1
|
Normand-Gravier T, Solsona R, Dablainville V, Racinais S, Borrani F, Bernardi H, Sanchez AMJ. Effects of thermal interventions on skeletal muscle adaptations and regeneration: perspectives on epigenetics: a narrative review. Eur J Appl Physiol 2025; 125:277-301. [PMID: 39607529 PMCID: PMC11829912 DOI: 10.1007/s00421-024-05642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/12/2024] [Indexed: 11/29/2024]
Abstract
Recovery methods, such as thermal interventions, have been developed to promote optimal recovery and maximize long-term training adaptations. However, the beneficial effects of these recovery strategies remain a source of controversy. This narrative review aims to provide a detailed understanding of how cold and heat interventions impact long-term training adaptations. Emphasis is placed on skeletal muscle adaptations, particularly the involvement of signaling pathways regulating protein turnover, ribosome and mitochondrial biogenesis, as well as the critical role of satellite cells in promoting myofiber regeneration following atrophy. The current literature suggests that cold interventions can blunt molecular adaptations (e.g., protein synthesis and satellite cell activation) and oxi-inflammatory responses after resistance exercise, resulting in diminished exercise-induced hypertrophy and lower gains in isometric strength during training protocols. Conversely, heat interventions appear promising for mitigating skeletal muscle degradation during immobilization and atrophy. Indeed, heat treatments (e.g., passive interventions such as sauna-bathing or diathermy) can enhance protein turnover and improve the maintenance of muscle mass in atrophic conditions, although their effects on uninjured skeletal muscles in both humans and rodents remain controversial. Nonetheless, heat treatment may serve as an important tool for attenuating atrophy and preserving mitochondrial function in immobilized or injured athletes. Finally, the potential interplay between exercise, thermal interventions and epigenetics is discussed. Future studies must be encouraged to clarify how repeated thermal interventions (heat and cold) affect long-term exercise training adaptations and to determine the optimal modalities (i.e., method of application, temperature, duration, relative humidity, and timing).
Collapse
Affiliation(s)
- Tom Normand-Gravier
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Valentin Dablainville
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Research and Scientific Support Department, Aspetar Orthopedic and Sports Medicine Hospital, 29222, Doha, Qatar
| | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier-Font-Romeu, Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Henri Bernardi
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
| | - Anthony M J Sanchez
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France.
| |
Collapse
|
2
|
Sun Y, Peng Z, Liang H. Role of physical activity in cardiovascular disease prevention: impact of epigenetic modifications. Front Cardiovasc Med 2025; 12:1511222. [PMID: 39901899 PMCID: PMC11788406 DOI: 10.3389/fcvm.2025.1511222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, imposing a major burden on morbidity, quality of life, and societal costs, making prevention of CVD a top public health priority. Extensive research has pointed out that lack of adequate physical activity in life is one of the key risk factors for heart disease. Indeed, moderate exercise is not only beneficial to the heart in healthy populations, but also exerts a protective effect in pathological states. However, the molecular mechanisms underlying the cardioprotective effects of exercise are still not fully understood. An increasing body of research indicates that variations in the epigenetic system-such as DNA methylation, histone modifications, and production of non-coding RNA-are essential for maintaining heart health and preventing heart disease. Exercise is a potent epigenetic modulator that induces direct and long-lasting genetic changes and activates biological signals associated with cardiovascular health. These changes can be influenced by external stimuli such as physical activity and may even be passed on to offspring, thus providing a mechanism for generating genetic effects through behavioral interventions. Therefore, understanding this relationship can help identify potential biomarkers and therapeutic targets associated with CVD. This study aims to provide an overview of the beneficial effects of exercise on heart health. This information may help guide future research efforts and improve our understanding of epigenetics as a therapeutic, prognostic, and diagnostic biomarker for CVD.
