1
|
Li N, Wang XL, Ge R, Wang Y, Tian XL, Zhu GQ, Zhou B. FNDC5 inhibits malignant growth of human cervical cancer cells via restraining PI3K/AKT pathway. J Cell Physiol 2024; 239:e31267. [PMID: 38558303 DOI: 10.1002/jcp.31267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Cervical cancer (CxCa) is the fourth most frequent cancer in women. This study aimed to determine the role and underlying mechanism of fibronectin type III domain-containing protein 5 (FNDC5) in inhibiting CxCa growth. Experiments were performed in human CxCa tissues, human CxCa cell lines (HeLa and SiHa), and xenograft mouse model established by subcutaneous injection of SiHa cells in nude mice. Bioinformatics analysis showed that CxCa patients with high FNDC5 levels have a longer overall survival period. FNDC5 expression was increased in human CxCa tissues, HeLa and SiHa cells. FNDC5 overexpression or FNDC5 protein not only inhibited proliferation, but also restrained invasion and migration of HeLa and SiHa cells. The effects of FNDC5 were prevented by inhibiting integrin with cilengitide, activating PI3K with recilisib or activating Akt with SC79. FNDC5 inhibited the phosphorylation of PI3K and Akt, which was attenuated by recilisib. PI3K inhibitor LY294002 showed similar effects to FNDC5 in HeLa and SiHa cells. Intravenous injection of FNDC5 (20 μg/day) for 14 days inhibited the tumor growth, and reduced the proliferation marker Ki67 expression and the Akt phosphorylation in the CxCa xenograft mouse model. These results indicate that FNDC5 inhibits the malignant phenotype of CxCa cells through restraining PI3K/Akt signaling. Upregulation of FNDC5 may play a beneficial role in retarding the tumor growth of CxCa.
Collapse
Affiliation(s)
- Na Li
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiao-Li Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Rui Ge
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xiao-Lei Tian
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Bing Zhou
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
2
|
Shi X, Zhang S, Li J, Ke Y, Bai Y. Fibronectin/α5 Integrin Contribute to Hypertension-Associated Arterial Ageing and Calcification through Affecting BMP2/MGP Imbalance and Enhancing Vascular Smooth Muscle Cell Phenotypic Transformation. Gerontology 2024; 70:858-875. [PMID: 38824923 DOI: 10.1159/000539399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION Hypertension can accelerate and aggravate the process of arterial ageing and calcification. However, the mechanism behind has yet to be well elucidated. METHODS Here, we monitored the dynamic changes of fibronectin (FN)/α5 integrin, bone morphogenetic protein 2/matrix Gla protein (BMP2/MGP), and Runx2 in the aorta of spontaneously hypertensive rats (SHRs) and thoracic aortic vascular smooth muscle cells (VSMCs), also the phenotypic transformation of VSMCs during the process of arterial ageing and calcification. Further, study on arterial ageing and calcification through antagonist experiments at the molecular level was explored. RESULTS We found extracellular FN and its α5 integrin receptor expressions were positively associated with arterial ageing and calcification in SHR during ageing, as well in VSMCs from SHR in vitro. Integrin receptor inhibitor of GRGDSP would delay this arterial ageing and calcification process. Moreover, the elevated FN and α5 integrin receptor expression evoked the disequilibrium of BMP2/MGP, where the expression of BMP2, a potent osteogenic inducer, increased while MGP, a calcification inhibitor, decreased. Furthermore, it was followed by the upregulation of Runx2 and the phenotypic transformation of VSMCs from the contractile phenotype into the osteoblast-like cells. Notably, BMP2 antagonist of rmNoggin was sufficient to ameliorate the ageing and calcification process of VSMCs and exogenous BMP2-adding accelerate and aggregate the process. CONCLUSION Our study revealed that hypertension-associated arterial ageing and calcification might be a consequence that hypertension up-regulated FN and its high binding affinity integrin α5 receptor in the aortic wall, which in turn aggravated the imbalance of BMP2/MGP, promoted the transcription of Runx2, and induced the phenotypic transformation of VSMCs from the contractile phenotype into the osteoblast-like cells. Our study would provide insights into hypertension-associated arterial ageing and calcification and shed new light on the control of arterial calcification, especially for those with hypertension.
Collapse
Affiliation(s)
- Xiaoyun Shi
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, China
| | - Siduo Zhang
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinghui Li
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yilang Ke
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yajing Bai
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
3
|
Zhong Y, Li XY, Liang TJ, Ding BZ, Ma KX, Ren WX, Liang WJ. Effects of NLRP3 Inflammasome Mediated Pyroptosis on Cardiovascular Diseases and Intervention Mechanism of Chinese Medicine. Chin J Integr Med 2024; 30:468-479. [PMID: 38329654 DOI: 10.1007/s11655-024-3655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/09/2024]
Abstract
Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome signaling pathway is an important mechanism underlying myocardial pyroptosis and plays an important role in inflammatory damage to myocardial tissue in patients with cardiovascular diseases (CVDs), such as diabetic cardiomyopathy, ischemia/reperfusion injury, myocardial infarction, heart failure and hypertension. Noncoding RNAs (ncRNAs) are important regulatory factors. Many Chinese medicine (CM) compounds, including their effective components, can regulate pyroptosis and exert myocardium-protecting effects. The mechanisms underlying this protection include inhibition of inflammasome protein expression, Toll-like receptor 4-NF-κB signal pathway activation, oxidative stress, endoplasmic reticulum stress (ERS), and mixed lineage kinase 3 expression and the regulation of silent information regulator 1. The NLRP3 protein is an important regulatory target for CVD prevention and treatment with CM. Exploring the effects of the interventions mediated by CM and the related mechanisms provides new ideas and perspectives for CVD prevention and treatment.
Collapse
Affiliation(s)
- Yi Zhong
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Liver and Kidney Diseases, Institute of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050200, China
- Department of Cardiovascular Internal Medicine, the Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, 332000, China
| | - Xin-Yue Li
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tian-Jun Liang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bao-Zhu Ding
- Rural Physician College, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ke-Xin Ma
- Medical Department, the First Hospital of Hebei Medical University, Shijiazhuang, 050030, China
| | - Wen-Xuan Ren
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wen-Jie Liang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Liver and Kidney Diseases, Institute of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
4
|
Liu N, Gong Z, Li Y, Xu Y, Guo Y, Chen W, Sun X, Yin X, Liu W. CTRP3 inhibits myocardial fibrosis through the P2X7R-NLRP3 inflammasome pathway in SHR rats. J Hypertens 2024; 42:315-328. [PMID: 37850974 DOI: 10.1097/hjh.0000000000003591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND PURPOSE Reducing hypertensive myocardial fibrosis is the fundamental approach to preventing hypertensive ventricular remodelling. C1q/TNF-related protein-3 (CTRP3) is closely associated with hypertension. However, the role and mechanism of CTRP3 in hypertensive myocardial fibrosis are unclear. In this study, we aimed to explore the effect of CTRP3 on hypertensive myocardial fibrosis and the potential mechanism. METHODS AND RESULTS WKY and SHR rats were employed, blood pressure, body weight, heart weight, H/BW were measured, and fibrotic-related proteins, CTRP3 and Collagen I were tested in myocardium at 12 and 20 weeks by immunohistochemical staining and Western blotting, respectively. The results showed that compared with the WKY, SBP, DBP, mean arterial pressure and heart rate (HR) were all significantly increased in SHR at 12 and 20 weeks, while heart weight and H/BW were only increased at 20 weeks. Meanwhile, CTRP3 decreased, while Collagen I increased significantly in the SHR rat myocardium at 20 weeks, which compared to the WKY. Moreover, the expression of α-SMA increased from 12 weeks, Collagen I/III and MMP2/9 increased and TIMP-2 decreased until 20 weeks. In order to explore the function and mechanism of CTRP3 in hypertensive fibrosis, Angiotensin II (Ang II) was used to induce hypertension in primary neonatal rat cardiac fibroblasts in vitro . CTRP3 significantly inhibited the Ang II induced activation of fibrotic proteins, purinergic 2X7 receptor (P2X7R)-NLRP3 inflammasome pathway. The P2X7R agonist BzATP significantly exacerbated Ang II-induced NLRP3 inflammasome activation, which was decreased by the P2X7R antagonists A43079, CTRP3 and MCC950. CONCLUSION CTRP3 expression was decreased in the myocardium of SHR rats, and exogenous CTRP3 inhibited Ang II-induced fibrosis in cardiac fibroblasts by regulating the P2X7R-NLRP3 inflammasome pathway, suggesting that CTRP3 is a potential drug for alleviating myocardial fibrosis in hypertensive conditions.
