1
|
Gan Y, Zeng Y, Huang J, Li Y, Zhu Q, Wang L. Polysaccharide extracted from Phellinus igniarius attenuated hyperuricemia by modulating bile acid metabolism and inhibiting uric acid synthesis in adenine/potassium oxonate-treated mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119365. [PMID: 39837359 DOI: 10.1016/j.jep.2025.119365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellinus igniarius (Linnearus: Fries) Quelet (Phellinus igniarius) is an edible and medicinal fungi and has been used in China for centuries. It is found to improve organs function and metabolic homeostasis including ameliorating hyperuricemia (HUA). Polysaccharide is a predominant component in P. igniarius. AIMS OF THIS STUDY This study aimed to investigate the anti-HUA effects and underlying mechanism of the polysaccharide extracted from P. igniarius (PPI). MATERIALS AND METHODS PPI was extracted and characterized by molecular weight, monosaccharide composition and FT-IR spectroscopy. HUA was induced in C57BL/6 male mice by gavage of adenine/potassium oxonate for 14 days. PPI (2.2, 4.4 or 8.8 mg/kg) was orally given to HUA mice and its effects on HUA were determined. RESULTS Compared to HUA group, PPI significantly reduced the serum levels of uric acid (UA), creatinine, blood urea nitrogen (BUN), AST, ALT, and total cholesterol. In the liver of HUA mice, PPI notably inhibited the activity of xanthine oxidase (XOD) and its expression mediated by peroxisome proliferator-activated receptor α (PPARα), suggesting a decrease in UA synthesis. Furthermore, PPI was found to modulate enterohepatic bile acid (BA) metabolism. The profile of BAs showed that PPI significantly elevated the TUDCA + THDCA levels in the liver of HUA mice. In the hepatocytes HepG2, TUDCA decreased the expression of PPARα/XOD and reduced UA production, whereas THDCA did not present similar effects. The anti-HUA effects of TUDCA was further confirmed in HUA mice, where it lowered serum UA level and inhibited XOD expression and activity. CONCLUSION This study demonstrates that PPI ameliorates HUA in vivo, and this effect may be mediated by the regulation of bile acid metabolism, particularly through the function of TUDCA in suppressing UA production in the liver.
Collapse
Affiliation(s)
- Yuhan Gan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuting Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Huang
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuxi Li
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Lei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
2
|
Zhou X, Deng C, Chen L, Lei L, Wang X, Zheng S, Chen C, Du C, Schini-Kerth VB, Yang J. Zinc-alpha2-glycoprotein modulates blood pressure by regulating renal lipid metabolism reprogramming-mediated urinary Na+ excretion in hypertension. Cardiovasc Res 2024; 120:2134-2146. [PMID: 39253990 DOI: 10.1093/cvr/cvae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/07/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
AIMS Organs modulating blood pressure are associated with a common cytokine known as adipokines. We chose Zinc-alpha2-glycoprotein (ZAG) due to its prioritized transcriptional level in the database. Previous studies showed that ZAG is involved in metabolic disorders. The aim of this study was to investigate its role in hypertension. METHODS AND RESULTS Serum ZAG levels were assessed in hypertensive and healthy participants. Blood pressure was monitored in Azgp1-/- mice and other animal models by 24-hour ambulatory implanted telemetric transmitters and tail-cuff method. Multi-omics analysis of proteomics and metabolomics were performed to explore possible mechanisms. Serum ZAG levels were significantly decreased and associated with morning urine Na+ excretion in hypertensive participants in a cross-sectional study. This study firstly reported that Azgp1-/- mice exhibited increased blood pressure and impaired urinary Na+ excretion, which were restored by AAV9-mediated renal tubule Azgp1 rescue. Azgp1 knockout caused the reprogramming of renal lipid metabolism, and increased Na+/H+-exchanger (NHE) activity in the renal cortex. Administration with a NHE inhibitor EIPA reversed the impaired urinary Na+ excretion in Azgp1-/- mice. Moreover, the activity of carnitine palmitoyltransferase 1 (CPT1), a key enzyme of fatty acid β-oxidation, was decreased, and the levels of malonyl-CoA, an inhibitor of CPT1, were increased in renal cortex of Azgp1-/- mice. Renal Cpt1 rescue improved urinary Na+ excretion and blood pressure in Azgp1-/- mice, accompanied by decreased renal fatty acid levels and NHE activity. Finally, administration of recombinant ZAG protein improved blood pressure and urinary Na+ excretion in spontaneous hypertension rats. CONCLUSION Deficiency of Azgp1 increased the malonyl CoA-mediated inhibition of CPT1 activity, leading to renal lipid metabolism reprogramming, resulting in accumulated fatty acids and increased NHE activity, subsequently decreasing urinary Na+ excretion and causing hypertension. These findings may provide a potential kidney-targeted therapy in the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Xiaoxin Zhou