Collapse
Affiliation(s)
- Yi Sun
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Zuoying Peng
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Hua Liang
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Li K, Li Y, Chen Y, Chen T, Yang Y, Li P. Ion Channels Remodeling in the Regulation of Vascular Hyporesponsiveness During Shock. Microcirculation 2024; 31:e12874. [PMID: 39011763 DOI: 10.1111/micc.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/07/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024]
Abstract
Shock is characterized with vascular hyporesponsiveness to vasoconstrictors, thereby to cause refractory hypotension, insufficient tissue perfusion, and multiple organ dysfunction. The vascular hyporeactivity persisted even though norepinephrine and fluid resuscitation were administrated, it is of critical importance to find new potential target. Ion channels are crucial in the regulation of cell membrane potential and affect vasoconstriction and vasodilation. It has been demonstrated that many types of ion channels including K+ channels, Ca2+ permeable channels, and Na+ channels exist in vascular smooth muscle cells and endothelial cells, contributing to the regulation of vascular homeostasis and vasomotor function. An increasing number of studies suggested that the structural and functional alterations of ion channels located in arteries contribute to vascular hyporesponsiveness during shock, but the underlying mechanisms remained to be fully clarified. Therefore, the expression and functional changes in ion channels in arteries associated with shock are reviewed, to pave the way for further exploring the potential of ion channel-targeted compounds in treating refractory hypotension in shock.
Collapse
Affiliation(s)
- Keqing Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yinghong Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Tangting Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Yang
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Pengyun Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Zhang Y, Xu Z, Shan M, Cao J, Zhou Y, Chen Y, Shi L. Arterial Smooth Muscle Cell AKAP150 Mediates Exercise-Induced Repression of Ca V1.2 Channel Function in Cerebral Arteries of Hypertensive Rats. Arterioscler Thromb Vasc Biol 2024; 44:1202-1221. [PMID: 38602101 DOI: 10.1161/atvbaha.124.319543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Hypertension is a major, prevalent risk factor for the development and progression of cerebrovascular disease. Regular exercise has been recommended as an excellent choice for the large population of individuals with mild-to-moderate elevations in blood pressure, but the mechanisms that underlie its vascular-protective and antihypertensive effects remain unknown. Here, we describe a mechanism by which myocyte AKAP150 (A-kinase anchoring protein 150) inhibition induced by exercise training alleviates voltage-dependent L-type Ca2+ channel (CaV1.2) activity and restores cerebral arterial function in hypertension. METHODS Spontaneously hypertensive rats and newly generated smooth muscle-specific AKAP150 knockin mice were used to assess the role of myocyte AKAP150/CaV1.2 channel in regulating cerebral artery function after exercise intervention. RESULTS Activation of the AKAP150/PKCα (protein kinase Cα) signaling increased CaV1.2 activity and Ca2+ influx of cerebral arterial myocyte, thus enhancing vascular tone in spontaneously hypertensive rats. Smooth muscle-specific AKAP150 knockin mice were hypertensive with higher CaV1.2 channel activity and increased vascular tone. Furthermore, treatment of Ang II (angiotensin II) resulted in a more pronounced increase in blood pressure in smooth muscle-specific AKAP150 knockin mice. Exercise training significantly reduced arterial myocyte AKAP150 expression and alleviated CaV1.2 channel activity, thus restoring cerebral arterial function in spontaneously hypertensive rats and smooth muscle-specific AKAP150 knockin mice. AT1R (AT1 receptor) and AKAP150 were interacted closely in arterial myocytes. Exercise decreased the circulating Ang II and Ang II-involved AT1R-AKAP150 association in myocytes of hypertension. CONCLUSIONS The current study demonstrates that aerobic exercise ameliorates CaV1.2 channel function via inhibiting myocyte AKAP150, which contributes to reduced cerebral arterial tone in hypertension.