Collapse
Affiliation(s)
- Na Liu
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Zhaowei Gong
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
| | - Yang Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yang Xu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yutong Guo
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Wenjia Chen
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xue Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xinhua Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Wenxiu Liu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| |
Collapse
|
5
|
Liao X, Han Y, Shen C, Liu J, Wang Y. Targeting the NLRP3 inflammasome for the treatment of hypertensive target organ damage: Role of natural products and formulations. Phytother Res 2023; 37:5622-5638. [PMID: 37690983 DOI: 10.1002/ptr.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIM Hypertension is a major global health problem that causes target organ damage (TOD) in the heart, brain, kidney, and blood vessels. The mechanisms of hypertensive TOD are not fully understood, and its treatment is challenging. This review provides an overview of the current knowledge on the role of Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in hypertensive TOD and the natural products and formulations that inhibit it. METHODS We searched PubMed, Web of Science, Google Scholar, and CNKI for relevant articles using the keywords "hypertension," "target organ damage," "NLRP3 inflammasome," "natural products," and "formulations." We reviewed the effects of the NLRP3 inflammasome on hypertensive TOD in different organs and discussed the natural products and formulations that modulate it. KEY RESULTS In hypertensive TOD, the NLRP3 inflammasome is activated by various stimuli such as oxidative stress and inflammation. Activation of NLRP3 inflammasome leads to the production of pro-inflammatory cytokines that exacerbate tissue damage and dysfunction. Natural products and formulations, including curcumin, resveratrol, triptolide, and allicin, have shown protective effects against hypertensive TOD by inhibiting the NLRP3 inflammasome. CONCLUSIONS AND IMPLICATIONS The NLRP3 inflammasome is a promising therapeutic target in hypertensive TOD. Natural products and formulations that inhibit the NLRP3 inflammasome may provide novel drug candidates or therapies for hypertensive TOD. Further studies are needed to elucidate the molecular mechanisms and optimize the dosages of these natural products and formulations and evaluate their clinical efficacy and safety.
Collapse
Affiliation(s)
- Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshan Han
- Scientific Research Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chuanpu Shen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University Hefei, Hefei, China
| | - Jianjun Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Zheng F, Ye C, Ge R, Wang Y, Tian XL, Chen Q, Li YH, Zhu GQ, Zhou B. MiR-21-3p in extracellular vesicles from vascular fibroblasts of spontaneously hypertensive rat promotes proliferation and migration of vascular smooth muscle cells. Life Sci 2023; 330:122023. [PMID: 37579834 DOI: 10.1016/j.lfs.2023.122023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Enhanced proliferation and migration of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling in hypertension. Adventitial fibroblasts (AFs)-derived extracellular vesicles (EVs) modulate vascular remodeling in spontaneously hypertensive rat (SHR). This study shows the important roles of EVs-mediated miR-21-3p transfer in VSMC proliferation and migration and underlying mechanisms in SHR. AFs and VSMCs were obtained from aorta of Wistar-Kyoto rat (WKY) and SHR. EVs were separated from AFs culture with ultracentrifugation method. MiR-21-3p content in the EVs of SHR was increased compared with those of WKY. MiR-21-3p mimic promoted VSMC proliferation and migration of WKY and SHR, while miR-21-3p inhibitor attenuated proliferation and migration only in the VSMCs of SHR. EVs of SHR stimulated VSMC proliferation and migration, which were attenuated by miR-21-3p inhibitor. Sorbin and SH3 domain containing 2 (SORBS2) mRNA and protein levels were reduced in the VSMCs of SHR. MiR-21-3p mimic inhibited, while miR-21-3p inhibitor promoted SORBS2 expressions in the VSMCs of both WKY and SHR. EVs of SHR reduced SORBS2 expression, which was prevented by miR-21-3p inhibitor. EVs of WKY had no significant effect on SORBS2 expressions. SORBS2 overexpression attenuated the roles of miR-21-3p mimic and EVs of SHR in promoting VSMC proliferation and migration of SHR. Overexpression of miR-21-3p in vivo promotes vascular remodeling and hypertension. These results indicate that miR-21-3p in the EVs of SHR promotes VSMC proliferation and migration via negatively regulating SORBS2 expression.
Collapse
Affiliation(s)
- Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rui Ge
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Wang
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xiao-Lei Tian
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Bing Zhou
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|
7
|
Wu M, Zhang S, Zhang W, Zhou Y, Guo Z, Fang Y, Yang Y, Shen Z, Lian D, Shen A, Peng J. Qingda granule ameliorates vascular remodeling and phenotypic transformation of adventitial fibroblasts via suppressing the TGF-β1/Smad2/3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116535. [PMID: 37100260 DOI: 10.1016/j.jep.2023.116535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/08/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingda granule (QDG) exhibits significant therapeutic effects on high blood pressure, vascular dysfunction, and elevated proliferation of vascular smooth muscle cells by inhibiting multiple pathways. However, the effects and underlying mechanisms of QDG treatment on hypertensive vascular remodeling are unclear. AIM OF THE STUDY The aim of this study was to determine the role of QDG treatment in hypertensive vascular remodeling in vivo and in vitro. MATERIALS AND METHODS An ACQUITY UPLC I-Class system coupled with a Xevo XS quadrupole time of flight mass spectrometer was used to characterize the chemical components of QDG. Twenty-five spontaneously hypertensive rats (SHR) were randomly divided into five groups, including SHR (equal volume of double distilled water, ddH2O), SHR + QDG-L (0.45 g/kg/day), SHR + QDG-M (0.9 g/kg/day), SHR + QDG-H (1.8 g/kg/day), and SHR + Valsartan (7.2 mg/kg/day) groups. QDG, Valsartan, and ddH2O were administered intragastrically once a day for 10 weeks. For the control group, ddH2O was intragastrically administered to five Wistar Kyoto rats (WKY group). Vascular function, pathological changes, and collagen deposition in the abdominal aorta were evaluated using animal ultrasound, hematoxylin and eosin and Masson staining, and immunohistochemistry. Isobaric tags for relative and absolute quantification (iTRAQ) was performed to identify differentially expressed proteins (DEPs) in the abdominal aorta, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Cell Counting Kit-8 assays, phalloidin staining, transwell assays, and western-blotting were performed to explore the underlying mechanisms in primary isolated adventitial fibroblasts (AFs) stimulated with transforming growth factor-β 1 (TGF-β1) with or without QDG treatment. RESULTS Twelve compounds were identified from the total ion chromatogram fingerprint of QDG. In the SHR group, QDG treatment significantly attenuated the increased pulse wave velocity, aortic wall thickening, and abdominal aorta pathological changes and decreased Collagen I, Collagen III, and Fibronectin expression. The iTRAQ analysis identified 306 DEPs between SHR and WKY and 147 DEPs between QDG and SHR. GO and KEGG pathway analyses of the DEPs identified multiple pathways and functional processes involving vascular remodeling, including the TGF-β receptor signaling pathway. QDG treatment significantly attenuated the increased cell migration, actin cytoskeleton remodeling, and Collagen I, Collagen III, and Fibronectin expression in AFs stimulated with TGF-β1. QDG treatment significantly decreased TGF-β1 protein expression in abdominal aortic tissues in the SHR group and p-Smad2 and p-Smad3 protein expression in TGF-β1-stimulated AFs. CONCLUSIONS QDG treatment attenuated hypertension-induced vascular remodeling of the abdominal aorta and phenotypic transformation of adventitial fibroblasts, at least partly by suppressing TGF-β1/Smad2/3 signaling.