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Yubei District, 401120 Chongqing, PR China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Yubei District, 401120 Chongqing, PR China
- Translational Cardiovascular Medicine, Biomedicine Research Center of Strasbourg, UR 3074, University of Strasbourg, 67000 Strasbourg, France
- Department of Medical Management, The University Town Hospital of Chongqing Medical University, 401331 Chongqing, PR China
| | - Chunyan Deng
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Yubei District, 401120 Chongqing, PR China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Yubei District, 401120 Chongqing, PR China
| | - Lin Chen
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Yubei District, 401120 Chongqing, PR China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Yubei District, 401120 Chongqing, PR China
| | - Lifu Lei
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Yubei District, 401120 Chongqing, PR China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Yubei District, 401120 Chongqing, PR China
| | - Xiaoliang Wang
- Medical Sciences Research Center, The University Town Hospital of Chongqing Medical University, 401331 Chongqing, PR China
| | - Shuo Zheng
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, 400042 Chongqing, PR China
| | - Caiyu Chen
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, 400042 Chongqing, PR China
| | - Chengfeng Du
- Department of Education and Science, The Third Affiliated Hospital of Chongqing Medical University, 401120 Chongqing, PR China
| | - Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, Biomedicine Research Center of Strasbourg, UR 3074, University of Strasbourg, 67000 Strasbourg, France
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Yubei District, 401120 Chongqing, PR China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Yubei District, 401120 Chongqing, PR China
| |
Collapse
|
3
|
Tain YL, Chang-Chien GP, Lin SF, Hou CY, Hsu CN. Protective Effect of Resveratrol on Kidney Disease and Hypertension Against Microplastics Exposure in Male Juvenile Rats. Antioxidants (Basel) 2024; 13:1457. [PMID: 39765786 PMCID: PMC11673385 DOI: 10.3390/antiox13121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Global pollution stems from the degradation of plastic waste, leading to the generation of microplastics (MPs). While environmental pollutants increase the risk of developing hypertension and kidney disease, the effects of MP exposure on these conditions in children remain unclear. Resveratrol, a phenolic compound known for its antihypertensive and renoprotective properties, has gained attention as a potential nutraceutical. This study investigates the effects of resveratrol on kidney disease and hypertension induced by MP exposure in a juvenile rat model. Three-week-old male Sprague--Dawley (SD) rats were randomly allocated into four groups (n = 8 per group): a control group, a low-dose MP group (1 mg/L), a high-dose MP group (10 mg/L), and a high-dose MP group receiving resveratrol (50 mg/L). By 9 weeks of age, MP exposure resulted in elevated blood pressure and increased creatinine levels, both of which were mitigated by resveratrol treatment. The hypertension and kidney damage induced by high-dose MP exposure were linked to oxidative stress, which resveratrol effectively prevented. Additionally, resveratrol's protective effects against hypertension and kidney damage were associated with increased acetic acid levels, reduced renal expression of Olfr78, and decreased expression of various components of the renin-angiotensin system (RAS). Low- and high-dose MP exposure, as well as resveratrol treatment, differentially influence gut microbiota composition. Our findings suggest that targeting oxidative stress, gut microbiota, and the RAS through resveratrol holds therapeutic potential for preventing kidney disease and hypertension associated with MP exposure. However, further research is needed to translate these results into clinical applications.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833301, Taiwan; (G.-P.C.-C.); (S.-F.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Shu-Fen Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833301, Taiwan; (G.-P.C.-C.); (S.-F.