Collapse
MESH Headings
- Animals
- A Kinase Anchor Proteins/metabolism
- A Kinase Anchor Proteins/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/genetics
- Rats, Inbred SHR
- Hypertension/physiopathology
- Hypertension/metabolism
- Hypertension/genetics
- Cerebral Arteries/metabolism
- Cerebral Arteries/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Male
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Physical Conditioning, Animal/physiology
- Protein Kinase C-alpha/metabolism
- Protein Kinase C-alpha/genetics
- Calcium Signaling
- Mice, Inbred C57BL
- Mice
- Rats
- Rats, Inbred WKY
- Angiotensin II
- Blood Pressure
- Signal Transduction
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport (Y. Zhang, L.S.), Beijing Sport University, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education (Y. Zhang, L.S.), Beijing Sport University, China
| | - Zhaoxia Xu
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Meiling Shan
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Jiaqi Cao
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Yang Zhou
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Yu Chen
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Lijun Shi
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport (Y. Zhang, L.S.), Beijing Sport University, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education (Y. Zhang, L.S.), Beijing Sport University, China
| |
Collapse
|
5
|
Gao S, Yao W, Zhou R, Pei Z. Exercise training affects calcium ion transport by downregulating the CACNA2D1 protein to reduce hypertension-induced myocardial injury in mice. iScience 2024; 27:109351. [PMID: 38495825 PMCID: PMC10940998 DOI: 10.1016/j.isci.2024.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/26/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Hypertension is a risk factor for cardiovascular disease, and exercise has cardioprotective effects on the heart. However, the mechanism by which exercise affects hypertension-induced myocardial injury remains unclear. Exercise response model of hypertension-induced myocardial injury in mice was analyzed using multiomics data to identify potential factors. The study found that serum Ca2+ and brain natriuretic peptide concentrations were significantly higher in the HTN (hypertension) group than in the control, HTN+MICT (moderate intensity continuous exercise), and HTN+HIIT (high intensity intermittent exercise) groups. Cardiac tissue damage and fibrosis increased in the HTN group, but exercise training reduced pathological changes, with more improvement in the HTN+HIIT group. Transcriptomic and proteomic studies showed significant differences in CACNA2D1 expression between the different treatment groups. HIIT ameliorated HTN-induced myocardial injury in mice by decreasing Ca2+ concentration and diastolizing vascular smooth muscle by downregulating CACNA2D1 via exercise.
Collapse
Affiliation(s)
- Shan Gao
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
| | - Wei Yao
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, China
| | - Rui Zhou
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, China
| | - Zuowei Pei
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, China
- Faculty of Medicine, Dalian University of Technology, Dalian, China
| |
Collapse
|
6
|
Zhao B, Lv Y. A biomechanical view of epigenetic tumor regulation. J Biol Phys 2023; 49:283-307. [PMID: 37004697 PMCID: PMC10397176 DOI: 10.1007/s10867-023-09633-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/12/2023] [Indexed: 04/04/2023] Open
Abstract
The occurrence and development of tumors depend on a complex regulation by not only biochemical cues, but also biomechanical factors in tumor microenvironment. With the development of epigenetic theory, the regulation of biomechanical stimulation on tumor progress genetically is not enough to fully illustrate the mechanism of tumorigenesis. However, biomechanical regulation on tumor progress epigenetically is still in its infancy. Therefore, it is particularly important to integrate the existing relevant researches and develop the potential exploration. This work sorted out the existing researches on the regulation of tumor by biomechanical factors through epigenetic means, which contains summarizing the tumor epigenetic regulatory mode by biomechanical factors, exhibiting the influence of epigenetic regulation under mechanical stimulation, illustrating its existing applications, and prospecting the potential. This review aims to display the relevant knowledge through integrating the existing studies on epigenetic regulation in tumorigenesis under mechanical stimulation so as to provide theoretical basis and new ideas for potential follow-up research and clinical applications. Mechanical factors under physiological conditions stimulate the tumor progress through epigenetic ways, and new strategies are expected to be found with the development of epidrugs and related delivery systems.