Collapse
Affiliation(s)
- Meizhu Wu
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Siyu Zhang
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Wenqiang Zhang
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Yuting Zhou
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Zhi Guo
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Yi Fang
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Yanyan Yang
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Zhiqing Shen
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Dawei Lian
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Aling Shen
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
8
|
Aladag T, Mogulkoc R, Baltaci AK. Irisin and Energy Metabolism and the Role of Irisin on Metabolic Syndrome. Mini Rev Med Chem 2023; 23:1942-1958. [PMID: 37055896 DOI: 10.2174/1389557523666230411105506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 04/15/2023]
Abstract
Irisin is a thermogenic hormone that leads to causes energy expenditure by increasing brown adipose tissue (BAT). This protein hormone that enables the conversion of white adipose tissue (WAT) to BAT is the irisin protein. This causes energy expenditure during conversion. WAT stores triglycerides and fatty acids and contains very few mitochondria. They also involve in the development of insulin resistance (IR). WAT, which contains a very small amount of mitochondria, contributes to the formation of IR by storing triglycerides and fatty acids. WAT functions as endocrine tissue in the body, synthesizing various molecules such as leptin, ghrelin, NUCB2/nesfatin-1, and irisin along with fat storage. BAT is quite effective in energy expenditure, unlike WAT. The number of mitochondria and lipid droplets composed of multicellular cells in BAT is much higher when compared to WAT. BAT contains a protein called uncoupling protein-1 (UCP1) in the mitochondrial membranes. This protein pumps protons from the intermembrane space toward the mitochondrial matrix. When UCP1 is activated, heat dissipation occurs while ATP synthesis does not occur, because UCP1 is a division protein. At the same time, BAT regulates body temperature in infants. Its effectiveness in adults became clear after the discovery of irisin. The molecular mechanism of exercise, which increases calorie expenditure, became clear with the discovery of irisin. Thus, the isolation of irisin led to the clarification of metabolic events and fat metabolism. In this review, literature information will be given on the effect of irisin hormone on energy metabolism and metabolic syndrome (MetS).
Collapse
Affiliation(s)
- Tugce Aladag
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | | |
Collapse
|
9
|
Liu L, Cui Q, Song J, Yang Y, Zhang Y, Qi J, Zhao J. Hydroxysafflower Yellow A Inhibits Vascular Adventitial Fibroblast Migration via NLRP3 Inflammasome Inhibition through Autophagy Activation. Int J Mol Sci 2022; 24:ijms24010172. [PMID: 36613617 PMCID: PMC9820330 DOI: 10.3390/ijms24010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammation is closely associated with progression of vascular remodeling. The NLRP3 inflammasome is the key molecule that promotes vascular remodeling via activation of vascular adventitia fibroblast (VAF) proliferation and differentiation. VAFs have a vital effect on vascular remodeling that could be improved using hydroxysafflower yellow A (HSYA). However, whether HSYA ameliorates vascular remodeling through inhibition of NLRP3 inflammasome activation has not been explored in detail. Here, we cultured primary VAFs and analyzed the migration of VAFs induced by angiotensin II (ANG II) to determine the potential effects and mechanism of HSYA on VAF migration. The results thereof showed that HSYA remarkably inhibited ANG II-induced VAF migration, NLRP3 inflammasome activation, and the TLR4/NF-κB signaling pathway in a dose-dependent manner. In addition, it is worth noting that LPS promoted ANG II-induced VAF migration and NLRP3 inflammasome assembly, which could be significantly reversed using HSYA. Moreover, HSYA could be used to inhibit NLRP3 inflammasome activation by promoting autophagy. In conclusion, HSYA could inhibit ANG II-induced VAF migration through autophagy activation and inhibition of NLRP3 inflammasome activation through the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Liu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qingzhuo Cui
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Junna Song
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yixin Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jiapeng Qi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jingshan Zhao
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Correspondence:
| |
Collapse
|
10
|
Epigenetic Mechanisms Involved in Inflammaging-Associated Hypertension. Curr Hypertens Rep 2022; 24:547-562. [PMID: 35796869 DOI: 10.1007/s11906-022-01214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the involvement of inflammaging in vascular damage with focus on the epigenetic mechanisms by which inflammaging-induced hypertension is triggered. RECENT FINDINGS Inflammaging in hypertension is a complex condition associated with the production of inflammatory mediators by the immune cells, enhancement of oxidative stress, and tissue remodeling in vascular smooth muscle cells and endothelial cells. Cellular processes are numerous, including inflammasome assembly and cell senescence which may involve mitochondrial dysfunction, autophagy, DNA damage response, dysbiosis, and many others. More recently, a series of noncoding RNAs, mainly microRNAs, have been described as possessing epigenetic actions on the regulation of inflammasome-related hypertension, emerging as a promising therapeutic strategy. Although there are a variety of pharmacological agents that effectively regulate inflammaging-related hypertension, a deeper understanding of the epigenetic events behind the control of vessel deterioration is needed for the treatment or even to prevent the disease onset.
Collapse
|
11
|
Ye C, Geng Z, Zhang LL, Zheng F, Zhou YB, Zhu GQ, Xiong XQ. Chronic infusion of ELABELA alleviates vascular remodeling in spontaneously hypertensive rats via anti-inflammatory, anti-oxidative and anti-proliferative effects. Acta Pharmacol Sin 2022; 43:2573-2584. [PMID: 35260820 PMCID: PMC9525578 DOI: 10.1038/s41401-022-00875-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Inflammatory activation and oxidative stress promote the proliferation of vascular smooth muscle cells (VSMCs), which accounts for pathological vascular remodeling in hypertension. ELABELA (ELA) is the second endogenous ligand for angiotensin receptor-like 1 (APJ) receptor that has been discovered thus far. In this study, we investigated whether ELA regulated VSMC proliferation and vascular remodeling in spontaneously hypertensive rats (SHRs). We showed that compared to that in Wistar-Kyoto rats (WKYs), ELA expression was markedly decreased in the VSMCs of SHRs. Exogenous ELA-21 significantly inhibited inflammatory cytokines and NADPH oxidase 1 expression, reactive oxygen species production and VSMC proliferation and increased the nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2) in VSMCs. Osmotic minipump infusion of exogenous ELA-21 in SHRs for 4 weeks significantly decreased diastolic blood pressure, alleviated vascular remodeling and ameliorated vascular inflammation and oxidative stress in SHRs. In VSMCs of WKY, angiotensin II (Ang II)-induced inflammatory activation, oxidative stress and VSMC proliferation were attenuated by pretreatment with exogenous ELA-21 but were exacerbated by ELA knockdown. Moreover, ELA-21 inhibited the expression of matrix metalloproteinase 2 and 9 in both SHR-VSMCs and Ang II-treated WKY-VSMCs. We further revealed that exogenous ELA-21-induced inhibition of proliferation and PI3K/Akt signaling were amplified by the PI3K/Akt inhibitor LY294002, while the APJ receptor antagonist F13A abolished ELA-21-induced PI3K/Akt inhibition and Nrf2 activation in VSMCs. In conclusion, we demonstrate that ELA-21 alleviates vascular remodeling through anti-inflammatory, anti-oxidative and anti-proliferative effects in SHRs, indicating that ELA-21 may be a therapeutic agent for treating hypertension.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi Geng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Ling-Li Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 211166, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
12
|
Irisin, an Effective Treatment for Cardiovascular Diseases? J Cardiovasc Dev Dis 2022; 9:jcdd9090305. [PMID: 36135450 PMCID: PMC9503035 DOI: 10.3390/jcdd9090305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Irisin, as one of the myokines induced by exercise, has attracted much attention due to its important physiological functions such as white fat browning, the improvement in metabolism, and the alleviation of inflammation. Despite the positive role that irisin has been proven to play in the prevention and treatment of cardiovascular diseases, whether it can become a biomarker and potential target for predicting and treating cardiovascular diseases remains controversial, given the unreliability of its detection methods, the uncertainty of its receptors, and the species differences between animals and humans. This paper was intended to review the role of irisin in the diagnosis and treatment of cardiovascular diseases, the potential molecular mechanism, and the urgent problems to be solved in hopes of advancing our understanding of irisin as well as providing data for the development of new and promising intervention strategies by discussing the causes of contradictory results.
