56-572526392
| | - Patricia Siques
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Silvia M. Arribas
- Department of Physiology, University Autonoma of Madrid, 28049 Madrid, Spain;
| |
Collapse
|
6
|
Zhu C, Liu Q, Li X, Wei R, Ge T, Zheng X, Li B, Liu K, Cui R. Hydrogen sulfide: A new therapeutic target in vascular diseases. Front Endocrinol (Lausanne) 2022; 13:934231. [PMID: 36034427 PMCID: PMC9399516 DOI: 10.3389/fendo.2022.934231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of most important gas transmitters. H2S modulates many physiological and pathological processes such as inflammation, oxidative stress and cell apoptosis that play a critical role in vascular function. Recently, solid evidence show that H2S is closely associated to various vascular diseases. However, specific function of H2S remains unclear. Therefore, in this review we systemically summarized the role of H2S in vascular diseases, including hypertension, atherosclerosis, inflammation and angiogenesis. In addition, this review also outlined a novel therapeutic perspective comprising crosstalk between H2S and smooth muscle cell function. Therefore, this review may provide new insight inH2S application clinically.
Collapse
Affiliation(s)
- Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Qing Liu
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Wei
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiufen Zheng
- Department of Surgery, Western University, London, ON, Canada
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ranji Cui, ; Kexiang Liu,
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ranji Cui, ; Kexiang Liu,
| |
Collapse
|
7
|
Proshkina AA, Tsareva NA, Nekludova GV, Avdeev SN. [Triple combination therapy with macitentan, riociguat, and selexipag in a patient with idiopathic pulmonary arterial hypertension (functional class III)]. KARDIOLOGIIA 2021; 61:104-107. [PMID: 34763645 DOI: 10.18087/cardio.2021.10.n1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The article presents a clinical case of successful triple combination therapy in a female patient with functional class III idiopathic pulmonary arterial hypertension. Supplementing the previous macitentan and riociguat treatment with selexipag reduced the severity of clinical manifestations of pulmonary hypertension. Also, the treatment efficacy was demonstrated by improvement of laboratory and instrumental indexes. Time-related changes were evaluated at 3 months after initiation of the selexipag treatment.
Collapse
Affiliation(s)
- A A Proshkina
- Sechenov Moscow State Medical University, Moscow, Russia
| | - N A Tsareva
- Sechenov Moscow State Medical University, Moscow, Russia
| | - G V Nekludova
- Sechenov Moscow State Medical University, Moscow, Russia
| | - S N Avdeev
- Sechenov Moscow State Medical University, Moscow, Russia
| |
Collapse
|