Collapse
Affiliation(s)
- Boyuan Zhao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei Province, 430200, People's Republic of China.
| |
Collapse
|
7
|
Zhang Y, Shan M, Ding X, Sun H, Qiu F, Shi L. Maternal exercise represses Nox4 via SIRT1 to prevent vascular oxidative stress and endothelial dysfunction in SHR offspring. Front Endocrinol (Lausanne) 2023; 14:1219194. [PMID: 37501791 PMCID: PMC10368947 DOI: 10.3389/fendo.2023.1219194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Maternal exercise during pregnancy has emerged as a potentially promising approach to protect offspring from cardiovascular disease, including hypertension. Although endothelial dysfunction is involved in the pathophysiology of hypertension, limited studies have characterized how maternal exercise influences endothelial function of hypertensive offspring. In this study, pregnant spontaneously hypertensive rats and Wistar-Kyoto rats were assigned either to a sedentary lifestyle or to swimming training daily, and fetal histone deacetylase-mediated epigenetic modification and offspring vascular function of mesenteric arteries were analyzed. Maternal exercise ameliorated the impairment of acetylcholine-induced vasodilation without affecting sodium nitroprusside-induced vasodilation in mesenteric arteries from the hypertensive offspring. In accordance, maternal exercise reduced NADPH oxidase-4 (Nox4) protein to prevent the loss of nitric oxide generation and increased reactive oxygen species production in mesenteric arteries of hypertensive offspring. We further found that maternal exercise during pregnancy upregulated vascular SIRT1 (sirtuin 1) expression, leading to a low level of H3K9ac (histone H3 lysine 9 acetylation), resulting in the transcriptional downregulation of Nox4 in mesenteric arteries of hypertensive fetuses. These findings show that maternal exercise alleviates oxidative stress and the impairment of endothelium-dependent vasodilatation via SIRT1-regulated deacetylation of Nox4, which might contribute to improved vascular function in hypertensive offspring.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Meiling Shan
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Xiaozhen Ding
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hualing Sun
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
8
|
Priviero F. Epigenetic modifications and fetal programming: Molecular mechanisms to control hypertension inheritance. Biochem Pharmacol 2023; 208:115412. [PMID: 36632959 PMCID: PMC10012045 DOI: 10.1016/j.bcp.2023.115412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases (CVD) are the number 1 cause of death in the United States and hypertension is a highly prevalent risk factor for CVD. It is estimated that up to 50 % of the hypertensive trait is genetically inherited while the other 50 % is determined by modifiable factors involving lifestyle, behaviors, and the environment. Interestingly, the hypertensive trait is induced or inhibited by epigenetic modifications modulated by modifiable factors. This review focused on the underlying mechanisms of stress, sleep deprivation, obesity and sedentarism as key players for epigenetic modifications contributing to the development of the hypertensive trait and, on the other hand, how epigenetic modifications induced by physical exercise and healthier habits may contribute to overturn and prevent the inheritance of hypertension trait. Furthermore, adversities during gestation and perinatal life also increase the risk for hypertension and CVD later in life, which can perpetuate the inheritance of the hypertensive trait whereas healthier habits during gestation and lactation may counteract fetal programming to improve the cardiovascular health of the progeny. Therefore, it is promising that a healthier lifestyle causes long-lasting epigenetic modifications and is transmitted to the next generation, strengthening the fight against the inheritance of hypertension.
