1
|
Huang Y, Li C, Xu W, Li F, Hua Y, Xu C, Wu C, Wang Y, Zhang X, Xia D. Kaempferol attenuates hyperuricemia combined with gouty arthritis via urate transporters and NLRP3/NF-κB pathway modulation. iScience 2024; 27:111186. [PMID: 39524334 PMCID: PMC11550584 DOI: 10.1016/j.isci.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Hyperuricemia (HUA), caused by purine disorders, can lead to gouty arthritis (GA). Kaempferol (KPF), a natural flavonoid, has anti-inflammatory properties, though its mechanism in treating HUA combined with GA remains unclear. This study used a mouse model of HUA combined with GA and in vitro models with HK-2 and THP-1 cells to explore KPF's effects. Cells were treated with KPF or inhibitors of ABCG2, ROS, NLRP3 inflammasome, and nuclear factor κB (NF-κB) pathway. Quantitative assays measured uric acid (UA), creatinine, oxidative stress biomarkers, and pro-inflammatory cytokines. Histopathological analyses showed KPF improved renal and joint inflammation caused by HUA and GA. KPF alleviated oxidative stress, reduced pro-inflammatory cytokines, and regulated UA levels through the modulation of urate transporters, NLRP3 inflammasome, and NF-κB pathway. KPF's actions, partly mediated by ROS reduction, suggest it is a promising candidate for treating HUA combined with GA.
Collapse
Affiliation(s)
- Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Hua
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changyu Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yihuan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxi Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Tang M, Hu J, Li W, Zhang N, Ning S, Yan Y, Cui Z. Effects of Renal Denervation on Ouabain-Induced Hypertension in Rats. Int J Hypertens 2024; 2024:4763189. [PMID: 38957519 PMCID: PMC11217579 DOI: 10.1155/2024/4763189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/04/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
Background Ouabain, a Na+, K+-ATPase inhibitor, is elevated in hypertensive patients. Evidence suggests ouabain contributes to hypertension mainly through activation of the sympathetic nervous system (SNS). Renal nerves play a vital role in the regulation of SNS activity, so we hypothesize that renal denervation may attenuate the development of ouabain-induced hypertension. Methods and Results Forty Sprague-Dawley rats were divided into following groups (n = 10 each): control group (sham surgery plus intraperitoneal saline injection), RDN group (renal denervation (RDN) plus intraperitoneal saline injection), ouabain group (sham surgery plus intraperitoneal ouabain injection), and ouabain + RDN group (RDN plus intraperitoneal ouabain injection). After eight weeks, compared with the control group, rats in the ouabain group exhibited elevated blood pressure (P < 0.05), increased plasma epinephrine, norepinephrine, angiotensin II, and aldosterone levels (P < 0.05). These indexes could be significantly ameliorated by RDN. RDN also reduced the thickening of aortic tunica media and downregulated the expression of proliferating cell nuclear antigen (PCNA) in the thoracic aorta induced by ouabain. Masson staining and echocardiography showed that myocardial fibrosis and increased left ventricular mass in the ouabain group could be attenuated by RDN. Conclusions The present study reveals that renal nerves play an important role in the development of ouabain-induced hypertension. RDN could inhibit the pressor effect and the myocardial remodeling induced by ouabain potentially via inhibiting catecholamine release and vascular smooth muscle cell proliferation. Clinical studies are needed to explore whether RDN may exhibit better antihypertensive effects on hypertensive patients with high plasma ouabain levels as compared to those with normal plasma ouabain levels.
