1
|
Du YX, Li X, Ji SW, Niu N. Hypertension toxicity of VEGFR-TKIs in cancer treatment: incidence, mechanisms, and management strategies. Arch Toxicol 2025; 99:67-81. [PMID: 39347999 DOI: 10.1007/s00204-024-03874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) are a class of targeted anticancer agents that include pazopanib, sunitinib, axitinib, and others. Currently, VEGFR-TKIs are widely used in the clinical treatment of various tumors, which can prolong patients' survival and even cure tumors. However, the use of VEGFR-TKIs is frequently associated with the occurrence of cardiovascular adverse events, with hypertension being the most prevalent. Hypertension and its complications can significantly impact the prognosis of patients, potentially jeopardizing their lives and resulting in the reduction or even cessation of treatment in severe cases. This review addresses the incidence of hypertension due to VEGFR-TKIs, mechanisms of toxicity, management strategies, and future research directions. In addition, hypertension due to VEGFR-TKIs may be associated with salt sensitivity, and possible mechanisms of hypertensive side effects are vasodilator imbalance, decreased capillary density, renal injury, impaired endothelial function due to oxidative stress, decreased lymphatic vascular density, and "off-target effect". A comprehensive understanding of hypertension toxicity due to cancer treatment with VEGFR-TKIs, can enhance clinical practice, thereby improving the prognostic outcomes of VEGFR-TKIs in oncology patients.
Collapse
Affiliation(s)
- Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Si-Wen Ji
- Office of Academic Affairs, North Sichuan Medical College, Nanchong, 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
2
|
Yang C, Isaeva E, Shimada S, Kurth T, Stumpf M, Zheleznova NN, Staruschenko A, Dash RK, Cowley AW. Inhibition of mTORC2 promotes natriuresis in Dahl salt-sensitive rats via the decrease of NCC and ENaC activity. Am J Physiol Renal Physiol 2024; 327:F435-F449. [PMID: 38779754 PMCID: PMC11460535 DOI: 10.1152/ajprenal.00403.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin complex (mTORC)1, partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (normal salt) or 4.0% NaCl (high salt) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide [inhibitors of epithelial Na+ channel (ENaC), Na-K-2Cl cotransporter (NKCC2), or Na-Cl cotransporter (NCC), respectively] either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K+ associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.NEW & NOTEWORTHY This study explored mechanisms underlying the natriuretic effects of mammalian target of rapamycin protein complex 2 inhibition using PP242 and revealed both epithelial Na+ channel and Na-Cl cotransporter in the distal tubular segments were potentially inhibited. These observations, with prior lab evidence, indicate that PP242 prevents hypertension via its potent inhibitory effects on these specific sodium transporters and by reducing renal immune responses. This dual action, coupled with potassium sparing effects, suggests an improved approach for managing hypertension and associated kidney damage.
Collapse
Affiliation(s)
- Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Satoshi Shimada
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Megan Stumpf
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nadezhda N Zheleznova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
3
|
Iwata Y, Deng Q, Kakizoe Y, Nakagawa T, Miyasato Y, Nakagawa M, Nishiguchi K, Nagayoshi Y, Narita Y, Izumi Y, Kuwabara T, Adachi M, Mukoyama M. A Serine Protease Inhibitor, Camostat Mesilate, Suppresses Urinary Plasmin Activity and Alleviates Hypertension and Podocyte Injury in Dahl Salt-Sensitive Rats. Int J Mol Sci 2023; 24:15743. [PMID: 37958726 PMCID: PMC10650472 DOI: 10.3390/ijms242115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
In proteinuric renal diseases, the serine protease (SP) plasmin activates the epithelial sodium channel (ENaC) by cleaving its γ subunit. We previously demonstrated that a high-salt (HS) diet provoked hypertension and proteinuria in Dahl salt-sensitive (DS) rats, accompanied by γENaC activation, which were attenuated by camostat mesilate (CM), an SP inhibitor. However, the effects of CM on plasmin activity in DS rats remain unclear. In this study, we investigated the effects of CM on plasmin activity, ENaC activation, and podocyte injury in DS rats. The DS rats were divided into the control diet, HS diet (8.0% NaCl), and HS+CM diet (0.1% CM) groups. After weekly blood pressure measurement and 24-h urine collection, the rats were sacrificed at 5 weeks. The HS group exhibited hypertension, massive proteinuria, increased urinary plasmin, and γENaC activation; CM treatment suppressed these changes. CM prevented plasmin(ogen) attachment to podocytes and mitigated podocyte injury by reducing the number of apoptotic glomerular cells, inhibiting protease-activated receptor-1 activation, and suppressing inflammatory and fibrotic cytokine expression. Our findings highlight the detrimental role of urinary plasmin in the pathogenesis of salt-sensitive hypertension and glomerular injury. Targeting plasmin with SP inhibitors, such as CM, may be a promising therapeutic approach for these conditions.