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Yu Y, Zhu J, Fu R, Guo L, Chen T, Xu Z, Zhang J, Chen W, Chen L, Yang X. Unique intestinal microflora and metabolic profile in different stages of hypertension reveal potential biomarkers for early diagnosis and prognosis. J Med Microbiol 2024; 73. [PMID: 39213028 DOI: 10.1099/jmm.0.001839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Introduction. Hypertension is the most prevalent chronic disease and a major risk factor for cardiovascular and cerebrovascular diseases.Gap statement. However, there has been no substantial breakthrough in aetiology, new drug targets, and drug development of hypertension in recent 50 years.Research aim. Therefore, this study was to screen unique intestinal microbiome and serum metabolic biomarkers which can early diagnose and track the prognosis of hypertension patients in different periods, and analyse its underlying mechanisms and functions.Methods. Four groups of stool and serum samples, including healthy controls (HCs), prehypertension (PHT), hypertension (HT), and hypertension-related complications (HTC), were collected. Microbial diversity assessed using 16S rRNA sequencing. The metabolites in serum samples were detected through LC-MS/MS analysis.Results. The composition of gut microbiota in patients exhibited dissimilarities compared to that in healthy subjects, which was distinguished by Prevotella, Slackia, Enterococcus, Bifidobacterium, and Lactobacillales may be potential markers for tracking the progression of hypertension, and Bifidobacterium, Butyricimonas, Adlercreutzia, Faecalibacterium, Lactobacillus, Ruminococcus, Clostridium, and Acidaminococcus demonstrated diagnostic value. Meanwhile, tracking the dynamic changes of deoxycholic acid, 4-oxododecanedioic acid, and l-arginine can serve as biomarkers for early diagnosis, and investigation into the mechanism by which the intestinal microbiome influences the onset and progression of hypertension. In terms of pathogenesis, the findings revealed that Bifidobacterium may caused the changes of AST, indirect bilirubin, ALT, triglyceride and uric acid by affecting metabolites cis-7-hexadecenoic acid methyl ester and N1-acetylspermidine. Additionally, Coprococcus may cause changes in albumin through the influence of androsterone enanthate.Conclusions. These findings highlight that the unique intestinal microbiome and serum metabolic profile in different periods of hypertension will provide valuable insight for timely diagnosis and prognosis tracking in hypertension patients with promising clinical applications.
Collapse
Affiliation(s)
- Yaren Yu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Jiayi Zhu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Ruixue Fu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Lina Guo
- Clinical Nutrition Department, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade RD, Guangzhou 510030, PR China
| | - Tao Chen
- Research and Development Department, Guangdong Longsee Biomedical Corporation, No. 83 Ruihe RD, Guangzhou, Guangdong 510700, PR China
| | - Zhaoyan Xu
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Jianyu Zhang
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Wensheng Chen
- Arrhythmia Department, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade RD, Guangzhou 510030, PR China
| | - Lushi Chen
- Health Medical Center, Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| | - Xili Yang
- Department of Cardiology, The First People's Hospital of Foshan, No. 81 Lingnan RD, Foshan 528000, PR China
| |
Collapse
|
5
|
Boeder AM, Spiller F, Carlstrom M, Izídio GS. Enterococcus faecalis: implications for host health. World J Microbiol Biotechnol 2024; 40:190. [PMID: 38702495 DOI: 10.1007/s11274-024-04007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The microbiota represents a crucial area of research in maintaining human health due to its potential for uncovering novel biomarkers, therapies, and molecular mechanisms relevant to population identification and experimental model characterization. Among these microorganisms, Enterococcus faecalis, a Gram-positive bacterium found in the gastrointestinal tract of humans and animals, holds particular significance. Strains of this bacterial species have sparked considerable debate in the literature due to their dual nature; they can either be utilized as probiotics in the food industry or demonstrate resistance to antibiotics, potentially leading to severe illness, disability, and death. Given the diverse characteristics of Enterococcus faecalis strains, this review aims to provide a comprehensive understanding of their impact on various systems within the host, including the immunological, cardiovascular, metabolic, and nervous systems. Furthermore, we summarize the bacterium-host interaction characteristics and molecular effects to highlight their targets, features, and overall impact on microbial communities and host health.
Collapse
Affiliation(s)
- Ariela Maína Boeder
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Geison Souza Izídio
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil.
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.
- Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- Laboratório de Genética do Comportamento, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Biologia Celular, Embriologia e Genética, Florianopolis, SC, Brazil.
| |
Collapse
|
6
|
Liu X, Zhao H, Wong A. Accounting for the health risk of probiotics. Heliyon 2024; 10:e27908. [PMID: 38510031 PMCID: PMC10950733 DOI: 10.1016/j.heliyon.2024.e27908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Probiotics have long been associated with a myriad of health benefits, so much so that their adverse effects whether mild or severe, are often neglected or overshadowed by the enormous volume of articles describing their beneficial effects in the current literature. Recent evidence has demonstrated several health risks of probiotics that warrant serious reconsideration of their applications and further investigations. This review aims to highlight studies that report on how probiotics might cause opportunistic systemic and local infections, detrimental immunological effects, metabolic disturbance, allergic reactions, and facilitating the spread of antimicrobial resistance. To offer a recent account of the literature, articles within the last five years were prioritized. The narration of these evidence was based on the nature of the studies in the following order of preference: clinical studies or human samples, in vivo or animal models, in situ, in vitro and/or in silico. We hope that this review will inform consumers, food scientists, and medical practitioners, on the health risks, while also encouraging research that will focus on and clarify the adverse effects of probiotics.
Collapse
Affiliation(s)
- Xiangyi Liu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Haiyi Zhao
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| |
Collapse
|
7
|
Wu Z, Ge M, Liu J, Chen X, Cai Z, Huang H. The gut microbiota composition and metabolites are different in women with hypertensive disorders of pregnancy and normotension: A pilot study. J Obstet Gynaecol Res 2024; 50:334-341. [PMID: 38105316 DOI: 10.1111/jog.15844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Hypertensive disorders of pregnancy (HDP) are one of the main causes of perinatal morbidity. Gut microbiota influences host inflammatory pathways, glucose, and lipid metabolism. However, there is a lack of studies available on gut microbiota in HDP. OBJECTIVES We investigate the mechanistic and pathogenic role of microbiota in the development of HDP, and want to treat HDP with gut microbiota. METHODS We performed a case-control study to compare fecal samples of HDP and normotensive pregnant women by 16S ribosomal RNA sequencing. Fecal samples, collected from pregnant women, were divided into groups P and C (pregnant women with HDP and normotension, respectively). There were six pregnant women in group P and nine pregnant women in group C. Age of pregnant women is from 18 to 40 years and gestational age is from 27 to 40 weeks. DNA was extracted from fecal samples; a gene library was constructed and analyzed using bioinformatics. Finally, we determined the changes in the microbiome by alpha diversity, beta diversity, classification abundance, and taxonomic composition analyses. RESULTS Escherichia (10.48% in group P and 0.61% in group C) was the dominant bacterium in HDP patients by classification abundance analysis, which can lead to the development of preeclampsia through inflammatory response. We found that pregnant women with HDP had higher abundance of Rothia (p = 0.04984), Actinomyces (p = 0.02040), and Enterococcus (p = 0.04974) and lower abundance of Coprococcus (p = 0.04955) than pregnant women with normotension for the first time by taxonomic composition analysis. Based on the Kyoto Encyclopedia of Genes and Genomes database analysis, physiological and biochemical functions of HDP patients were significantly weakened, especially in energy metabolism. CONCLUSIONS We found the effect of changes in gut microbiota on the development of HDP. In comparison with group C, group P contained more harmful bacteria and less beneficial bacteria, which are associated with HDP. Our research further provides a basis for a clinical application for HDP treatment using antibiotics and probiotic supplementation.
Collapse
Affiliation(s)
- Zhouyi Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- School of pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Mengdi Ge
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- School of pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Jinsu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoqing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhiqiang Cai
- School of pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Huan Huang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- School of pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| |
Collapse
|
8
|
Jia G, Bai H, Mather B, Hill MA, Jia G, Sowers JR. Diabetic Vasculopathy: Molecular Mechanisms and Clinical Insights. Int J Mol Sci 2024; 25:804. [PMID: 38255878 PMCID: PMC10815704 DOI: 10.3390/ijms25020804] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Clinical and basic studies have documented that both hyperglycemia and insulin-resistance/hyperinsulinemia not only constitute metabolic disorders contributing to cardiometabolic syndrome, but also predispose to diabetic vasculopathy, which refers to diabetes-mellitus-induced microvascular and macrovascular complications, including retinopathy, neuropathy, atherosclerosis, coronary artery disease, hypertension, and peripheral artery disease. The underlying molecular and cellular mechanisms include inappropriate activation of the renin angiotensin-aldosterone system, mitochondrial dysfunction, excessive oxidative stress, inflammation, dyslipidemia, and thrombosis. These abnormalities collectively promote metabolic disorders and further promote diabetic vasculopathy. Recent evidence has revealed that endothelial progenitor cell dysfunction, gut dysbiosis, and the abnormal release of extracellular vesicles and their carried microRNAs also contribute to the development and progression of diabetic vasculopathy. Therefore, clinical control and treatment of diabetes mellitus, as well as the development of novel therapeutic strategies are crucial in preventing cardiometabolic syndrome and related diabetic vasculopathy. The present review focuses on the relationship between insulin resistance and diabetes mellitus in diabetic vasculopathy and related cardiovascular disease, highlighting epidemiology and clinical characteristics, pathophysiology, and molecular mechanisms, as well as management strategies.