Collapse
|
13
|
Ye C, Zheng F, Wu N, Zhu GQ, Li XZ. Extracellular vesicles in vascular remodeling. Acta Pharmacol Sin 2022; 43:2191-2201. [PMID: 35022541 PMCID: PMC9433397 DOI: 10.1038/s41401-021-00846-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Vascular remodeling contributes to the development of a variety of vascular diseases including hypertension and atherosclerosis. Phenotypic transformation of vascular cells, oxidative stress, inflammation and vascular calcification are closely associated with vascular remodeling. Extracellular vesicles (EVs) are naturally released from almost all types of cells and can be detected in nearly all body fluids including blood and urine. EVs affect vascular oxidative stress, inflammation, calcification, and lipid plaque formation; and thereby impact vascular remodeling in a variety of cardiovascular diseases. EVs may be used as biomarkers for diagnosis and prognosis, and therapeutic strategies for vascular remodeling and cardiovascular diseases. This review includes a comprehensive analysis of the roles of EVs in the vascular remodeling in vascular diseases, and the prospects of EVs in the diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China.
| | - Xiu-Zhen Li
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
14
|
Zhou B, Wu N, Yan Y, Wu LL, Zhu GQ, Xiong XQ. Angiotensin II-induced miR-31-5p upregulation promotes vascular smooth muscle cell proliferation and migration. Exp Cell Res 2022; 419:113303. [DOI: 10.1016/j.yexcr.2022.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
|
15
|
Abbasian S, Ravasi AA, Haghighi AH, Aydin S, Delbari A, Aydın S. Preconditioning intensive training ameliorates reduction of transcription biofactors of PGC1α-pathway in paretic muscle due to cerebral ischemia. Biotech Histochem 2022; 98:46-53. [PMID: 35892280 DOI: 10.1080/10520295.2022.2098535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Exercise training increases fibronectin type III domain-containing protein 5 (FNDC5/irisin) via the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)-pathway. The PGC1α pathway induced FNDC5/irisin changes in response to exercise training and ischemic stroke are not entirely understood. We investigated the relation of the PGC-1α/FNDC5/irisin pathway to exercise training and to the pathophysiology of ischemic stroke in paretic muscles of stroke-induced rat models. We induced cerebral ischemia following completion of high-intensity interval training (HIIT) to evaluate PGC1α-pathway biofactors in paretic muscles. To define the underlying molecular mechanisms for improvement in paretic muscles following cerebral ischemia, we evaluated PCG-1α-pathway factors using immunofluorescence tracking and enzyme-linked immunosorbent assay (ELISA) immunoassay. We found that HIIT for 3 weeks produced increased expression and release of PGC-1α-pathway biomarkers in both the serum and paretic muscle of stroke-induced rats. We also found a close relation between the expression of PCG-1α-pathway factors in skeletal muscle and their concentration in blood. We found that PGC-1α-pathway biomarkers cause irisin up-regulation following induction of cerebral ischemia. The reduction in neurofunctional deficits following increased PGC-1α-pathway biomarkers suggests that these factors may act as markers of improvement in paretic muscle healing following cerebral ischemia.
Collapse
Affiliation(s)
| | | | | | | | - Ahmad Delbari
- University of Social Welfare and Rehabilitation Sciences, Iran
| | | |
Collapse
|
16
|
Irisin, An Exercise-induced Bioactive Peptide Beneficial for Health Promotion During Aging Process. Ageing Res Rev 2022; 80:101680. [PMID: 35793739 DOI: 10.1016/j.arr.2022.101680] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022]
|
17
|
Yin B, Wang YB, Li X, Hou XW. β‑aminoisobutyric acid ameliorates hypertensive vascular remodeling via activating the AMPK/SIRT1 pathway in VSMCs. Bioengineered 2022; 13:14382-14401. [PMID: 36694438 PMCID: PMC9995136 DOI: 10.1080/21655979.2022.2085583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play a fundamental role in the pathogenesis of hypertension-related vascular remodeling. β-aminoisobutyric acid (BAIBA) is a nonprotein β-amino acid with multiple pharmacological actions. Recently, BAIBA has been shown to attenuate salt‑sensitive hypertension, but the role of BAIBA in hypertension-related vascular remodeling has yet to be fully clarified. This study examined the potential roles and underlying mechanisms of BAIBA in VSMC proliferation and migration induced by hypertension. Primary VSMCs were cultured from the aortas of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Our results showed that BAIBA pretreatment obviously alleviated the phenotypic transformation, proliferation, and migration of SHR-derived VSMCs. Exogenous BAIBA significantly inhibited the release of inflammatory cytokines by diminishing phosphorylation and nuclear translocation of p65 NFκB, retarding IκBα phosphorylation and degradation, as well as erasing STAT3 phosphorylation in VSMCs. Supplementation of BAIBA triggered Nrf2 dissociation from Keap1 and inhibited oxidative stress in VSMCs from SHR. Mechanistically, activation of the AMPK/sirtuin 1 (SIRT1) axis was required for BAIBA to cube hypertension-induced VSMC proliferation, migration, oxidative damage and inflammatory response. Most importantly, exogenous BAIBA alleviated hypertension, ameliorated vascular remodeling and fibrosis, abated vascular oxidative burst and inflammation in SHR, an effect that was abolished by deficiency of AMPKα1 and SIRT1. BAIBA might serve as a novel therapeutic agent to prevent vascular remodeling in the context of hypertension.
Collapse
Affiliation(s)
- Bo Yin
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu-Bin Wang
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiang Li
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xu-Wei Hou
- Department of Human Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
18
|
Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022; 13:848867. [PMID: 35530510 PMCID: PMC9075737 DOI: 10.3389/fphys.2022.848867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Meng-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jie Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Kai Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang-Ying Yu
- Nursing School of Wuxi Taihu University, Wuxi, China
| | - Qing-Bo Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Zhang J, Liang R, Wang K, Zhang W, Zhang M, Jin L, Xie P, Zheng W, Shang H, Hu Q, Li J, Chen G, Wu F, Lan F, Wang L, Wang SQ, Li Y, Zhang Y, Liu J, Lv F, Hu X, Xiao RP, Lei X, Zhang Y. Novel CaMKII-δ Inhibitor Hesperadin Exerts Dual Functions to Ameliorate Cardiac Ischemia/Reperfusion Injury and Inhibit Tumor Growth. Circulation 2022; 145:1154-1168. [PMID: 35317609 DOI: 10.1161/circulationaha.121.055920] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease, the leading cause of morbidity and mortality worldwide. At present, there is no effective therapy for reducing cardiac I/R injury. CaMKII (Ca2+/calmodulin-dependent kinase II) plays a pivotal role in the pathogenesis of severe heart conditions, including I/R injury. Pharmacological inhibition of CaMKII is an important strategy in the protection against myocardial damage and cardiac diseases. To date, there is no drug targeting CaMKII for the clinical therapy of heart disease. Furthermore, at present, there is no selective inhibitor of CaMKII-δ, the major CaMKII isoform in the heart. METHODS A small-molecule kinase inhibitor library and a high-throughput screening system for the kinase activity assay of CaMKII-δ9 (the most abundant CaMKII-δ splice variant in human heart) were used to screen for CaMKII-δ inhibitors. Using cultured neonatal rat ventricular myocytes, human embryonic stem cell-derived cardiomyocytes, and in vivo mouse models, in conjunction with myocardial injury induced by I/R (or hypoxia/reoxygenation) and CaMKII-δ9 overexpression, we sought to investigate the protection of hesperadin against cardiomyocyte death and cardiac diseases. BALB/c nude mice with xenografted tumors of human cancer cells were used to evaluate the in vivo antitumor effect of hesperadin. RESULTS Based on the small-molecule kinase inhibitor library and screening system, we found that hesperadin, an Aurora B kinase inhibitor with antitumor activity in vitro, directly bound to CaMKII-δ and specifically blocked its activation in an ATP-competitive manner. Hesperadin functionally ameliorated both I/R- and overexpressed CaMKII-δ9-induced cardiomyocyte death, myocardial damage, and heart failure in both rodents and human embryonic stem cell-derived cardiomyocytes. In addition, in an in vivo BALB/c nude mouse model with xenografted tumors of human cancer cells, hesperadin delayed tumor growth without inducing cardiomyocyte death or cardiac injury. CONCLUSIONS Here, we identified hesperadin as a specific small-molecule inhibitor of CaMKII-δ with dual functions of cardioprotective and antitumor effects. These findings not only suggest that hesperadin is a promising leading compound for clinical therapy of cardiac I/R injury and heart failure, but also provide a strategy for the joint therapy of cancer and cardiovascular disease caused by anticancer treatment.