Collapse
Affiliation(s)
- Yasunobu Iwata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Qinyuan Deng
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
- Comprehensive Clinical Education, Training and Development Center, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Terumasa Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yoshikazu Miyasato
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Miyuki Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Kayo Nishiguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yu Nagayoshi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yuki Narita
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
- Comprehensive Clinical Education, Training and Development Center, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| |
Collapse
|
4
|
Ramachandran CD, Gholami K, Lam SK, Hoe SZ. Effects of a high-salt diet on MAP and expression levels of renal ENaCs and aquaporins in SHR. Exp Biol Med (Maywood) 2023; 248:1768-1779. [PMID: 37828834 PMCID: PMC10792424 DOI: 10.1177/15353702231198085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/05/2023] [Indexed: 10/14/2023] Open
Abstract
An increase in blood pressure by a high-salt (HS) diet may change the expression levels of renal epithelial sodium channels (ENaCs) and aquaporins (AQPs). Spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were exposed to HS and regular-salt (RS) diets for 6 weeks. Mean arterial pressure (MAP) and plasma atrial natriuretic peptide (ANP), angiotensin II (Ang II), aldosterone, and arginine vasopressin (AVP) levels were determined. Expression of mRNA levels of ENaCs and AQPs were quantified by real-time PCR. The MAP was higher in SHRs on the HS diet. Plasma Ang II and aldosterone levels were low while plasma ANP level was high in both strains of rats. Renal expression of mRNA levels of α-, β-, and γ-ENaCs was lowered in SHRs on the HS diet. Meanwhile, renal AQP1, AQP2, and AQP7 mRNA expression levels were lowered in both strains of rats on the HS diet. Suppression of mRNA expression levels of ENaC and AQP subunits suggests that the high-salt-induced increase in the MAP of SHR may not be solely due to renal sodium and water retention.
Collapse
Affiliation(s)
| | - Khadijeh Gholami
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sau-Kuen Lam
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Pre-Clinical Sciences, Faculty of Medicine & Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - See-Ziau Hoe
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
5
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
6
|
Renal sympathetic activity: A key modulator of pressure natriuresis in hypertension. Biochem Pharmacol 2023; 208:115386. [PMID: 36535529 DOI: 10.1016/j.bcp.2022.115386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Hypertension is a complex disorder ensuing necessarily from alterations in the pressure-natriuresis relationship, the main determinant of long-term control of blood pressure. This mechanism sets natriuresis to the level of blood pressure, so that increasing pressure translates into higher osmotically driven diuresis to reduce volemia and control blood pressure. External factors affecting the renal handling of sodium regulate the pressure-natriuresis relationship so that more or less natriuresis is attained for each level of blood pressure. Hypertension can thus only develop following primary alterations in the pressure to natriuresis balance, or by abnormal activity of the regulation network. On the other hand, increased sympathetic tone is a very frequent finding in most forms of hypertension, long regarded as a key element in the pathophysiological scenario. In this article, we critically analyze the interplay of the renal component of the sympathetic nervous system and the pressure-natriuresis mechanism in the development of hypertension. A special focus is placed on discussing recent findings supporting a role of baroreceptors as a component, along with the afference of reno-renal reflex, of the input to the nucleus tractus solitarius, the central structure governing the long-term regulation of renal sympathetic efferent tone.
Collapse
|
7
|
The serine protease plasmin plays detrimental roles in epithelial sodium channel activation and podocyte injury in Dahl salt-sensitive rats. Hypertens Res 2023; 46:50-62. [PMID: 36241707 DOI: 10.1038/s41440-022-01064-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 02/03/2023]
Abstract
Salt-sensitive hypertension is associated with poor clinical outcomes. The epithelial sodium channel (ENaC) in the kidney plays pivotal roles in sodium reabsorption and blood pressure regulation, in which its γ subunit is activated by extracellular serine proteases. In proteinuric nephropathies, plasmin filtered through injured glomeruli reportedly activates γENaC in the distal nephron and causes podocyte injury. We previously reported that Dahl salt-sensitive (DS) rats fed a high-salt (HS) diet developed hypertension and proteinuria along with γENaC activation and that a synthetic serine protease inhibitor, camostat mesilate, mitigated these changes. However, the role of plasmin in DS rats remained unclear. In this study, we evaluated the relationship between plasmin and hypertension as well as podocyte injury and the effects of plasmin inhibitors in DS rats. Five-week-old DS rats were divided into normal-salt diet, HS diet, and HS+plasmin inhibitor (either tranexamic acid [TA] or synthetic plasmin inhibitor YO-2) groups. After blood pressure measurement and 24 h urine collection over 5 weeks, rats were sacrificed for biochemical analyses. The HS group displayed severe hypertension and proteinuria together with activation of plasmin in urine and γENaC in the kidney, which was significantly attenuated by YO-2 but not TA. YO-2 inhibited the attachment of plasmin(ogen) to podocytes and alleviated podocyte injury by inhibiting apoptosis and inflammatory/profibrotic cytokines. YO-2 also suppressed upregulation of protease-activated receptor-1 and phosphorylated ERK1/2. These results indicate an important role of plasmin in the development of salt-sensitive hypertension and related podocyte injury, suggesting plasmin inhibition as a potential therapeutic strategy.
Collapse
|
8
|
Renal lysophospholipase A1 contributes to Enterococcus faecalis-induced hypertension by enhancing sodium reabsorption. iScience 2022; 25:105403. [DOI: 10.1016/j.isci.2022.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/23/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
|
9
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Camostat mesilate, a serine protease inhibitor, exerts aquaretic effects and decreases urinary exosomal AQP2 levels. J Pharmacol Sci 2022; 150:204-210. [DOI: 10.1016/j.jphs.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
|
11
|
Upregulation of Mineralocorticoid Receptor Contributes to Development of Salt-Sensitive Hypertension after Ischemia-Reperfusion Injury in Rats. Int J Mol Sci 2022; 23:ijms23147831. [PMID: 35887178 PMCID: PMC9324399 DOI: 10.3390/ijms23147831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The ischemia-reperfusion injury (IRI) of rat kidneys is used as a model of acute kidney injury. Salt-sensitive hypertension occurs in rats after IRI, and the distal nephrons play important roles in the development of this condition. We investigated the role of the mineralocorticoid receptor (MR) in the progression of IRI-induced salt-sensitive hypertension in rats. Fourteen days after right-side nephrectomy, IRI was induced by clamping the left renal artery, with sham surgery performed as a control. IRI rats were provided with normal water or water with 1.0% NaCl (IRI/NaCl), or they were implanted with an osmotic mini-pump to infuse vehicle or aldosterone (IRI/Aldo). Esaxerenone, a non-steroidal MR blocker (MRB), was administered to IRI/NaCl and IRI/Aldo rats for 6 weeks. MR expression increased by day 7 post-IRI. Blood pressure and urinary protein excretion increased in IRI/NaCl and IRI/Aldo rats over the 6-week period, but these effects were negated by MRB administration. The MRB attenuated the expression of the gamma-epithelial sodium channel (ENaC) and renal damage. The ENaC inhibitor, amiloride, ameliorated hypertension and renal damage in IRI/NaCl and IRI/Aldo rats. Our findings thus showed that MR upregulation may play a pivotal role in ENaC-mediated sodium uptake in rats after IRI, resulting in the development of salt-sensitive hypertension in response to salt overload or the activation of the renin-angiotensin-aldosterone system.