Collapse
Affiliation(s)
- Fernanda Priviero
- Department of Cell Biology and Anatomy - School of Medicine, University of South Carolina, Columbia, SC, United States; Cardiovascular Translational Research Center - School of Medicine, University of South Carolina, Columbia, SC, United States; College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
9
|
Światowy WJ, Drzewiecka H, Kliber M, Sąsiadek M, Karpiński P, Pławski A, Jagodziński PP. Physical Activity and DNA Methylation in Humans. Int J Mol Sci 2021; 22:ijms222312989. [PMID: 34884790 PMCID: PMC8657566 DOI: 10.3390/ijms222312989] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Physical activity is a strong stimulus influencing the overall physiology of the human body. Exercises lead to biochemical changes in various tissues and exert an impact on gene expression. Exercise-induced changes in gene expression may be mediated by epigenetic modifications, which rearrange the chromatin structure and therefore modulate its accessibility for transcription factors. One of such epigenetic mark is DNA methylation that involves an attachment of a methyl group to the fifth carbon of cytosine residue present in CG dinucleotides (CpG). DNA methylation is catalyzed by a family of DNA methyltransferases. This reversible DNA modification results in the recruitment of proteins containing methyl binding domain and further transcriptional co-repressors leading to the silencing of gene expression. The accumulation of CpG dinucleotides, referred as CpG islands, occurs at the promoter regions in a great majority of human genes. Therefore, changes in DNA methylation profile affect the transcription of multiple genes. A growing body of evidence indicates that exercise training modulates DNA methylation in muscles and adipose tissue. Some of these epigenetic markers were associated with a reduced risk of chronic diseases. This review summarizes the current knowledge about the influence of physical activity on the DNA methylation status in humans.
Collapse
Affiliation(s)
- Witold Józef Światowy
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (H.D.); (M.K.); (P.P.J.)
- Correspondence: ; Tel.: +48-618-546-513
| | - Hanna Drzewiecka
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (H.D.); (M.K.); (P.P.J.)
| | - Michalina Kliber
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (H.D.); (M.K.); (P.P.J.)
| | - Maria Sąsiadek
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.S.); (P.K.)
| | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.S.); (P.K.)
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (H.D.); (M.K.); (P.P.J.)
| |
Collapse
|
10
|
Chen Y, Li S, Xu Z, Zhang Y, Zhang H, Shi L. Aerobic training-mediated DNA hypermethylation of Agtr1a and Mas1 genes ameliorate mesenteric arterial function in spontaneously hypertensive rats. Mol Biol Rep 2021; 48:8033-8044. [PMID: 34743271 DOI: 10.1007/s11033-021-06929-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The imbalance of vasoconstrictor and vasodilator axes of the renin-angiotensin system (RAS) is observed in hypertension. Exercise regulates RAS level and improves vascular function. This study focused on the contribution of RAS axes in vascular function of mesenteric arteries and exercise-induced DNA methylation of the Agtr1a (AT1aR) and Mas1 (MasR) genes in hypertension. METHODS Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats were randomized into exercise or sedentary group. Levels of plasma RAS components, vascular tone, and DNA methylation markers were measured. RESULTS Blood pressure of SHR was markedly reduced after 12 weeks of aerobic exercise. RAS peptides in plasma were all increased with an imbalanced upregulation of Ang II and Ang-(1-7) in SHR, exercise revised the level of RAS and increased Ang-(1-7)/Ang II. The vasoconstriction response induced by Ang II was mainly via type 1 receptors (AT1R), while this contraction was inhibited by Mas receptor (MasR). mRNA and protein of AT1R and MasR were both upregulated in SHR, whereas exercise significantly suppressed this imbalanced increase and increased MasR/AT1R ratio. Exercise hypermethylated Agtr1a and Mas1 genes, associating with increased DNMT1 and DNMT3b and SAM/SAH. CONCLUSIONS Aerobic exercise ameliorates vascular function via hypermethylation of the Agtr1a and Mas1 genes and restores the vasoconstrictor and vasodilator axes balance.