Collapse
Affiliation(s)
- Junxia Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Ruqi Liang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering (R.L., X.L.), Peking University, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China (K.W.)
| | - Wenjia Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education (W. Zhang, Yan Zhang), Peking University Health Science Center, Beijing, China
| | - Mao Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Peng Xie
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Wen Zheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Haibao Shang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Qingmei Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Jiayi Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Fujian Wu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (F.W., F.L.)
| | - Feng Lan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (F.W., F.L.)
| | - Lipeng Wang
- College of Life Sciences (L.W., S.-Q.W.), Peking University, Beijing, China
| | - Shi-Qiang Wang
- College of Life Sciences (L.W., S.-Q.W.), Peking University, Beijing, China
| | - Yongfeng Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences (Y.L., Yong Zhang), Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, IDG/McGovern Institute for Brain Research at PKU. Beijing, China (Y.L., Yong Zhang)
| | - Yong Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education (W. Zhang, Yan Zhang), Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences (Y.L., Yong Zhang), Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, IDG/McGovern Institute for Brain Research at PKU. Beijing, China (Y.L., Yong Zhang)
| | - Jinghao Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (R.-P.X., X.L.), Peking University, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.-P.X.), Peking University, Beijing, China
- PKU-Nanjing Joint Institute of Translational Medicine, Nanjing, China (R.-P.X.)
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering (R.L., X.L.), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (R.-P.X., X.L.), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies (X.L.), Peking University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| |
Collapse
|
20
|
Ye C, Tong Y, Wu N, Wan GW, Zheng F, Chen JY, Lei JZ, Zhou H, Chen AD, Wang JJ, Chen Q, Li YH, Kang YM, Zhu GQ. Inhibition of miR-135a-5p attenuates vascular smooth muscle cell proliferation and vascular remodeling in hypertensive rats. Acta Pharmacol Sin 2021; 42:1798-1807. [PMID: 33589794 DOI: 10.1038/s41401-020-00608-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) greatly contributes to vascular remodeling in hypertension. This study is to determine the roles and mechanisms of miR-135a-5p intervention in attenuating VSMC proliferation and vascular remodeling in spontaneously hypertensive rats (SHRs). MiR-135a-5p level was raised, while fibronectin type III domain-containing 5 (FNDC5) mRNA and protein expressions were reduced in VSMCs of SHRs compared with those of Wistar-Kyoto rats (WKYs). Enhanced VSMC proliferation in SHRs was inhibited by miR-135a-5p knockdown or miR-135a-5p inhibitor, but exacerbated by miR-135a-5p mimic. VSMCs of SHRs showed reduced myofilaments, increased or even damaged mitochondria, increased and dilated endoplasmic reticulum, which were attenuated by miR-135a-5p inhibitor. Dual-luciferase reporter assay shows that FNDC5 was a target gene of miR-135a-5p. Knockdown or inhibition of miR-135a-5p prevented the FNDC5 downregulation in VSMCs of SHRs, while miR-135a-5p mimic inhibited FNDC5 expressions in VSMCs of both WKYs and SHRs. FNDC5 knockdown had no significant effects on VSMC proliferation of WKYs, but aggravated VSMC proliferation of SHRs. Exogenous FNDC5 or FNDC5 overexpression attenuated VSMC proliferation of SHRs, and prevented miR-135a-5p mimic-induced enhancement of VSMC proliferation of SHR. MiR-135a-5p knockdown in SHRs attenuated hypertension, normalized FNDC5 expressions and inhibited vascular smooth muscle proliferation, and alleviated vascular remodeling. These results indicate that miR-135a-5p promotes while FNDC5 inhibits VSMC proliferation in SHRs. Silencing of miR-135a-5p attenuates VSMC proliferation and vascular remodeling in SHRs via disinhibition of FNDC5 transcription. Either inhibition of miR-135a-5p or upregulation of FNDC5 may be a therapeutically strategy in attenuating vascular remodeling and hypertension.
Collapse
|
21
|
Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacol Sin 2021; 42:1390-1400. [PMID: 33214697 PMCID: PMC8379181 DOI: 10.1038/s41401-020-00557-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular and metabolic diseases are the leading causes of death and disability worldwide and impose a tremendous socioeconomic burden on individuals as well as the healthcare system. Fibronectin type III domain-containing 5 (FNDC5) is a widely distributed transmembrane glycoprotein that can be proteolytically cleaved and secreted as irisin to regulate glycolipid metabolism and cardiovascular homeostasis. In this review, we present the current knowledge on the predictive and therapeutic role of FNDC5 in a variety of cardiovascular and metabolic diseases, such as hypertension, atherosclerosis, ischemic heart disease, arrhythmia, metabolic cardiomyopathy, cardiac remodeling, heart failure, diabetes mellitus, and obesity.
Collapse
|
22
|
Zhang M, Li Y, Guo Y, Xu J. Arginine Regulates NLRP3 Inflammasome Activation Through SIRT1 in Vascular Endothelial Cells. Inflammation 2021; 44:1370-1380. [PMID: 33630211 DOI: 10.1007/s10753-021-01422-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/23/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
L-arginine (Arg), a semi-essential amino acid, has recently been shown to attenuate inflammatory response during cardiovascular disease. NLRP3 inflammasome serves a central role in amplification of cellular inflammation. In this study, we aimed to confirm the modulatory effect of Arg on NLRP3 inflammasome and the underlying mechanisms in vascular endothelial cells (ECs). Arg suppressed NLRP3 inflammasome activation in ECs stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Moreover, treatment with Arg increased the expression of the deacetylase sirtuin 1 (SIRT1) in ECs. Importantly, knockdown of SIRT1 abolished the inhibitory potential of Arg on the activation of NLRP3 inflammasome. Further study indicated that Arg also alleviated LPS plus ATP-induced the generation of reactive oxygen species (ROS) in ECs. In addition, Arg may regulate NLRP3 inflammasome activation partly through suppression of ROS production. In combination, we speculate that Arg exerts an inhibitory effect on the activation of NLRP3 inflammasome in ECs, which may be partly mediated by SIRT1 and ROS.
Collapse
Affiliation(s)
| | - Yanxiang Li
- School of Pharmacy, Weifang Medical University, Weifang, China
- School of Pharmacy, Taizhou Polytechnic College, Taizhou, China
| | - Yujie Guo
- School of Medicine, Nantong University, Nantong, China.
| | - Jiashuo Xu
- School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
23
|
Extracellular vesicle-mediated miR135a-5p transfer in hypertensive rat contributes to vascular smooth muscle cell proliferation via targeting FNDC5. Vascul Pharmacol 2021; 140:106864. [PMID: 33865997 DOI: 10.1016/j.vph.2021.106864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Background Extracellular vesicles (EVs) from vascular adventitial fibroblasts (AFs) contribute to the proliferation of vascular smooth muscle cells (VSMCs) and vascular remodeling in spontaneously hypertensive rat (SHR). This study shows the crucial roles of EVs-mediated miR135a-5p transfer in VSMC proliferation and the underlying mechanisms in hypertension. Methods AFs and VSMCs were obtained from the aorta of Wistar-Kyoto rat (WKY) and SHR. EVs were isolated from the culture of AFs with ultracentrifugation method. Results MiR135a-5p level in SHR-EVs was significantly increased. MiR135a-5p inhibitor prevented the SHR-EVs-induced VSMC proliferation. Fibronectin type III domain containing 5 (FNDC5) was a target gene of miR135a-5p. FNDC5 level was lower in VSMCs of SHR. MiR135a-5p inhibitor not only increased FNDC5 expression, but reversed the SHR-EVs-induced FNDC5 downregulation in VSMCs of SHR. MiR135a-5p mimic inhibited FNDC5 expression, but failed to promote the SHR-EVs-induced FNDC5 downregulation in VSMCs of SHR. Exogenous FNDC5 prevented the SHR-EVs-induced VSMC proliferation of both WKY and SHR. Knockdown of miR135a-5p in fibroblasts completely prevented the upregulation of miR135a-5p in the EVs. The SHR-EVs from the miR135a-5p knockdown-treated fibroblasts lost their roles in inhibiting FNDC5 expression and promoting proliferation in VSMCs of both WKY and SHR. Conclusions Increased miR135a-5p in the SHR-EVs promoted VSMC proliferation of WKY and SHR via inhibiting FNDC5 expression. MiR135a-5p and FNDC5 are crucial targets for intervention of VSMC proliferation in hypertension.