Collapse
|
12
|
Ilatovskaya DV, Levchenko V, Winsor K, Blass GR, Spires DR, Sarsenova E, Polina I, Zietara A, Paterson M, Kriegel AJ, Staruschenko A. Effects of elevation of ANP and its deficiency on cardiorenal function. JCI Insight 2022; 7:148682. [PMID: 35380994 PMCID: PMC9090260 DOI: 10.1172/jci.insight.148682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial natriuretic peptide (ANP), encoded by Nppa, is a vasodilatory hormone that promotes salt excretion. Genome-wide association studies identified Nppa as a causative factor of blood pressure development, and in humans, ANP levels were suggested as an indicator of salt sensitivity. This study aimed to provide insights into the effects of ANP on cardiorenal function in salt-sensitive hypertension. To address this question, hypertension was induced in SSNPPA-/- (knockout of Nppa in the Dahl Salt-Sensitive (SS) rat background) or SSWT (wild type Dahl SS) rats by a high salt diet challenge (HS, 4% NaCl for 21 days). Chronic infusion of ANP in SSWT rats attenuated the increase in blood pressure and cardiorenal damage. Overall, SSNPPA-/- strain demonstrated higher blood pressure and intensified cardiac fibrosis (with no changes in ejection fraction) compared to SSWT rats. Furthermore, SSNPPA-/- rats exhibited kidney hypertrophy and higher glomerular injury scores, reduced diuresis, and lower sodium and chloride excretion than SSWT when fed a HS diet. Additionally, the activity of epithelial Na+ channel (ENaC) was found to be increased in the collecting ducts of the SSNPPA-/- rats. Taken together, these data show promise for the therapeutic benefits of ANP and ANP-increasing drugs for treating salt-sensitive hypertension.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta, United States of America
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Kristen Winsor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Gregory R Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Denisha R Spires
- Department of Physiology, Medical College of Georgia, Augusta, United States of America
| | - Elizaveta Sarsenova
- Department of Medicine, Medical University of South Carolina, Charleston, United States of America
| | - Iuliia Polina
- Department of Medicine, Medical University of South Carolina, Charleston, United States of America
| | - Adrian Zietara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Mark Paterson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | | |
Collapse
|
13
|
Cardiorenal protective effects of sodium-glucose cotransporter 2 inhibition in combination with angiotensin II type 1 receptor blockade in salt-sensitive Dahl rats. J Hypertens 2022; 40:956-968. [DOI: 10.1097/hjh.0000000000003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Hiramatsu A, Izumi Y, Eguchi K, Matsuo N, Deng Q, Inoue H, Nakayama Y, Nonoguchi H, Aramburu J, López-Rodríguez C, Kakizoe Y, Adachi M, Kuwabara T, Kim-Mitsuyama S, Mukoyama M. Salt-Sensitive Hypertension of the Renal Tubular Cell-Specific NFAT5 (Nuclear Factor of Activated T-Cells 5) Knockout Mice. Hypertension 2021; 78:1335-1346. [PMID: 34601973 DOI: 10.1161/hypertensionaha.121.17435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Akiko Hiramatsu
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Yuichiro Izumi
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Koji Eguchi
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Naomi Matsuo
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Qinyuan Deng
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Hideki Inoue
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Yushi Nakayama
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, Kitamoto, Saitama, Japan (H.N.)
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Spain (J.A., C.L.-R.)
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Spain (J.A., C.L.-R.)
| | - Yutaka Kakizoe
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Masataka Adachi
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Takashige Kuwabara
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Shokei Kim-Mitsuyama
- Department of Pharmacology and Molecular Therapeutics (S.K.-M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Masashi Mukoyama
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| |
Collapse
|
15
|
Mizumoto T, Kakizoe Y, Nakagawa T, Iwata Y, Miyasato Y, Uchimura K, Adachi M, Deng Q, Hayata M, Morinaga J, Miyoshi T, Izumi Y, Kuwabara T, Sakai Y, Tomita K, Kitamura K, Mukoyama M. A serine protease inhibitor camostat mesilate prevents podocyte apoptosis and attenuates podocyte injury in metabolic syndrome model rats. J Pharmacol Sci 2021; 146:192-199. [PMID: 34116732 DOI: 10.1016/j.jphs.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022] Open
Abstract
Metabolic syndrome (MetS) is associated with chronic kidney disease and proteinuria. Previously, we reported that a synthetic serine protease inhibitor, camostat mesilate (CM), mitigated hypertension and proteinuria in rodent disease models. The present study evaluated the anti-hypertensive and anti-proteinuric effects of CM in MetS model rats (SHR/ND mcr-cp). Rats were divided into normal salt-fed (NS), high salt-fed (HS), HS and CM-treated (CM), and HS and hydralazine-treated (Hyd) groups. Rats were sacrificed after four weeks of treatment. Severe hypertension and proteinuria were observed in the HS group. Although CM and Hyd equally alleviated hypertension, CM suppressed proteinuria and glomerular sclerosis more efficiently than Hyd. The HS group revealed a decrease in podocyte number and podocyte-specific molecules, together with an increase in glomerular apoptotic cells and apoptosis-related proteins in the kidney. These changes were significantly attenuated by CM, but not by Hyd. Furthermore, CM ameliorated the apoptotic signals in murine cultured podocytes stimulated with the high glucose and aldosterone medium. In conclusion, CM could exert renoprotective effects in MetS model rats, together with the inhibition of podocyte apoptosis. Our study suggests that serine protease inhibition may become a new therapeutic strategy against MetS-related hypertension and renal injuries.