Collapse
Affiliation(s)
- Minna Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Wenshu Li
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ningzhi Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Sisi Ning
- Department of Cardiology, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital, Shanghai 200051, China
| | - Yan Yan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
3
|
Tian C, Qiu Y, Zhao Y, Fu L, Xia D, Ying J. Selenium protects against Pb-induced renal oxidative injury in weaning rats and human renal tubular epithelial cells through activating NRF2. J Trace Elem Med Biol 2024; 83:127420. [PMID: 38432121 DOI: 10.1016/j.jtemb.2024.127420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Lead (Pb) poisoning posing a crucial health risk, especially among children, causing devastating damage not only to brain development, but also to kidney function. Thus, an urgent need persists to identify highly effective, safe, and low-toxicity drugs for the treatment of Pb poisoning. The present study focused on exploring the protective effects of Se on Pb-induced nephrotoxicity in weaning rats and human renal tubular epithelial cells, and investigated the possible mechanisms. METHODS Forty weaning rats were randomly divided into four groups in vivo: control, Pb-exposed, Pb+Se and Se. Serum creatinine (Cr), urea nitrogen (BUN) and hematoxylin and eosin (H&E) staining were performed to evaluate renal function. The activities of antioxidant enzymes in the kidney tissue were determined. In vitro experiments were performed using human renal tubular epithelial cells (HK-2 cells). The cytotoxicity of Pb and Se was detected by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Inverted fluorescence microscope was used to investigate cell morphological changes and the fluorescence intensity of reactive oxygen species (ROS). The oxidative stress parameters were measured by a multi-detection reader. Nuclear factor-erythroid-2-related factor (NRF2) signaling pathways were measured by Western blot and reverse transcription polymerase chain reaction (RT-PCR) in HK-2 cells. RESULTS We found that Se alleviated Pb-induced kidney injury by relieving oxidative stress and reducing the inflammatory index. Se significantly increased the activity of the antioxidant enzymes glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), whereas it decreased the excessive release of malondialdehyde (MDA) in the kidneys of weaning rats and HK-2 cells. Additionally, Se enhanced the antioxidant defense systems via activating the NRF2 transcription factor, thereby promoting the to downstream expression of heme oxygenase 1. Furthermore, genes encoding glutamate-cysteine ligase synthetase catalytic (GCLC), glutamate-cysteine ligase synthetase modifier (GCLM) and NADPH quinone oxidoreductase 1 (NQO1), downstream targets of NRF2, formed a positive feedback loop with NRF2 during oxidative stress responses. The MTT assay results revealed a significant decrease in cell viability with Se treatment, and the cytoprotective role of Se was blocked upon knockdown of NRF2 by small interfering RNA (siRNA). MDA activity results also showed that NRF2 knockdown inhibited the NRF2-dependent transcriptional activity of Se. CONCLUSIONS Our findings demonstrate that Se ameliorated Pb-induced nephrotoxicity by reducing oxidative stress both in vivo and in vitro. The molecular mechanism underlying Se's action in Pb-induced kidney injury is related to the activation of the NRF2 transcription factor and the activity of antioxidant enzymes, ultimately suppressing ROS accumulation.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Yu Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Junjie Ying
- Department of Urology, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
4
|
Parvin I, Gauthier MM, Dennis MR, Encinas NM, Nangia EL, Schwartz KL, Banek CT. Sequential afferent and sympathetic renal denervation impact on cardiovascular and renal homeostasis in the male Sprague-Dawley rat. Life Sci 2023; 325:121768. [PMID: 37169146 PMCID: PMC10225348 DOI: 10.1016/j.lfs.2023.121768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Renal denervation (RDNx) is emerging as a promising treatment for cardiovascular disease, yet the underlying mechanisms and contributions of afferent (sensory) and efferent (sympathetic) renal nerves in healthy conditions remains limited. We hypothesize that sympathetic renal nerves contribute to long-term MAP and renal function, whereas afferent renal nerves do not contribute to the maintenance of cardiovascular and renal function. To test this hypothesis, we performed two experiments. In experiment one, we performed total renal denervation (T-RDNx), ablating afferent and sympathetic renal nerves, in normotensive adult SD rats to determine effects on MAP and renal function. Experiment 2 employed a sequential surgical ablation using: (1) afferent targeted renal denervation (A-RDNx), then (2) sympathetic (T-RDNx) denervation to determine the individual contributions to cardiovascular and renal homeostasis. In experiment 1, MAP decreased following T-RDNx and GFR increased. In experiment 2, A-RDNx led to an increase in MAP but did not change renal function. In contrast, T-RDNx decreased MAP and improved renal filtration. Together, these data partially support our hypothesis that renal sympathetic nerves contribute to the chronic regulation of arterial pressure and renal function. Contrary to the hypothesis, A-RDNx produced an increase in MAP without a detected change in renal function. We concluded that renal sympathetic nerves influence MAP and renal function regulation through a well-defined tonic contribution to renal vascular resistance and sodium reabsorption, whereas afferent renal nerves likely contribute to the maintenance of MAP through a tonic sympatho-inhibitory, negative feedback regulation in the normotensive, healthy rat.