Collapse
|
24
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
25
|
Pellegrini C, Martelli A, Antonioli L, Fornai M, Blandizzi C, Calderone V. NLRP3 inflammasome in cardiovascular diseases: Pathophysiological and pharmacological implications. Med Res Rev 2021; 41:1890-1926. [PMID: 33460162 DOI: 10.1002/med.21781] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence points out the importance of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome in the pathogenesis of cardiovascular diseases (CVDs), including hypertension, myocardial infarct (MI), ischemia, cardiomyopathies (CMs), heart failure (HF), and atherosclerosis. In this regard, intensive research efforts both in humans and in animal models of CVDs are being focused on the characterization of the pathophysiological role of NLRP3 inflammasome signaling in CVDs. In addition, clinical and preclinical evidence is coming to light that the pharmacological blockade of NLRP3 pathways with drugs, including novel chemical entities as well as drugs currently employed in the clinical practice, biologics and phytochemicals, could represent a suitable therapeutic approach for prevention and management of CVDs. On these bases, the present review article provides a comprehensive overview of clinical and preclinical studies about the role of NLRP3 inflammasome in the pathophysiology of CVDs, including hypertension, MI, ischemic injury, CMs, HF and atherosclerosis. In addition, particular attention has been focused on current evidence on the effects of drugs, biologics, and phytochemicals, targeting different steps of inflammasome signaling, in CVDs.
Collapse
Affiliation(s)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | | |
Collapse
|
26
|
A brief overview about the physiology of fibronectin type III domain-containing 5. Cell Signal 2020; 76:109805. [PMID: 33031934 DOI: 10.1016/j.cellsig.2020.109805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 01/10/2023]
|
27
|
Extracellular Vesicle-Mediated Vascular Cell Communications in Hypertension: Mechanism Insights and Therapeutic Potential of ncRNAs. Cardiovasc Drugs Ther 2020; 36:157-172. [PMID: 32964302 DOI: 10.1007/s10557-020-07080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Hypertension, a chronic and progressive disease, is an outstanding public health issue that affects nearly 40% of the adults worldwide. The increasing prevalence of hypertension is one of the leading causes of cardiovascular morbidity and mortality. Despite of the available treatment medications, an increasing number of hypertensive individuals continues to have uncontrolled blood pressure. In the vasculature, endothelial cells, vascular smooth muscle cells (VSMCs), and adventitial fibroblasts play a fundamental role in vascular homeostasis. The aberrant interactions between vascular cells might lead to hypertension and vascular remodeling. Identification of the precise mechanisms of vascular remodeling may be highly required to develop effective therapeutic approaches for hypertension. Recently, extracellular vesicle-mediated transfer of proteins or noncoding RNAs (ncRNAs) between vascular cells holds promise for the treatment of hypertension. Especially, extracellular vesicle-packaging ncRNAs have gained enormous attention of basic and clinical scientists because of their tremendous potential to act as novel clinical biomarkers and therapeutic targets of hypertension. Here we will discuss the current findings focusing on the emerging roles of extracellular vesicle-carrying ncRNAs in the pathologies of hypertension and its associated vascular remodeling. Furthermore, we will highlight the potential of extracellular vesicles and ncRNAs as biomarkers and therapeutic targets for hypertension. The future research directions on the challenges and perspectives of extracellular vesicles and ncRNAs in hypertensive vascular remodeling are also proposed.
Collapse
|
28
|
de Oliveira M, De Sibio MT, Mathias LS, Rodrigues BM, Sakalem ME, Nogueira CR. Irisin modulates genes associated with severe coronavirus disease (COVID-19) outcome in human subcutaneous adipocytes cell culture. Mol Cell Endocrinol 2020; 515:110917. [PMID: 32593740 PMCID: PMC7315947 DOI: 10.1016/j.mce.2020.110917] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Obesity patients are more susceptible to develop COVID-19 severe outcome due to the role of angiotensin-converting enzyme 2 (ACE2) in the viral infection. ACE2 is regulated in the human cells by different genes associated with increased (TLR3, HAT1, HDAC2, KDM5B, SIRT1, RAB1A, FURIN and ADAM10) or decreased (TRIB3) virus replication. RNA-seq data revealed 14857 genes expressed in human subcutaneous adipocytes, including genes mentioned above. Irisin treatment increased by 3-fold the levels of TRIB3 transcript and decreased the levels of other genes. The decrease in FURIN and ADAM10 expression enriched diverse biological processes, including extracellular structure organization. Our results, in human subcutaneous adipocytes cell culture, indicate a positive effect of irisin on the expression of multiple genes related to viral infection by SARS-CoV-2; furthermore, translatable for other tissues and organs targeted by the novel coronavirus and present, thus, promising approaches for the treatment of COVID-19 infection as therapeutic strategy to decrease ACE2 regulatory genes.
Collapse
Affiliation(s)
- Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas Solla Mathias
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Moretto Rodrigues
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marna Eliana Sakalem
- Department of Anatomy, Londrina State University (UEL), Londrina, Parana, Brazil
| | - Célia Regina Nogueira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
29
|
Wang T, Maltez MT, Lee HW, Ahmad M, Wang HW, Leenen FHH. Effect of exercise training on the FNDC5/BDNF pathway in spontaneously hypertensive rats. Physiol Rep 2020; 7:e14323. [PMID: 31883222 PMCID: PMC6934876 DOI: 10.14814/phy2.14323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increased sympathetic activity contributes to the development of cardiovascular diseases such as hypertension. Exercise training lowers sympathetic activity and is beneficial for the prevention and treatment of hypertension and associated cognitive impairment. Increased BDNF expression in skeletal muscle, heart, and brain may contribute to these actions of exercise, but the mechanisms by which this occurs are unknown. We postulated that hypertension is associated with decreased hippocampal BDNF, which can be restored by exercise‐mediated upregulation of fibronectin type‐II domain‐containing 5 (FNDC5). Spontaneously hypertensive rats (SHR) and normotensive Wistar–Kyoto rats (WKY) were subjected to 5 weeks of motorized treadmill training. BDNF and FNDC5 expressions were measured in the left ventricle (LV), quadriceps, soleus muscle, and brain areas. Exercise training reduced blood pressure (BP) in both strains. BDNF and FNDC5 protein in the LV were increased in SHR, but exercise increased only BDNF protein in both strains. BDNF mRNA, but not protein, was increased in the quadriceps of SHR, and BDNF mRNA and protein were decreased by exercise in both groups. FNDC5 protein was higher in SHR in both the quadriceps and soleus muscle, whereas exercise increased FNDC5 protein only in the quadriceps in both strains. BDNF mRNA was lower in the dentate gyrus (DG) of SHR, which was normalized by exercise. BDNF mRNA expression in the DG negatively correlated with BP. No differences in FNDC5 expression were observed in the brain, suggesting that enhanced BDNF signaling may contribute to the cardiovascular and neurological benefits of exercise training, and these processes involve peripheral, but not central, FNDC5.
Collapse
Affiliation(s)
- Tao Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Melissa T Maltez
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Heow Won Lee
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
30
|
FNDC5 Attenuates Oxidative Stress and NLRP3 Inflammasome Activation in Vascular Smooth Muscle Cells via Activating the AMPK-SIRT1 Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6384803. [PMID: 32509148 PMCID: PMC7254086 DOI: 10.1155/2020/6384803] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023]
Abstract
Vascular oxidative stress and inflammation play a major role in vascular diseases. This study was aimed at determining the protective roles of fibronectin type III domain-containing 5 (FNDC5) in angiotensin II- (Ang II-) induced vascular oxidative stress and inflammation and underlying mechanisms. Wild-type (WT) and FNDC5−/− mice, primary mouse vascular smooth muscle cells (VSMCs), and the rat aortic smooth muscle cell line (A7R5) were used in the present study. Subcutaneous infusion of Ang II caused more serious hypertension, vascular remodeling, oxidative stress, NLRP3 inflammasome activation, AMPK phosphorylation inhibition, and SIRT1 downregulation in the aorta of FNDC5−/− mice than those of WT mice. Exogenous FNDC5 attenuated Ang II-induced superoxide generation, NADPH oxidase 2 (NOX2) and NLRP3 upregulation, mature caspase-1, and interleukin-1β (IL-1β) production in A7R5 cells. The protective roles of FNDC5 were prevented by SIRT-1 inhibitor EX527, AMPK inhibitor compound C, or integrin receptor inhibitor GLPG0187. FNDC5 attenuated the Ang II-induced inhibition in SIRT1 activity, SIRT1 protein expression, and AMPKα phosphorylation in A7R5 cells, which were prevented by compound C, EX527, and GLPG0187. FNDC5 deficiency deteriorated Ang II-induced oxidative stress, NLRP3 inflammasome activation, AMPK phosphorylation inhibition, and SIRT1 downregulation in primary aortic VSMCs of mice, which were prevented by exogenous FNDC5. These results indicate that FNDC5 deficiency aggravates while exogenous FNDC5 alleviates the Ang II-induced vascular oxidative stress and NLRP3 inflammasome activation via the AMPK-SIRT1 signal pathway in VSMCs.