Collapse
Affiliation(s)
- Teruhiko Mizumoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Terumasa Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasunobu Iwata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshikazu Miyasato
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kohei Uchimura
- Third Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Qinyuan Deng
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Manabu Hayata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Jun Morinaga
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Taku Miyoshi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshiki Sakai
- Ono Pharmaceutical Co. Ltd., Research Headquarters, 1-8-2 Kyutaromachi, Chuo-ku, Osaka 541-8564, Japan
| | - Kimio Tomita
- The Chronic Kidney Disease Research Center, Tomei Atsugi Hospital, 232 Funako, Atsugi, Kanagawa 243-8571, Japan
| | - Kenichiro Kitamura
- Kitakurihama Takuchi Clinic, 3-16-1 Negishi-cho, Yokosuka, Kanagawa 239-0807, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
16
|
Abstract
The development of high blood pressure is influenced by genetic and environmental factors, with high salt intake being a known environmental contributor. Humans display a spectrum of sodium-sensitivity, with some individuals displaying a significant blood pressure rise in response to increased sodium intake while others experience almost no change. These differences are, in part, attributable to genetic variation in pathways involved in sodium handling and excretion. ENaC (epithelial sodium channel) is one of the key transporters responsible for the reabsorption of sodium in the distal nephron. This channel has an important role in the regulation of extracellular fluid volume and consequently blood pressure. Herein, we review the role of ENaC in the development of salt-sensitive hypertension, and present mechanistic insights into the regulation of ENaC activity and how it may accelerate sodium-induced damage and dysfunction. We discuss the traditional role of ENaC in renal sodium reabsorption and review work addressing ENaC expression and function in the brain, vasculature, and immune cells, and how this has expanded the implications for its role in the initiation and progression of salt-sensitive hypertension.
Collapse
Affiliation(s)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, and Department of Molecular Physiology and Biophysics Vanderbilt University, Nashville, TN (A.K.)
| | - Thomas R Kleyman
- From the Department of Medicine (S.M.M., T.R.K.), University of Pittsburgh, PA.,Department of Cell Biology (T.R.K.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (T.R.K.), University of Pittsburgh, PA
| |
Collapse
|
17
|
Egerman MA, Wong JS, Runxia T, Mosoyan G, Chauhan K, Reyes-Bahamonde J, Anandakrishnan N, Wong NJ, Bagiella E, Salem F, Meliambro K, Li H, Azeloglu EU, Coca SG, Campbell KN, Raij L. Plasminogenuria is associated with podocyte injury, edema, and kidney dysfunction in incident glomerular disease. FASEB J 2020; 34:16191-16204. [PMID: 33070369 PMCID: PMC7686123 DOI: 10.1096/fj.202000413r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023]
Abstract
Urinary plasminogen/plasmin, or plasmin (ogen) uria, has been demonstrated in proteinuric patients and exposure of cultured podocytes to plasminogen results in injury via oxidative stress pathways. A causative role for plasmin (ogen) as a "second hit" in kidney disease progression has yet to have been demonstrated in vivo. Additionally, association between plasmin (ogen) uria and kidney function in glomerular diseases remains unclear. We performed comparative studies in a puromycin aminonucleoside (PAN) nephropathy rat model treated with amiloride, an inhibitor of plasminogen activation, and measured changes in plasmin (ogen) uria. In a glomerular disease biorepository cohort (n = 128), we measured time-of-biopsy albuminuria, proteinuria, and plasmin (ogen) uria for correlations with kidney outcomes. In cultured human podocytes, plasminogen treatment was associated with decreased focal adhesion marker expression with rescue by amiloride. Increased glomerular plasmin (ogen) was found in PAN rats and focal segmental glomerulosclerosis (FSGS) patients. PAN nephropathy was associated with increases in plasmin (ogen) uria and proteinuria. Amiloride was protective against PAN-induced glomerular injury, reducing CD36 scavenger receptor expression and oxidative stress. In patients, we found associations between plasmin (ogen) uria and edema status as well as eGFR. Our study demonstrates a role for plasmin (ogen)-induced podocyte injury in the PAN nephropathy model, with amiloride having podocyte-protective properties. In one of the largest glomerular disease cohorts to study plasminogen, we validated previous findings while suggesting a potentially novel relationship between plasmin (ogen) uria and estimated glomerular filtration rate (eGFR). Together, these findings suggest a role for plasmin (ogen) in mediating glomerular injury and as a viable targetable biomarker for podocyte-sparing treatments.