Collapse
Affiliation(s)
- George Jia
- Department of Medicine—Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; (G.J.); (H.B.); (B.M.)
- Department of Biology, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Hetty Bai
- Department of Medicine—Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; (G.J.); (H.B.); (B.M.)
| | - Bethany Mather
- Department of Medicine—Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; (G.J.); (H.B.); (B.M.)
| | - Michael A. Hill
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA
| | - Guanghong Jia
- Department of Medicine—Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; (G.J.); (H.B.); (B.M.)
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA
| | - James R. Sowers
- Department of Medicine—Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA; (G.J.); (H.B.); (B.M.)
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
9
|
Zhao H, Zong Y, Li W, Wang Y, Zhao W, Meng X, Yang F, Kong J, Zhao X, Wang J. Damp-heat constitution influences gut microbiota and urine metabolism of Chinese infants. Heliyon 2022; 9:e12424. [PMID: 36755610 PMCID: PMC9900481 DOI: 10.1016/j.heliyon.2022.e12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Background As an increasingly popular complementary and alternative approach for early detection and treatment of disease, traditional Chinese medicine constitution (TCMC) divides human beings into those with balanced constitution (BC) and unbalanced constitution, where damp-heat constitution (DHC) is one of the most unbalanced constitutions. Many studies have been carried out on the microscopic mechanism of constitution classification; however, most of these studies were conducted in adults and rarely in infants. Many diseases are closely related to intestinal microbiota, and metabolites produced by the interaction between microbiota and the body may impact constitution classification. Herein, we investigated the overall constitution distribution in Chinese infants, and analyzed the profiles of gut microbiota and urine metabolites of DHC to further promote the understanding of infants constitution classification. Methods General information was collected and TCMC was evaluated by Constitutional Medicine Questionnaires. 1315 questionnaires were received in a cross-sectional study to investigate the constitution composition in Chinese infants. A total of 56 infants, including 30 DHC and 26 BC, were randomly selected to analyze gut microbiota by 16S rRNA sequencing and urine metabolites by UPLC-Q-TOF/MS method. Results BC was the most common constitution in Chinese infants, DHC was the second common constitution. The gut microbiota and urine metabolites in the DHC group showed different composition compared to the BC group. Four differential genera and twenty differential metabolites were identified. In addition, the combined marker composed of four metabolites may have the high potential to discriminate DHC from BC with an AUC of 0.765. Conclusions The study revealed the systematic differences in the gut microbiota and urine metabolites between infants with DHC and BC. Moreover, the differential microbiota and metabolites may offer objective evidences for constitution classification.
Collapse
Affiliation(s)
- Haihong Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuhan Zong
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenle Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yaqi Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Weibo Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xianghe Meng
- Neurology Department, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Fan Yang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingwei Kong
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, China
| | - Xiaoshan Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China,School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China,Corresponding author.