Collapse
|
31
|
Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2020; 19:517-532. [PMID: 30992524 DOI: 10.1038/s41577-019-0160-5] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension affects 30% of adults and is the leading risk factor for heart attack and stroke. Traditionally, hypertension has been regarded as a disorder of two systems that are involved in the regulation of salt-water balance and cardiovascular function: the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS). However, current treatments that aim to limit the influence of the RAAS or SNS on blood pressure fail in ~40% of cases, which suggests that other mechanisms must be involved. This Review summarizes the clinical and experimental evidence supporting a contribution of immune mechanisms to the development of hypertension. In this context, we highlight the immune cell subsets that are postulated to either promote or protect against hypertension through modulation of cardiac output and/or peripheral vascular resistance. We conclude with an appraisal of knowledge gaps still to be addressed before immunomodulatory therapies might be applied to at least a subset of patients with hypertension.
Collapse
Affiliation(s)
- Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Tomasz J Guzik
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland.,BHF Centre of Research Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
MiR155-5p Inhibits Cell Migration and Oxidative Stress in Vascular Smooth Muscle Cells of Spontaneously Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9030204. [PMID: 32121598 PMCID: PMC7140008 DOI: 10.3390/antiox9030204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Migration of vascular smooth muscle cells (VSMCs) is essential for vascular reconstruction in hypertension and several vascular diseases. Our recent study showed that extracellular vesicles derived from vascular adventitial fibroblasts of normal rats inhibited VSMC proliferation by delivering miR155-5p to VSMCs. It is unknown whether miR155-5p inhibits cell migration and oxidative stress in VSMCs of spontaneously hypertensive rats (SHR) and in angiotensin II (Ang II)-treated VSMCs. The purpose of this study was to determine the role of miR155-5p in VSMC migration and its underlying mechanisms. Primary VSMCs were isolated from the aortic media of Wistar-Kyoto rats (WKY) and SHR. Wound healing assay and Boyden chamber assay were used to evaluate VSMC migration. A miR155-5p mimic inhibited, and a miR155-5p inhibitor promoted the migration of VSMC of SHR but had no significant effect on the migration of VSMC of WKY. The miR155-5p mimic inhibited angiotensin-converting enzyme (ACE) mRNA and protein expression in VSMCs. It also reduced superoxide anion production, NAD(P)H oxidase (NOX) activity, as well as NOX2, interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α) expression levels in VSMCs of SHR but not in VSMCs of WKY rats. Overexpression of miR155-5p inhibited VSMC migration and superoxide anion and IL-1β production in VSMCs of SHR but had no impact on exogenous Ang II-induced VSMC migration and on superoxide anion and IL-1β production in WKY rats and SHR. These results indicate that miR155-5p inhibits VSMC migration in SHR by suppressing ACE expression and its downstream production of Ang II, superoxide anion, and inflammatory factors. However, miR155-5p had no effects on exogenous Ang II-induced VSMC migration.
Collapse
|
33
|
Tinajero MG, Gotlieb AI. Recent Developments in Vascular Adventitial Pathobiology: The Dynamic Adventitia as a Complex Regulator of Vascular Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:520-534. [PMID: 31866347 DOI: 10.1016/j.ajpath.2019.10.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
The adventitia, the outer layer of the blood vessel wall, may be the most complex layer of the wall and may be the master regulator of wall physiology and pathobiology. This review proposes a major shift in thinking to apply a functional lens to the adventitia rather than only a structural lens. Human and experimental in vivo and in vitro studies show that the adventitia is a dynamic microenvironment in which adventitial and perivascular adipose tissue cells initiate and regulate important vascular functions in disease, especially intimal hyperplasia and atherosclerosis. Although well away from the blood-wall interface, where much pathology has been identified, the adventitia has a profound influence on the population of intimal and medial endothelial, macrophage, and smooth muscle cell function. Vascular injury and dysfunction of the perivascular adipose tissue promote expansion of the vasa vasorum, activation of fibroblasts, and differentiation of myofibroblasts. This regulates further biologic processes, including fibroblast and myofibroblast migration and proliferation, inflammation, immunity, stem cell activation and regulation, extracellular matrix remodeling, and angiogenesis. A debate exists as to whether the adventitia initiates disease or is just an important participant. We describe a mechanistic model of adventitial function that brings together current knowledge and guides the design of future investigations to test specific hypotheses on adventitial pathobiology.
Collapse
Affiliation(s)
- Maria G Tinajero
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Avrum I Gotlieb
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Ren XS, Tong Y, Qiu Y, Ye C, Wu N, Xiong XQ, Wang JJ, Han Y, Zhou YB, Zhang F, Sun HJ, Gao XY, Chen Q, Li YH, Kang YM, Zhu GQ. MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles 2019; 9:1698795. [PMID: 31839907 PMCID: PMC6896498 DOI: 10.1080/20013078.2019.1698795] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) plays crucial roles in vascular remodelling and stiffening in hypertension. Vascular adventitial fibroblasts are a key regulator of vascular wall function and structure. This study is designed to investigate the roles of adventitial fibroblasts-derived extracellular vesicles (EVs) in VSMC proliferation and vascular remodelling in normotensive Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR), an animal model of human essential hypertension. EVs were isolated from aortic adventitial fibroblasts of WKY (WKY-EVs) and SHR (SHR-EVs). Compared with WKY-EVs, miR155-5p content was reduced, while angiotensin-converting enzyme (ACE) content was increased in SHR-EVs. WKY-EVs inhibited VSMC proliferation of SHR, which was prevented by miR155-5p inhibitor. SHR-EVs promoted VSMC proliferation of both strains, which was enhanced by miR155-5p inhibitor, but abolished by captopril or losartan. Dual luciferase reporter assay showed that ACE was a target gene of miR155-5p. MiR155-5p mimic or overexpression inhibited VSMC proliferation and ACE upregulation of SHR. WKY-EVs reduced ACE mRNA and protein expressions while SHR-EVs only increased ACE protein level in VSMCs of both strains. However, the SHR-EVs-derived from the ACE knockdown-treated adventitial fibroblasts lost the roles in promoting VSMC proliferation and ACE upregulation. Systemic miR155-5p overexpression reduced vascular ACE, angiotensin II and proliferating cell nuclear antigen levels, and attenuated hypertension and vascular remodelling in SHR. Repetitive intravenous injection of SHR-EVs increased blood pressure and vascular ACE contents, and promoted vascular remodelling in both strains, while WKY-EVs reduced vascular ACE contents and attenuated hypertension and vascular remodelling in SHR. We concluded that WKY-EVs-mediated miR155-5p transfer attenuates VSMC proliferation and vascular remodelling in SHR via suppressing ACE expression, while SHR-EVs-mediated ACE transfer promotes VSMC proliferation and vascular remodelling.