Collapse
Affiliation(s)
- Marc A. Egerman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Jenny S. Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Tian Runxia
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine
| | - Gohar Mosoyan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | | | | | - Nicholas J. Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Emilia Bagiella
- Center for Biostatistics, Department of Population health Science and Policy, Icahn School of Medicine at Mount Sinai
| | - Fadi Salem
- Department of Pathology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School
| | - Evren U. Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai
| | - Steven G. Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kirk N. Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Leopoldo Raij
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine
| |
Collapse
|
18
|
Sodium butyrate ameliorates deoxycorticosterone acetate/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway. Hypertens Res 2020; 44:168-178. [PMID: 32908237 DOI: 10.1038/s41440-020-00548-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023]
Abstract
Our recent work demonstrates that infusion of sodium butyrate (NaBu) into the renal medulla blunts angiotensin II-induced hypertension and improves renal injury. The present study aimed to test whether oral administration of NaBu attenuates salt-sensitive hypertension in deoxycorticosterone acetate (DOCA)/salt-treated rats. Uninephrectomized male Sprague-Dawley (SD) rats were treated with DOCA pellets (150 mg/rat) plus 1% NaCl drinking water for 2 weeks. Animals received oral administration of NaBu (1 g/kg) or vehicle once per day. Our results showed that NaBu administration significantly attenuated DOCA/salt-increased mean arterial pressure from 156 ± 4 mmHg to 136 ± 1 mmHg. DOCA/salt treatment markedly enhanced renal damage as indicated by an increased ratio of kidney weight/body weight, elevated urinary albumin, extensive fibrosis, and inflammation, whereas kidneys from NaBu-treated rats exhibited a significant reduction in these renal damage responses. Compared to the DOCA/salt group, the DOCA/salt-NaBu group had ~30% less salt water intake and decreased Na+ and Cl- excretion in urine but no alteration in 24-h urine excretion. Mechanistically, NaBu inhibited the protein levels of several sodium transporters stimulated by DOCA/salt in vivo, such as βENaC, γENaC, NCC, and NKCC-2. Further examination showed that NaBu downregulated the expression of mineralocorticoid receptor (MR) and serum and glucocorticoid-dependent protein kinase 1 (SGK1) in DOCA/salt-treated rats or aldosterone-treated human renal tubular duct epithelial cells. These results provide evidence that NaBu may attenuate DOCA/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway.
Collapse
|
19
|
Pavlov TS, Palygin O, Isaeva E, Levchenko V, Khedr S, Blass G, Ilatovskaya DV, Cowley AW, Staruschenko A. NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease. FASEB J 2020; 34:13396-13408. [PMID: 32799394 DOI: 10.1096/fj.202000966rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
NADPH oxidase 4 (NOX4) is the most abundant NOX isoform in the kidney; however, its importance for renal function has only recently emerged. The NOX4-dependent pathway regulates many factors essential for proper sodium handling in the distal nephron. However, the functional significance of this pathway in the control of sodium reabsorption during the initiation of chronic kidney disease is not established. The goal of this study was to test Nox4-dependent ENaC regulation in two models: SS hypertension and STZ-induced type 1 diabetes. First, we showed that genetic ablation of Nox4 in Dahl salt-sensitive (SS) rat attenuated a high-salt (HS)-induced increase in epithelial Na+ channel (ENaC) activity in the cortical collecting duct. We also found that H2 O2 upregulated ENaC activity, and H2 O2 production was reduced in both the renal cortex and medulla in SSNox4-/- rats fed an HS diet. Second, in the streptozotocin model of hyperglycemia-induced renal injury ENaC activity in hyperglycemic animals was elevated in SS but not SSNox4-/- rats. NaCl cotransporter (NCC) expression was increased compared to healthy controls, while expression values between SS and SSNox4-/- groups were similar. These data emphasize a critical contribution of the NOX4-mediated pathway in maladaptive upregulation of ENaC-mediated sodium reabsorption in the distal nephron in the conditions of HS- and hyperglycemia-induced kidney injury.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, MI, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| |
Collapse
|
20
|
Packer M. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes Metab 2020; 22:734-742. [PMID: 31916329 DOI: 10.1111/dom.13961] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/29/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Abstract
Long-term treatment with sodium-glucose co-transporter-2 (SGLT2) inhibitors slows the deterioration of renal function in patients with diabetes. This benefit cannot be ascribed to an action on blood glucose, ketone utilization, uric acid or systolic blood pressure. SGLT2 inhibitors produce a striking amelioration of glomerular hyperfiltration. Although initially ascribed to an action of these drugs to inhibit proximal tubular glucose reabsorption, SGLT2 inhibitors exert renoprotective effects, even in patients with meaningfully impaired levels of glomerular function that are sufficient to abolish their glycosuric actions. Instead, the reduction in intraglomerular pressures may be related to an action of SGLT2 inhibitors to interfere with the activity of sodium-hydrogen exchanger isoform 3, thereby inhibiting proximal tubular sodium reabsorption and promoting tubuloglomerular feedback. Yet, experimentally, such an effect may not be sufficient to prevent renal injury. It is therefore noteworthy that the diabetic kidney exhibits an important defect in adenosine monophosphate-activated protein kinase (AMPK) and sirtuin-1 (SIRT1) signalling, which may contribute to the development of nephropathy. These transcription factors exert direct effects to mute oxidative stress and inflammation, and they also stimulate autophagy, a lysosomally mediated degradative pathway that maintains cellular homeostasis in the kidney. SGLT2 inhibitors induce both AMPK and SIRT1, and they have been shown to stimulate autophagy, thereby ameliorating cellular stress and glomerular and tubular injury. Enhanced AMPK/SIRT1 signalling may also contribute to the action of SGLT2 inhibitors to interfere with sodium transport mechanisms. The dual effects of SGLT2 inhibitors on AMPK/SIRT1 activation and renal tubular sodium transport may explain the protective effects of these drugs on the kidney in type 2 diabetes.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