Collapse
Affiliation(s)
- Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Shanshan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Zhaoxia Xu
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Huirong Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China. .,Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
11
|
Li S, Chen Y, Zhang Y, Qiu F, Zeng F, Shi L. Prenatal exercise reprograms the development of hypertension progress and improves vascular health in SHR offspring. Vascul Pharmacol 2021; 139:106885. [PMID: 34116258 DOI: 10.1016/j.vph.2021.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Upregulation of L-type voltage-gated Ca2+ (CaV1.2) channel in the arterial myocytes is a hallmark feature of hypertension. However, whether maternal exercise during pregnancy has a sustained beneficial effect on the offspring of spontaneously hypertensive rats (SHRs) through epigenetic regulation of CaV1.2 channel is largely unknown. METHODS Pregnant SHRs and Wistar-Kyoto rats were subjected to swimming and the vascular molecular and functional properties of male offspring were evaluated at embryonic (E) 20.5 day, 3 months (3 M), and 6 months (6 M). RESULTS Exercise during pregnancy significantly decreased the resting blood pressure at 3 M but not 6 M in the offspring of SHR. Prenatal exercise significantly reduced the cardiovascular reactivity, the contribution of CaV1.2 channel to the vascular tone, and the whole-cell current density of CaV1.2 channel in both 3 M and 6 M offspring of SHR. Moreover, maternal exercise triggered hypermethylation of the promoter region of the CaV1.2 α1C gene (CACNA1C), with a concomitant decrease in its protein and mRNA expressions in SHR offspring at E20.5, 3 M, and 6 M. Tissue culture experiments further confirmed that 5-Aza-2'-deoxycytidine increased the structure and functional expression of CaV1.2 channel by inhibiting the DNA methylation of CACNA1C. However, the improvement of prenatal exercise on the blood pressure, function, and expression of CaV1.2 channel was attenuated in the offspring of SHRs at 6 M compared to the 3 M readout. CONCLUSIONS These data suggest that prenatal exercise improves the vascular function by the hypermethylation of CACNA1C in the arterial myocytes and delays the development of hypertension in the offspring of SHRs. However, these effects fade out with age.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; Department of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China.
| |
Collapse
|
12
|
Feng X, Yu T, Zhang Y, Li L, Qu M, Wang J, Dong F, Zhang L, Wang F, Zhang F, Zhou X, Xu Z, Man D. Prenatal High-Sucrose Diet Induced Vascular Dysfunction in Thoracic Artery of Fetal Offspring. Mol Nutr Food Res 2021; 65:e2100072. [PMID: 33938121 DOI: 10.1002/mnfr.202100072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/19/2021] [Indexed: 12/18/2022]
Abstract
SCOPE Maternal nutrition during pregnancy is related to intrauterine fetal development. The authors' previous work reports that prenatal high sucrose (HS) diet impaired micro-vascular functions in postnatal offspring. It is unclear whether/how prenatal HS causes vascular injury during fetal life. METHODS AND RESULTS Pregnant rats are fed with normal drinking water or 20% high-sucrose solution during the whole gestational period. Pregnant HS increases maternal weight before delivery. Fetal thoracic aorta is separated for experiments. Angiotensin II (AII)-stimulated vascular contraction of fetal thoracic arteries in HS group is greater, which mainly results from the enhanced AT1 receptor (AT1R) function and the downstream signaling. Nifedipine significantly increases vascular tension in HS group, indicating that the L-type calcium channels (LTCCs) function is strengthened. 2-Aminoethyl diphenylborinate (2-APB), inositol 1,4,5-trisphosphate receptors (IP3Rs) inhibitor, increases vascular tension induced by AII in HS group and ryanodine receptors-sensitive vascular tone shows no difference in the two groups, which suggested that the activity of IP3Rs-operated calcium channels is increased. CONCLUSION These findings suggest that prenatal HS induces vascular dysfunction of thoracic arteries in fetal offspring by enhancing AT1R, LTCCs function and IP3Rs-associated calcium channels, providing new information regarding the impact of prenatal HS on the functional development of fetal vascular systems.