Collapse
Affiliation(s)
- Xing-Sheng Ren
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Tong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Qiu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hai-Jian Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing-Ya Gao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Zhang X, Hu C, Kong CY, Song P, Wu HM, Xu SC, Yuan YP, Deng W, Ma ZG, Tang QZ. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ 2019; 27:540-555. [PMID: 31209361 PMCID: PMC7206111 DOI: 10.1038/s41418-019-0372-z] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/11/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress and cardiomyocyte apoptosis play critical roles in doxorubicin (DOX)-induced cardiotoxicity. Previous studies indicated that fibronectin type III domain-containing 5 (FNDC5) and its cleaved form, irisin, could preserve mitochondrial function and attenuate oxidative damage as well as cell apoptosis, however, its role in DOX-induced cardiotoxicity remains unknown. Our present study aimed to investigate the role and underlying mechanism of FNDC5 on oxidative stress and cardiomyocyte apoptosis in DOX-induced cardiotoxicity. Cardiomyocyte-specific FNDC5 overexpression was achieved using an adeno-associated virus system, and then the mice were exposed to a single intraperitoneal injection of DOX (15 mg/kg) to generate DOX-induced cardiotoxicity. Herein, we found that FNDC5 expression was downregulated in DOX-treated murine hearts and cardiomyocytes. Fndc5 deficiency resulted in increased oxidative damage and apoptosis in H9C2 cells under basal conditions, imitating the phenotype of DOX-induced cardiomyopathy in vitro, conversely, FNDC5 overexpression or irisin treatment alleviated DOX-induced oxidative stress and cardiomyocyte apoptosis in vivo and in vitro. Mechanistically, we identified that FNDC5/Irisin activated AKT/mTOR signaling and decreased DOX-induced cardiomyocyte apoptosis, and moreover, we provided direct evidence that the anti-oxidant effect of FNDC5/Irisin was mediated by the AKT/GSK3β/FYN/Nrf2 axis in an mTOR-independent manner. And we also demonstrated that heat shock protein 20 was responsible for the activation of AKT caused by FNDC5/Irisin. In line with the data in acute model, we also found that FNDC5/Irisin exerted beneficial effects in chronic model of DOX-induced cardiotoxicity (5 mg/kg, i.p., once a week for three times, the total cumulative dose is 15 mg/kg) in mice. Based on these findings, we supposed that FNDC5/Irisin was a potential therapeutic agent against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, 430060, Wuhan, PR China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, 430060, Wuhan, PR China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, 430060, Wuhan, PR China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, 430060, Wuhan, PR China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, 430060, Wuhan, PR China
| | - Si-Chi Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, 430060, Wuhan, PR China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, 430060, Wuhan, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, 430060, Wuhan, PR China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China. .,Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China. .,Hubei Key Laboratory of Cardiology, 430060, Wuhan, PR China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China. .,Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China. .,Hubei Key Laboratory of Cardiology, 430060, Wuhan, PR China.
| |
Collapse
|
36
|
Tong Y, Ye C, Ren XS, Qiu Y, Zang YH, Xiong XQ, Wang JJ, Chen Q, Li YH, Kang YM, Zhu GQ. Exosome-Mediated Transfer of ACE (Angiotensin-Converting Enzyme) From Adventitial Fibroblasts of Spontaneously Hypertensive Rats Promotes Vascular Smooth Muscle Cell Migration. Hypertension 2019; 72:881-888. [PMID: 30354715 DOI: 10.1161/hypertensionaha.118.11375] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Migration of vascular smooth muscle cells (VSMCs) is pivotal for vascular remodeling in hypertension. Vascular adventitial fibroblasts (AFs) are important in the homeostasis of vascular structure. This study is designed to investigate the roles of AF exosomes (AFE) in VSMC migration and underling mechanism. Primary VSMCs and AFs were obtained from the aorta of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. VSMC migration was evaluated with Boyden chamber assay and wound healing assay. AFE from WKY rats and SHR were isolated and identified. AFE from SHR promoted but AFE from WKY rats had no significant effect on VSMC migration. The effects of AFE on VSMC migration were prevented by an exosome inhibitor GW4869, an AT1R (Ang II [angiotensin II] type 1 receptor) antagonist losartan, or an inhibitor of ACE (angiotensin-converting enzyme) captopril. ACE contents and activity were much higher in AFE from SHR than those from WKY rats. There were no significant difference in Ang II and AT1R mRNA and protein levels between AFE from SHR and AFE from WKY rats. AFE from SHR increased Ang II and ACE contents and ACE activity in VSMCs of WKY rats and SHR. The changes of Ang II contents and ACE activity were prevented by captopril. ACE knockdown in AFs reduced ACE contents and activity in AFE from SHR and inhibited AFE-induced migration of VSMCs of WKY rats and those of SHR. These results indicate that exosomes from AFs of SHR transfer ACE to VSMCs, which increases Ang II levels and activates AT1R in VSMCs and thereby promotes VSMC migration.
Collapse
Affiliation(s)
- Ying Tong
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | - Chao Ye
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | - Xing-Sheng Ren
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | - Yun Qiu
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | - Ying-Hao Zang
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | - Xiao-Qing Xiong
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.)
| | | | - Qi Chen
- Department of Pathophysiology (Q.C., Y.-H.L., G.-Q.Z.), Nanjing Medical University, Jiangsu, China
| | - Yue-Hua Li
- Department of Pathophysiology (Q.C., Y.-H.L., G.-Q.Z.), Nanjing Medical University, Jiangsu, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, China (Y.-M.K.)
| | - Guo-Qing Zhu
- From the Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology (Y.T., C.Y., X.-S.R., Y.Q., Y.-H.Z., X.-Q.X., J.-J.W., G.-Q.Z.).,Department of Pathophysiology (Q.C., Y.-H.L., G.-Q.Z.), Nanjing Medical University, Jiangsu, China
| |
Collapse
|
37
|
BCL6 Attenuates Proliferation and Oxidative Stress of Vascular Smooth Muscle Cells in Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5018410. [PMID: 30805081 PMCID: PMC6362478 DOI: 10.1155/2019/5018410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Proliferation and oxidative stress of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling in hypertension and several major vascular diseases. B-cell lymphoma 6 (BCL6) functions as a transcriptional repressor. The present study is designed to determine the roles of BCL6 in VSMC proliferation and oxidative stress and underlying mechanism. Angiotensin (Ang) II was used to induce VSMC proliferation and oxidative stress in human VSMCs. Effects of BCL6 overexpression and knockdown were, respectively, investigated in Ang II-treated human VSMCs. Therapeutical effects of BCL6 overexpression on vascular remodeling, oxidative stress, and proliferation were determined in the aorta of spontaneously hypertensive rats (SHR). Ang II reduced BCL6 expression in human VSMCs. BCL6 overexpression attenuated while BCL6 knockdown enhanced the Ang II-induced upregulation of NADPH oxidase 4 (NOX4), production of reactive oxygen species (ROS), and proliferation of VSMCs. BCL6 expression was downregulated in SHR. BCL6 overexpression in SHR reduced NOX4 expression, ROS production, and proliferation of the aortic media of SHR. Moreover, BCL6 overexpression attenuated vascular remodeling and hypertension in SHR. However, BCL6 overexpression had no significant effects on NOX2 expression in human VSMCs or in SHR. We conclude that BCL6 attenuates proliferation and oxidative stress of VSMCs in hypertension.
Collapse
|
38
|
Cao RY, Zheng H, Redfearn D, Yang J. FNDC5: A novel player in metabolism and metabolic syndrome. Biochimie 2019; 158:111-116. [PMID: 30611879 DOI: 10.1016/j.biochi.2019.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022]
Abstract
Half a decade ago, transmembrane protein fibronectin type III domain-containing protein 5 (FNDC5) was found to be cleaved as a novel myokine irisin, which burst into prominence for browning of white adipose tissue during exercise. However, FNDC5, the precursor of irisin, has been paid relatively little attention compared with irisin despite evidence that FNDC5 is associated with the metabolic syndrome, which accounts for one-fourth of the world's adult population and contributes to diabetes, cardiovascular disease and all-cause mortality. Besides N-terminal and C-terminal sequences, the FNDC5 protein contains an irisin domain and a short transmembrane region. FNDC5 has shown to be widely distribute in different tissues and is highly expressed in heart, brain, liver, and skeletal muscle. Clinical studies have demonstrated that FNDC5 is essential for maintaining metabolic homeostasis and dysregulation of FNDC5 will lead to systemic metabolism imbalance and the onset of metabolic disorders. Growing evidence has suggested that FNDC5 gene polymorphisms are related to health and disease in different human populations. Additionally, FNDC5 has been found relevant to the regulation of metabolism and metabolic syndrome through diverse upstream and downstream signaling pathways in experimental studies. The present review summarizes the characteristics, clinical significance, and molecular mechanisms of FNDC5 in metabolic syndrome and proposes a novel concept that FNDC5 is activated by forming a putative ligand-receptor complex. Knowledge about the role of FNDC5 may be translated into drug development and clinical applications for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Richard Y Cao
- Cardiac Rehabilitation Program, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University/Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China.
| | - Hongchao Zheng
- Cardiac Rehabilitation Program, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University/Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China
| | - Damian Redfearn
- Department of Medicine, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada
| | - Jian Yang
- Cardiac Rehabilitation Program, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University/Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China.
| |
Collapse
|