- Imperial College, London, UK
| |
Collapse
|
21
|
Packer M. Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors. J Am Soc Nephrol 2020; 31:907-919. [PMID: 32276962 DOI: 10.1681/asn.2020010010] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Growing evidence indicates that oxidative and endoplasmic reticular stress, which trigger changes in ion channels and inflammatory pathways that may undermine cellular homeostasis and survival, are critical determinants of injury in the diabetic kidney. Cells are normally able to mitigate these cellular stresses by maintaining high levels of autophagy, an intracellular lysosome-dependent degradative pathway that clears the cytoplasm of dysfunctional organelles. However, the capacity for autophagy in both podocytes and renal tubular cells is markedly impaired in type 2 diabetes, and this deficiency contributes importantly to the intensity of renal injury. The primary drivers of autophagy in states of nutrient and oxygen deprivation-sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia-inducible factors (HIF-1α and HIF-2α)-can exert renoprotective effects by promoting autophagic flux and by exerting direct effects on sodium transport and inflammasome activation. Type 2 diabetes is characterized by marked suppression of SIRT1 and AMPK, leading to a diminution in autophagic flux in glomerular podocytes and renal tubules and markedly increasing their susceptibility to renal injury. Importantly, because insulin acts to depress autophagic flux, these derangements in nutrient deprivation signaling are not ameliorated by antihyperglycemic drugs that enhance insulin secretion or signaling. Metformin is an established AMPK agonist that can promote autophagy, but its effects on the course of CKD have been demonstrated only in the experimental setting. In contrast, the effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors may be related primarily to enhanced SIRT1 and HIF-2α signaling; this can explain the effects of SGLT2 inhibitors to promote ketonemia and erythrocytosis and potentially underlies their actions to increase autophagy and mute inflammation in the diabetic kidney. These distinctions may contribute importantly to the consistent benefit of SGLT2 inhibitors to slow the deterioration in glomerular function and reduce the risk of ESKD in large-scale randomized clinical trials of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas .,Imperial College, London, United Kingdom
| |
Collapse
|
22
|
Manis AD, Palygin O, Khedr S, Levchenko V, Hodges MR, Staruschenko A. Relationship between the renin-angiotensin-aldosterone system and renal Kir5.1 channels. Clin Sci (Lond) 2019; 133:2449-2461. [PMID: 31799617 PMCID: PMC8474144 DOI: 10.1042/cs20190876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/13/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Kir5.1 (encoded by the Kcnj16 gene) is an inwardly rectifying K+ (Kir) channel highly expressed in the aldosterone-sensitive distal nephron of the kidney, where it forms a functional channel with Kir4.1. Kir4.1/Kir5.1 channels are responsible for setting the transepithelial voltage in the distal nephron and collecting ducts and are thereby major determinants of fluid and electrolyte distribution. These channels contribute to renal blood pressure control and have been implicated in salt-sensitive hypertension. However, mechanisms pertaining to the impact of K ir4.1/Kir5.1-mediated K+ transport on the renin-angiotensin-aldosterone system (RAAS) remain unclear. Herein, we utilized a knockout of Kcnj16 in the Dahl salt-sensitive rat (SSKcnj16-/-) to investigate the relationship between Kir5.1 and RAAS balance and function in the sensitivity of blood pressure to the dietary Na+/K+ ratio. The knockout of Kcnj16 caused substantial elevations in plasma RAAS hormones (aldosterone and angiotensin peptides) and altered the RAAS response to changing the dietary Na+/K+ ratio. Blocking aldosterone with spironolactone caused rapid mortality in SSKcnj16-/- rats. Supplementation of the diet with high K+ was protective against mortality resulting from aldosterone-mediated mechanisms. Captopril and losartan treatment had no effect on the survival of SSKcnj16-/- rats. However, neither of these drugs prevented mortality of SSKcnj16-/- rats when switched to high Na+ diet. These studies revealed that the knockout of Kcnj16 markedly altered RAAS regulation and function, suggesting Kir5.1 as a key regulator of the RAAS, particularly when exposed to changes in dietary sodium and potassium content.
Collapse
Affiliation(s)
- Anna D. Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA
| |
Collapse
|
23
|
Dietary sodium modulates nephropathy in Nedd4-2-deficient mice. Cell Death Differ 2019; 27:1832-1843. [PMID: 31802037 PMCID: PMC7244563 DOI: 10.1038/s41418-019-0468-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/05/2022] Open
Abstract
Salt homeostasis is maintained by tight control of Na+ filtration and reabsorption. In the distal part of the nephron the ubiquitin protein ligase Nedd4-2 regulates membrane abundance and thus activity of the epithelial Na+ channel (ENaC), which is rate-limiting for Na+ reabsorption. Nedd4-2 deficiency in mouse results in elevated ENaC and nephropathy, however the contribution of dietary salt to this has not been characterized. In this study we show that high dietary Na+ exacerbated kidney injury in Nedd4-2-deficient mice, significantly perturbing normal postnatal nephrogenesis and resulting in multifocal areas of renal dysplasia, increased markers of kidney injury and a decline in renal function. In control mice, high dietary Na+ resulted in reduced levels of ENaC. However, Nedd4-2-deficient kidneys maintained elevated ENaC even after high dietary Na+, suggesting that the inability to efficiently downregulate ENaC is responsible for the salt-sensitivity of disease. Importantly, low dietary Na+ significantly ameliorated nephropathy in Nedd4-2-deficient mice. Our results demonstrate that due to dysregulation of ENaC, kidney injury in Nedd4-2-deficient mice is sensitive to dietary Na+, which may have implications in the management of disease in patients with kidney disease.