Collapse
Affiliation(s)
- Xueqin Feng
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Tiantian Yu
- Department of Clinical Medicine, Jining Medical University, Hehua Road 133, Jining, 272067, China
| | - Yumeng Zhang
- Institute for Fetology, First Hospital of Soochow University, Renmin Road 708, Jiangsu, 215006, China
| | - Lijuan Li
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Miaomiao Qu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Jishui Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Fangxiang Dong
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Lihua Zhang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Fengge Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Fanyong Zhang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Renmin Road 708, Jiangsu, 215006, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Renmin Road 708, Jiangsu, 215006, China
- Institute for Fetology, Maternal and Child Health Care Hospital of Wuxi, Huaishu Road 48, Jiangsu, 214002, China
| | - Dongmei Man
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| |
Collapse
|
13
|
Liu Y, Sun Z, Chen T, Yang C. Does exercise training improve the function of vascular smooth muscle? A systematic review and meta-analysis. Res Sports Med 2021; 30:577-592. [PMID: 33870820 DOI: 10.1080/15438627.2021.1917408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We aimed to determine the effects of exercise training on the function of vascular smooth muscle cells. PubMed and Web of Science about the effects of exercise training on vascular smooth muscle cells were searched up to August 2020. The effect sizes were estimated in terms of the standardized mean difference. The number of studies included was thirty-five overall. Exercise training had positive effects on vascular smooth muscle cells function in participants older than 40. Effect sizes for HIGH intensity and MIX were positive but small, and also when training duration was longer than 12 weeks. We concluded that vascular smooth muscle cells response can be promoted by exercise training. Vigorous aerobic exercise and mixture training modality were the best ways to promote the dilation response of vascular smooth muscle cells. Additionally, the significant improvement induced by exercise training only occurred when training lasted for longer than 12 weeks.
Collapse
Affiliation(s)
- Yujia Liu
- Institute of Physical Education, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhenjia Sun
- Institute of Physical Education, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Tong Chen
- Institute of Physical Education, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chen Yang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
D’Agostino R, Barberio L, Gatto M, Tropea T, De Luca M, Mandalà M. Extra Virgin Olive Oil Phenols Vasodilate Rat MesentericResistance Artery via Phospholipase C (PLC)-CalciumMicrodomains-Potassium Channels (BK Ca) Signals. Biomolecules 2021; 11:137. [PMID: 33494474 PMCID: PMC7912046 DOI: 10.3390/biom11020137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Recent evidence suggests that the reason Extra Virgin Olive Oil (EVOO) lowers blood pressure and reduces the risk of developing hypertension is partly due to minor components of EVOO, such as phenols. However, little is still known about the mechanism(s) through which EVOO phenols mediate anti-hypertensive effects. The aim of the present study was to investigate the mechanisms of action of EVOO phenols on mesenteric resistance arteries. A pressure myograph was used to test the effect of EVOO phenols on isolated mesenteric arteries in the presence of specific inhibitors of: 1) BKca channels (Paxillin, 10-5 M); 2) L-type calcium channels (Verapamil, 10-5 M); 3) Ryanodine receptor, RyR (Ryanodine, 10-5 M); 4) inositol 1,4,5-triphosphate receptor, IP3R, (2-Aminoethyl diphenylborinate, 2-APB, 3 × 10-3 M); 5) phospholipase C, PLC, (U73122, 10-5 M), and 6) GPCR-Gαi signaling, (Pertussis Toxin, 10-5 M). EVOO phenols induced vasodilation of mesenteric arteries in a dose-dependent manner, and this effect was reduced by pre-incubation with Paxillin, Verapamil, Ryanodine, 2-APB, U73122, and Pertussis Toxin. Our data suggest that EVOO phenol-mediated vasodilation requires activation of BKca channels potentially through a local increase of subcellular calcium microdomains, a pivotal mechanism on the base of artery vasodilation. These findings provide novel mechanistic insights for understanding the vasodilatory properties of EVOO phenols on resistance arteries.
Collapse
Affiliation(s)
- Rossana D’Agostino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (R.D.); (L.B.); (M.G.); (T.T.)
| | - Laura Barberio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (R.D.); (L.B.); (M.G.); (T.T.)
| | - Mariacarmela Gatto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (R.D.); (L.B.); (M.G.); (T.T.)
| | - Teresa Tropea
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (R.D.); (L.B.); (M.G.); (T.T.)
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary’s Hospital, Manchester M13 9WL, UK
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (R.D.); (L.B.); (M.G.); (T.T.)
- Department of Obstetrics, Gynecology and Reproductive Science, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|