| |
Collapse
|
10
|
Renal lysophospholipase A1 contributes to Enterococcus faecalis-induced hypertension by enhancing sodium reabsorption. iScience 2022; 25:105403. [DOI: 10.1016/j.isci.2022.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/23/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
|
11
|
Chen J, Chi B, Ma J, Zhang J, Gu Q, Xie H, Kong Y, Yao S, Liu J, Sun J, Chen S. Gut microbiota signature as predictors of adverse outcomes after acute ischemic stroke in patients with hyperlipidemia. Front Cell Infect Microbiol 2022; 12:1073113. [PMID: 36506018 PMCID: PMC9729740 DOI: 10.3389/fcimb.2022.1073113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction The alterations of gut microbiota have been associated with multiple diseases. However, the relationship between gut microbiota and adverse outcomes of hyperlipidemic stroke patients remains unclear. Here we determined the gut microbial signature to predict the poor outcome of acute ischemic stroke (AIS) with hyperlipidemia (POAH). Methods Fecal samples from hyperlipidemic stroke patients were collected, which further analyzed by 16s rRNA gene sequencing. The diversity, community composition and differential gut microbiota were evaluated. The adverse outcomes were determined by modified Rankin Scale (mRS) scores at 3 months after admission. The diagnostic performance of microbial characteristics in predicting adverse outcomes was assessed by receiver operating characteristic (ROC) curves. Results Our results showed that the composition and structure of gut microbiota between POAH patients and good outcome of AIS with hyperlipidemia (GOAH) patients were different. The characteristic gut microbiota of POAH patients was that the relative abundance of Enterococcaceae and Enterococcus were increased, while the relative abundance of Lachnospiraceae, Faecalibacterium, Rothia and Butyricicoccus were decreased. Moreover, the characteristic gut microbiota were correlated with many clinical parameters, such as National Institutes of Health Stroke Scale (NIHSS) score, mean arterial pressure, and history of cerebrovascular disease. Moreover, the ROC models based on the characteristic microbiota or the combination of characteristic microbiota with independent risk factors could distinguish POAH patients and GOAH patients (area under curve is 0.694 and 0.971 respectively). Conclusions These findings revealed the microbial characteristics of POAH, which highlighted the predictive capability of characteristic microbiota in POAH patients.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Chi
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaying Ma
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junmei Zhang
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qilu Gu
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huijia Xie
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Kong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanshan Yao
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Jiaming Liu, ; Jing Sun, ; Songfang Chen,
| | - Jing Sun
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Jiaming Liu, ; Jing Sun, ; Songfang Chen,
| | - Songfang Chen
- Department of Neurology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Jiaming Liu, ; Jing Sun, ; Songfang Chen,
| |
Collapse
|
12
|
Yan D, Si W, Zhou X, Yang M, Chen Y, Chang Y, Lu Y, Liu J, Wang K, Yan M, Liu F, Li M, Wang X, Wu M, Tian Z, Sun H, Song X. Eucommia ulmoides bark extract reduces blood pressure and inflammation by regulating the gut microbiota and enriching the Parabacteroides strain in high-salt diet and N(omega)-nitro-L-arginine methyl ester induced mice. Front Microbiol 2022; 13:967649. [PMID: 36060766 PMCID: PMC9434109 DOI: 10.3389/fmicb.2022.967649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022] Open
Abstract
Hypertension is a major threat to human health. Eucommia ulmoides Oliv. (EU) is a small tree and EU extract is widely used to improve hypertension in East Asia. However, its major constituents have poor absorption and stay in the gut for a long time. The role of the gut microbiota in the anti-hypertensive effects of EU is unclear. Here, we examined the anti-hypertensive effects of EU in high-salt diet and N(omega)-nitro-L-arginine methyl ester (L-NAME) induced mice. After receiving EU for 6 weeks, the blood pressure was significantly reduced and the kidney injury was improved. Additionally, EU restored the levels of inflammatory cytokines, such as serum interleukin (IL)-6 and IL-17A, and renal IL-17A. The diversity and composition of the gut microbiota were influenced by administration of EU; 40 significantly upregulated and 107 significantly downregulated amplicon sequence variants (ASVs) were identified after administration of EU. ASV403 (Parabacteroides) was selected as a potential anti-hypertensive ASV. Its closest strain XGB65 was isolated. Furthermore, animal studies confirmed that Parabacteroides strain XGB65 exerted anti-hypertensive effects, possibly by reducing levels of inflammatory cytokines, such as renal IL-17A. Our study is the first to report that EU reduces blood pressure by regulating the gut microbiota, and it enriches the Parabacteroides strain, which exerts anti-hypertensive effects. These findings provide directions for developing novel anti-hypertensive treatments by combining probiotics and prebiotics.