Collapse
|
24
|
Zicha J, Hojná S, Vaňourková Z, Kopkan L, Vaněčková I. Is renal ß-adrenergic-WNK4-NCC pathway important in salt hypertension of Dahl rats? Physiol Res 2019; 68:873-882. [PMID: 31647304 DOI: 10.33549/physiolres.934334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In 2011 Fujita and coworkers proposed that ß-adrenergic stimulation causes decreased serine/threonine-protein kinase WNK4 transcription leading to the activation of Na-Cl cotransporter (NCC) which participates in salt sensitivity and salt hypertension development in rodents. The aim of our study was to investigate whether the above hypothesis is also valid for salt hypertension of Dahl rats, which are characterized by high sympathetic tone and abnormal renal sodium handling. Male 8-week-old salt-sensitive (SS/Jr) and salt-resistant (SR/Jr) Dahl rats were fed either low-salt diet (LS, 0.4 % NaCl) or high-salt diet (HS, 4 % NaCl) for 6 weeks. Half of the animals on either diet were chronically treated with non-selective ß-blocker propranolol (100 mg/kg/day). At the end of the experiment diuresis and sodium excretion were measured prior and after hydrochlorothiazide injection (HCTZ, 10 mg/kg i.p.). Furthermore, blood pressure (BP), heart rate (HR), sympathetic (pentolinium 5 mg/kg i.v.) and NO-dependent (L-NAME 30 mg/kg i.v.) BP components were determined. Chronic HS diet feeding increased BP through sympathoexcitation in SS/Jr but not in SR/Jr rats. Concomitant propranolol treatment did not lower BP in either experimental group. Under the conditions of low salt intake HCTZ increased diuresis, natriuresis and fractional sodium excretion in SR/Jr but not in SS/Jr rats. HS diet feeding attenuated renal response to HCT in SR/Jr rats, whereas no HCTZ effect was observed in SS/Jr rats fed HS diet. Propranolol treatment did not modify diuresis or natriuresis in any experimental group. In conclusions, our present data do not support the idea on the essential importance of renal ß-adrenergic-WNK4-NCC pathway in pathogenesis and/or maintenance of salt hypertension in Dahl rats.
Collapse
Affiliation(s)
- J Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
25
|
Zilbermint M, Hannah-Shmouni F, Stratakis CA. Genetics of Hypertension in African Americans and Others of African Descent. Int J Mol Sci 2019; 20:ijms20051081. [PMID: 30832344 PMCID: PMC6429313 DOI: 10.3390/ijms20051081] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
Hypertension is the leading cause of cardiovascular disease in the United States, affecting up to one-third of adults. When compared to other ethnic or racial groups in the United States, African Americans and other people of African descent show a higher incidence of hypertension and its related comorbidities; however, the genetics of hypertension in these populations has not been studied adequately. Several genes have been identified to play a role in the genetics of hypertension. They include genes regulating the renin-aldosterone-angiotensin system (RAAS), such as Sodium Channel Epithelial 1 Beta Subunit (SCNN1B), Armadillo Repeat Containing 5 (ARMC5), G Protein-Coupled Receptor Kinase 4 (GRK4), and Calcium Voltage-Gated Channel Subunit Alpha1 D (CACNA1D). In this review, we focus on recent genetic findings available in the public domain for potential differences between African Americans and other populations. We also cover some recent and relevant discoveries in the field of low-renin hypertension from our laboratory at the National Institutes of Health. Understanding the different genetics of hypertension among various groups is essential for effective precision-guided medical therapy of high blood pressure.
Collapse
Affiliation(s)
- Mihail Zilbermint
- Section on Endocrinology and Genetics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, BG 31 RM 2A46, 31 Center Dr, Bethesda, MD 20892, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Johns Hopkins Community Physicians at Suburban Hospital, Bethesda, MD 20814, USA.
- Johns Hopkins University Carey Business School, Baltimore, MD 21202, USA.
| | - Fady Hannah-Shmouni
- Section on Endocrinology and Genetics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, BG 31 RM 2A46, 31 Center Dr, Bethesda, MD 20892, USA.
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, BG 31 RM 2A46, 31 Center Dr, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Mamenko M, Zaika O, Tomilin V, Jensen VB, Pochynyuk O. Compromised regulation of the collecting duct ENaC activity in mice lacking AT 1a receptor. J Cell Physiol 2018; 233:7217-7225. [PMID: 29574718 PMCID: PMC6301083 DOI: 10.1002/jcp.26552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022]
Abstract
ENaC-mediated sodium reabsorption in the collecting duct (CD) is a critical determinant of urinary sodium excretion. Existing evidence suggest direct stimulatory actions of Angiotensin II (Ang II) on ENaC in the CD, independently of the aldosterone-mineralocorticoid receptor (MR) signaling. Deletion of the major renal AT1 receptor isoform, AT1a R, decreases blood pressure and reduces ENaC abundance despite elevated aldosterone levels. The mechanism of this insufficient compensation is not known. Here, we used patch clamp electrophysiology in freshly isolated split-opened CDs to investigate how AT1a R dysfunction compromises functional ENaC activity and its regulation by dietary salt intake. Ang II had no effect on ENaC activity in CDs from AT1a R -/- mice suggesting no complementary contribution of AT2 receptors. We next found that AT1a R deficient mice had lower ENaC activity when fed with low (<0.01% Na+ ) and regular (0.32% Na+ ) but not with high (∼2% Na+ ) salt diet, when compared to the respective values obtained in Wild type (WT) animals. Inhibition of AT1 R with losartan in wild-type animals reproduces the effects of genetic ablation of AT1a R on ENaC activity arguing against contribution of developmental factors. Interestingly, manipulation with aldosterone-MR signaling via deoxycosterone acetate (DOCA) and spironolactone had much reduced influence on ENaC activity upon AT1a R deletion. Consistently, AT1a R -/- mice have a markedly diminished MR abundance in cytosol. Overall, we conclude that AT1a R deficiency elicits a complex inhibitory effect on ENaC activity by attenuating ENaC Po and precluding adequate compensation via aldosterone cascade due to decreased MR availability.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Viktor Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - V Behrana Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
27
|
Jo CH, Kim S, Oh IH, Park JS, Kim GH. Alteration of Tight Junction Protein Expression in Dahl Salt-Sensitive Rat Kidney. Kidney Blood Press Res 2017; 42:951-960. [PMID: 29179201 DOI: 10.1159/000485332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/26/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Altered pressure natriuresis is an important mechanism of hypertension, but it remains elusive at the molecular level. We hypothesized that in the kidney, tight junctions (TJs) may have a role in pressure natriuresis because paracellular NaCl transport affects interstitial hydrostatic pressure. METHODS To assess the association of salt-sensitive hypertension with altered renal TJ protein expression, Dahl salt-sensitive (SS) and salt-resistant (SR) rats were put on an 8% NaCl-containing rodent diet for 4 weeks. Systolic blood pressure (SBP) and urine NaCl excretion were measured weekly, and kidneys were harvested for immunoblotting and quantitative PCR analysis at the end of the animal experiments. RESULTS SBP was significantly higher in SS rats than in SR rats during the first to fourth weeks of the animal experiments. During the first and second week, urinary NaCl excretion was significantly lower in SS rats as compared with SR rats. However, the difference between the two groups vanished at the third and fourth weeks. In the kidney, claudin-4 protein and mRNA were significantly increased in SS rats as compared with SR rats. On the other hand, occludin protein and mRNA were significantly decreased in SS rats as compared with SR rats. The expression of claudin-2, claudin-7, and claudin-8 did not vary significantly between the two groups. CONCLUSIONS In SS rats, SS hypertension was associated with differential changes in renal TJ protein expression. Both upregulation of claudin-4 and downregulation of occludin might increase paracellular NaCl transport in the kidney, resulting in impaired pressure natriuresis in SS rats.