Collapse
Affiliation(s)
- Irin Parvin
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Madeline M Gauthier
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Melissa R Dennis
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Noah M Encinas
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ellen L Nangia
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kyle L Schwartz
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Christopher T Banek
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
5
|
Is bariatric surgery improving mitochondrial function in the renal cells of patients with obesity-induced kidney disease? Pharmacol Res 2022; 185:106488. [DOI: 10.1016/j.phrs.2022.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
6
|
Abstract
Circulating blood is filtered across the glomerular barrier to form an ultrafiltrate of plasma in the Bowman's space. The volume of glomerular filtration adjusted by time is defined as the glomerular filtration rate (GFR), and the total GFR is the sum of all single-nephron GFRs. Thus, when the single-nephron GFR is increased in the context of a normal number of functioning nephrons, single glomerular hyperfiltration results in 'absolute' hyperfiltration in the kidney. 'Absolute' hyperfiltration can occur in healthy people after high protein intake, during pregnancy and in patients with diabetes, obesity or autosomal-dominant polycystic kidney disease. When the number of functioning nephrons is reduced, single-nephron glomerular hyperfiltration can result in a GFR that is within or below the normal range. This 'relative' hyperfiltration can occur in patients with a congenitally reduced nephron number or with an acquired reduction in nephron mass consequent to surgery or kidney disease. Improved understanding of the mechanisms that underlie 'absolute' and 'relative' glomerular hyperfiltration in different clinical settings, and of whether and how the single-nephron haemodynamic and related biomechanical forces that underlie glomerular hyperfiltration promote glomerular injury, will pave the way toward the development of novel therapeutic interventions that attenuate glomerular hyperfiltration and potentially prevent or limit consequent progressive kidney injury and loss of function.
Collapse
|
7
|
Luo G, Zhu JJ, Yao M, Xie KY. Computed tomography-guided chemical renal sympathetic nerve modulation in the treatment of resistant hypertension: A case report. World J Clin Cases 2021; 9:9970-9976. [PMID: 34877338 PMCID: PMC8610920 DOI: 10.12998/wjcc.v9.i32.9970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Resistant hypertension (RH) has always been a difficult problem in clinical diagnosis and treatment. At present, there is no recognized safe and effective minimally invasive treatment.
CASE SUMMARY An 80-year-old woman was admitted to hospital due to trigeminal neuralgia (TN). The patient had a history of RH for more than 10 years and her blood pressure (BP) was not well-controlled. Before the treatment for TN, we decided to perform chemical renal sympathetic denervation with ethanol in the Pain Department of our hospital. One year after the operation, she stopped taking antihypertensive drugs, and her BP was satisfactorily controlled within 4 years after surgery.
CONCLUSION Computed tomography-guided chemical renal sympathetic modulation may be a feasible method for the treatment of RH.
Collapse
Affiliation(s)
- Ge Luo
- Department of Anesthesiology and Pain, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Jian-Jun Zhu
- Department of Anesthesiology and Pain, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Ming Yao
- Department of Anesthesiology and Pain, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Ke-Yue Xie
- Department of Anesthesiology and Pain, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| |
Collapse
|
8
|
Shi Y, Tian C, Yu X, Fang Y, Zhao X, Zhang X, Xia D. Protective Effects of Smilax glabra Roxb. Against Lead-Induced Renal Oxidative Stress, Inflammation and Apoptosis in Weaning Rats and HEK-293 Cells. Front Pharmacol 2020; 11:556248. [PMID: 32982754 PMCID: PMC7493636 DOI: 10.3389/fphar.2020.556248] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Lead (Pb) is an important environmental pollutant. Oxidative stress and the inflammatory response have been postulated as mechanisms involved in lead-induced renal damage. Smilax glabra Roxb. has been used for treatment of heavy-metal poisoning in China for 500 years. We investigated S. glabra flavonoids extract (SGF) could attenuate lead acetate-induced nephrotoxicity in weaning rats and human embryonic kidney (HEK)-293 cells, and investigated the possible mechanisms. Compared with Pb exposed group of weaning rats, SGF could significantly promote lead excretion in the blood and kidney, and increase the content of the renal-function indicators blood urea nitrogen, serum uric acid, and serum creatinine. SGF could improve the glomerular filtration rate (GFR) and histologic changes in the kidneys of weaning rats exposed to Pb. SGF could also reduce lead-induced cytotoxicity, improve DNA damage-induced apoptosis and cleaved caspase-3-mediated apoptosis in HEK-293 cells stimulated with Pb. SGF significantly increased the activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase and catalase, and decreased excessive release of reactive oxygen species (ROS) and malondialdehyde in the kidneys of the weaning rats and in HEK-293 cells. The antioxidant mechanism of SGF related to activation of the Kelch-like ECH-associated protein 1/nuclear-factor-E2-related factor 2/hemeoxygenase-1(Keap1/Nrf2/HO-1) pathway. SGF could inhibit secretion of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α induced by Pb in vivo and in vitro. The anti-inflammatory mechanism of SGF related to inhibition of ROS and pro-inflammatory cytokines triggered the nuclear factor-kappa B (NF-κB) pathway through blockade of inhibitors of I-κB degradation, phosphorylation of NF-κB p65, and nuclear translocation of p65. Our findings indicate that SGF could be a natural antioxidant and anti-inflammatory agent for treating lead-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yueyue Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongmei Tian