Collapse
Affiliation(s)
- Dong Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Wenhao Si
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoyue Zhou
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Mengjie Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuanhang Chen
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yahan Chang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yidan Lu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jieyu Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kaiyue Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Moyu Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Feng Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Min Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xianliang Wang
- Department of Cardiology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Minna Wu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhongwei Tian
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Haiyan Sun
- Department of Cardiology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Haiyan Sun,
| | - Xiangfeng Song
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Xiangfeng Song,
| |
Collapse
|
13
|
Kim J, Ahn SW, Kim JY, Whon TW, Lim SK, Ryu BH, Han NS, Choi HJ, Roh SW, Lee SH. Probiotic Lactobacilli ameliorate alcohol-induced hepatic damage via gut microbial alteration. Front Microbiol 2022; 13:869250. [PMID: 36081800 PMCID: PMC9446534 DOI: 10.3389/fmicb.2022.869250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alcoholic liver disease (ALD), which includes fatty liver, cirrhosis, steatosis, fibrosis, and hepatocellular carcinoma, is a global health problem. The probiotic effects of lactic acid bacteria (LAB) are well-known; however, their protective effect against ALD remains unclear. Therefore, in this study, our objective was to assess the protective effects of LAB on ALD. To this end, mice were fed either a normal diet or an alcohol diet for 10 days (to induce ALD) accompanied by vehicle treatment (the NC and AC groups) or kimchi-derived LAB (Lactiplantibacillus plantarum DSR J266 and Levilactobacillus brevis DSR J301, the AL group; or Lacticaseibacillus rhamnosus GG, the AG group). Our results showed that mice in the AC group showed significantly higher serum aspartate aminotransferase and alanine aminotransferase levels than those in the normal diet groups; however, their levels in the AL and AG groups were relatively lower. We also observed that the AL and AG groups showed relatively lower interleukin-6 levels than the AC group. Additionally, AC group showed the accumulation of several fat vesicles in the liver, while the AL and AG groups showed remarkably lower numbers of fat vesicles. The relative abundance of Enterococcus feacalis, which showed association with liver injury, significantly increased in the AC group compared with its levels in the normal diet groups. However, the AG group showed a decreased relative abundance in this regard, confirming that LAB exerted an improvement effect on gut microbial community. These findings suggested that via gut microbiota alteration, the ingestion of LAB can alleviate the ill effects of alcohol consumption, including inflammation, liver damage, gut dysbiosis, and abnormal intestinal nutrient metabolism.
Collapse
Affiliation(s)
- Juseok Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Seong Woo Ahn
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Joon Yong Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Seul Ki Lim
- Fermentation Regulation Technology Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Byung Hee Ryu
- Food Research Division, Food BU, Daesang Corporation Research Institute, Icheon, South Korea
| | - Nam Soo Han
- Department of Food Science and Biotechnology, Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, South Korea
| | - Hak-Jong Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Seong Woon Roh
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Se Hee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- *Correspondence: Se Hee Lee,
| |
Collapse
|
14
|
Yan D, Sun Y, Zhou X, Si W, Liu J, Li M, Wu M. Regulatory effect of gut microbes on blood pressure. Animal Model Exp Med 2022; 5:513-531. [PMID: 35880388 PMCID: PMC9773315 DOI: 10.1002/ame2.12233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Hypertension is an important global public health issue because of its high morbidity as well as the increased risk of other diseases. Recent studies have indicated that the development of hypertension is related to the dysbiosis of the gut microbiota in both animals and humans. In this review, we outline the interaction between gut microbiota and hypertension, including gut microbial changes in hypertension, the effect of microbial dysbiosis on blood pressure (BP), indicators of gut microbial dysbiosis in hypertension, and the microbial genera that affect BP at the taxonomic level. For example, increases in Lactobacillus, Roseburia, Coprococcus, Akkermansia, and Bifidobacterium are associated with reduced BP, while increases in Streptococcus, Blautia, and Prevotella are associated with elevated BP. Furthermore, we describe the potential mechanisms involved in the regulation between gut microbiota and hypertension. Finally, we summarize the commonly used treatments of hypertension that are based on gut microbes, including fecal microbiota transfer, probiotics and prebiotics, antibiotics, and dietary supplements. This review aims to find novel potential genera for improving hypertension and give a direction for future studies on gut microbiota in hypertension.
Collapse
Affiliation(s)
- Dong Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Ye Sun
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Xiaoyue Zhou
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Wenhao Si
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina,Department of Dermatologythe First Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Jieyu Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Min Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Minna Wu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
15
|
Role of the microbiota in hypertension and antihypertensive drug metabolism. Hypertens Res 2021; 45:246-253. [PMID: 34887530 DOI: 10.1038/s41440-021-00804-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests that the gut microbiota plays an important role in the development and pathogenesis of hypertension. Dysbiosis, an imbalance in the composition and function of the gut microbiota, was shown to be associated with hypertension in both animal models and humans. In this review, we provide insights into host-microbiota interactions and summarize the evidence supporting the importance of the microbiota in blood pressure (BP) regulation. Metabolites produced by the gut microbiota, especially short-chain fatty acids (SCFAs), modulate BP and vascular responses. Harmful gut-derived metabolites, such as trimethylamine N-oxide and several uremic toxins, exert proatherosclerotic, prothrombotic, and proinflammatory effects. High-salt intake alters the composition of the microbiota, and this microbial alteration contributes to the pathogenesis of salt-sensitive hypertension. In addition, the microbiota may impact the metabolism of drugs and steroid hormones in the host. The drug-metabolizing activities of the microbiota affect the pharmacokinetic parameters of antihypertensive drugs and contribute to the pathogenesis of licorice-induced pseudohyperaldosteronism. Furthermore, the oral microbiota plays a role in BP regulation by producing nitric oxide, which lowers BP via its vasodilatory effects. Thus, antihypertensive intervention strategies targeting the microbiota, such as the use of prebiotics, probiotics, and postbiotics (e.g., SCFAs), are considered new therapeutic options for the treatment of hypertension.
Collapse
|
16
|
Abstract
Epidemiological studies have documented that insulin resistance and diabetes not only constitute metabolic abnormalities but also predispose to hypertension, vascular stiffness, and associated cardiovascular disease. Meanwhile, excessive arterial stiffness and impaired vasorelaxation, in turn, contribute to worsening insulin resistance and the development of diabetes. Molecular mechanisms promoting hypertension in diabetes include inappropriate activation of the renin-angiotensin-aldosterone system and sympathetic nervous system, mitochondria dysfunction, excessive oxidative stress, and systemic inflammation. This review highlights recent studies which have uncovered new underlying mechanisms for the increased propensity for the development of hypertension in association with diabetes. These include enhanced activation of epithelial sodium channels, alterations in extracellular vesicles and their microRNAs, abnormal gut microbiota, and increased renal sodium-glucose cotransporter activity, which collectively predispose to hypertension in association with diabetes. This review also covers socioeconomic factors and currently recommended blood pressure targets and related treatment strategies in diabetic patients with hypertension.
Collapse
Affiliation(s)
- Guanghong Jia
- Department of Medicine-Endocrinology (G.J., J.R.S.), University of Missouri School of Medicine, Columbia.,Dalton Cardiovascular Research Center, University of Missouri, Columbia (G.J., J.R.S.)
| | - James R Sowers
- Department of Medicine-Endocrinology (G.J., J.R.S.), University of Missouri School of Medicine, Columbia.,Department of Medical Pharmacology and Physiology (J.R.S.), University of Missouri School of Medicine, Columbia.,Dalton Cardiovascular Research Center, University of Missouri, Columbia (G.J., J.R.S.)
| |
Collapse
|
17
|
Effects of Virgin Olive Oil on Blood Pressure and Renal Aminopeptidase Activities in Male Wistar Rats. Int J Mol Sci 2021; 22:ijms22105388. [PMID: 34065436 PMCID: PMC8161085 DOI: 10.3390/ijms22105388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
High saturated fat diets have been associated with the development of obesity and hypertension, along with other pathologies related to the metabolic syndrome. In contrast, the Mediterranean diet, characterized by its high content of monounsaturated fatty acids, has been proposed as a dietary factor capable of positively regulating cardiovascular function. These effects have been linked to changes in the local renal renin angiotensin system (RAS) and the activity of the sympathetic nervous system. The main goal of this study was to analyze the role of two dietary fat sources on aminopeptidases activities involved in local kidney RAS. Male Wistar rats (six months old) were fed during 24 weeks with three different diets: the standard diet (S), the standard diet supplemented with virgin olive oil (20%) (VOO), or the standard diet enriched with butter (20%) plus cholesterol (0.1%) (Bch). Kidney samples were separated in medulla and cortex for aminopeptidase activities (AP) assay. Urine samples were collected for routine analysis by chemical tests. Aminopeptidase activities were determined by fluorometric methods in soluble (sol) and membrane-bound (mb) fractions of renal tissue, using arylamide derivatives as substrates. After the experimental period, the systolic blood pressure (SBP) values were similar in standard and VOO animals, and significantly lower than in the Bch group. At the same time, a significant increase in GluAP and IRAP activities were found in renal medulla of Bch animals. However, in VOO group the increase of GluAP activity in renal medulla was lower, while AspAP activity decreased in the renal cortex. Furthermore, the VOO diet also affected other aminopeptidase activities, such as TyrAP and pGluAP, related to the regulation of the sympathetic nervous system and the metabolic rate. These results support the beneficial effect of VOO in the regulation of SBP through changes in local AP activities of the kidney.
Collapse
|