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Pharmacy, Affiliated Shaoxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Shaoxing, China
| | - Xinfen Yu
- Center of Health Laboratory Technology, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Yuejuan Fang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxi Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Daozong Xia
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Docherty NG, le Roux CW. Bariatric surgery for the treatment of chronic kidney disease in obesity and type 2 diabetes mellitus. Nat Rev Nephrol 2020; 16:709-720. [DOI: 10.1038/s41581-020-0323-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
|
10
|
Beeson JH, Blackmore HL, Carr SK, Dearden L, Duque-Guimarães DE, Kusinski LC, Pantaleão LC, Pinnock AG, Aiken CE, Giussani DA, Fernandez-Twinn DS, Ozanne SE. Maternal exercise intervention in obese pregnancy improves the cardiovascular health of the adult male offspring. Mol Metab 2018; 16:35-44. [PMID: 30293577 PMCID: PMC6157615 DOI: 10.1016/j.molmet.2018.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Obesity during pregnancy is associated with an elevated risk of cardiovascular disease in the offspring. With increased numbers of women entering pregnancy overweight or obese, there is a requirement for targeted interventions to reduce disease risk in future generations. Using an established murine model of maternal obesity during pregnancy, we investigated if a treadmill exercise intervention in the mother could improve offspring cardiac health and explored potential underlying mechanisms. METHODS A 20-minute treadmill exercise intervention protocol was performed 5 days a week in diet-induced obese female C57BL/6 mice 1 week prior to, and up to E17 of pregnancy. All male offspring were weaned onto a control diet and studied at 8 weeks of age when their cardiovascular physiology was assessed by in vivo echocardiography and non-invasive tail cuff plethysmography. Cardiomyocyte cell area, re-expression of fetal genes and the expression of calcium handling and sympathetic activation proteins were determined. RESULTS At 8 weeks, there was no difference in bodyweight or fat mass between groups. Offspring of obese dams developed pathologic cardiac hypertrophy, hypertension and cardiac dysfunction characterized by reduced ejection fraction (p < 0.001). Maternal exercise prevented cardiac hypertrophy and dysfunction but failed to prevent hypertension. These offspring of exercised dams also had enhanced (p < 0.001) levels of calcium handling proteins and a sympathetic-activated inotropic response. CONCLUSIONS Exercise in obese pregnancy was beneficial to offspring cardiac function and structure but did not influence hypertension suggesting they are programmed by separate mechanistic pathways. These data suggest combination interventions in obese pregnancies will be required to improve all aspects of the cardiovascular health of the next generation.
Collapse
Affiliation(s)
- Jessica H Beeson
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Heather L Blackmore
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Sarah K Carr
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Laura Dearden
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Daniella E Duque-Guimarães
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Laura C Kusinski
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Lucas C Pantaleão
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Adele G Pinnock
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Catherine E Aiken
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK; Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Box 223, Cambridge, CB2 0SW, UK.
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3EG, UK.
| | - Denise S Fernandez-Twinn
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Susan E Ozanne
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
11
|
Dearden L, Bouret SG, Ozanne SE. Sex and gender differences in developmental programming of metabolism. Mol Metab 2018; 15:8-19. [PMID: 29773464 PMCID: PMC6066743 DOI: 10.1016/j.molmet.2018.04.007] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The early life environment experienced by an individual in utero and during the neonatal period is a major factor in shaping later life disease risk-including susceptibility to develop obesity, diabetes, and cardiovascular disease. The incidence of metabolic disease is different between males and females. How the early life environment may underlie these sex differences is an area of active investigation. SCOPE OF REVIEW The purpose of this review is to summarize our current understanding of how the early life environment influences metabolic disease risk in a sex specific manner. We also discuss the possible mechanisms responsible for mediating these sexually dimorphic effects and highlight the results of recent intervention studies in animal models. MAJOR CONCLUSIONS Exposure to states of both under- and over-nutrition during early life predisposes both sexes to develop metabolic disease. Females seem particularly susceptible to develop increased adiposity and disrupted glucose homeostasis as a result of exposure to in utero undernutrition or high sugar environments, respectively. The male placenta is particularly vulnerable to damage by adverse nutritional states and this may underlie some of the metabolic phenotypes observed in adulthood. More studies investigating both sexes are needed to understand how changes to the early life environment impact differently on the long-term health of male and female individuals.
Collapse
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Cambridge, CB2 0QQ, United Kingdom
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program & Diabetes and Obesity Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, 90027, USA; Inserm, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille, 59045, France
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|