Collapse
Affiliation(s)
- Chor Ho Jo
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sua Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Il Hwan Oh
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Joon-Sung Park
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Gheun-Ho Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea.,Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Blass G, Levchenko V, Ilatovskaya DV, Staruschenko A. Chronic cathepsin inhibition by E-64 in Dahl salt-sensitive rats. Physiol Rep 2017; 4:4/17/e12950. [PMID: 27597769 PMCID: PMC5027357 DOI: 10.14814/phy2.12950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022] Open
Abstract
Cysteine cathepsins are lysosomal enzymes expressed in the kidneys and other tissues, and are involved in the maturation and breakdown of cellular proteins. They have been shown to be integrally involved in the progression of many cardiovascular and renal diseases. The goal of this study was to determine the involvement of cysteine cathepsins in the development of salt‐sensitive hypertension and associated kidney damage. In our experiments, Dahl salt‐sensitive (SS) rats were fed an 8% high salt NaCl diet and intravenously infused with the irreversible cysteine cathepsin inhibitor E‐64 (1 mg/day) or the vehicle (control). Both the control and E‐64 infused groups developed significant hypertension and kidney damage, and no difference of the mean arterial pressure and the hypertension‐associated albuminuria was observed between the groups. We next tested basal calcium levels in the podocytes of both control and infused groups using confocal calcium imaging. Basal calcium did not differ between the groups, indicative of the lack of a protective or aggravating influence by the cathepsin inhibition. The efficacy of E‐64 was tested in Western blotting. Our findings corresponded to the previously reported, E‐64 induced increase in cathepsin B and L abundance. We conclude that the inhibition of cysteine cathepsins by E‐64 does not have any effects on the blood pressure development and kidney damage, at least under the studied conditions of this model of SS hypertension.
Collapse
Affiliation(s)
- Gregory Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
29
|
Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Pochynyuk OM, Jacob HJ, Geurts AM, Hodges MR, Staruschenko A. Essential role of Kir5.1 channels in renal salt handling and blood pressure control. JCI Insight 2017; 2:92331. [PMID: 28931751 PMCID: PMC5621918 DOI: 10.1172/jci.insight.92331] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/08/2017] [Indexed: 01/07/2023] Open
Abstract
Supplementing diets with high potassium helps reduce hypertension in humans. Inwardly rectifying K+ channels Kir4.1 (Kcnj10) and Kir5.1 (Kcnj16) are highly expressed in the basolateral membrane of distal renal tubules and contribute to Na+ reabsorption and K+ secretion through the direct control of transepithelial voltage. To define the importance of Kir5.1 in blood pressure control under conditions of salt-induced hypertension, we generated a Kcnj16 knockout in Dahl salt-sensitive (SS) rats (SSKcnj16-/-). SSKcnj16-/- rats exhibited hypokalemia and reduced blood pressure, and when fed a high-salt diet (4% NaCl), experienced 100% mortality within a few days triggered by salt wasting and severe hypokalemia. Electrophysiological recordings of basolateral K+ channels in the collecting ducts isolated from SSKcnj16-/- rats revealed activity of only homomeric Kir4.1 channels. Kir4.1 expression was upregulated in SSKcnj16-/- rats, but the protein was predominantly localized in the cytosol in SSKcnj16-/- rats. Benzamil, but not hydrochlorothiazide or furosemide, rescued this phenotype from mortality on a high-salt diet. Supplementation of high-salt diet with increased potassium (2% KCl) prevented mortality in SSKcnj16-/- rats and prevented or mitigated hypertension in SSKcnj16-/- or control SS rats, respectively. Our results demonstrate that Kir5.1 channels are key regulators of renal salt handling in SS hypertension.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology and
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | - Oleh M. Pochynyuk
- Department of Integrative Biology, University of Texas Health Science Center Medical School, Houston, Texas, USA
| | - Howard J. Jacob
- Department of Physiology and
- Human and Molecular Genetics Center and
| | - Aron M. Geurts
- Department of Physiology and
- Human and Molecular Genetics Center and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew R. Hodges
- Department of Physiology and
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alexander Staruschenko
- Department of Physiology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
30
|
Shimizu S, Akiyama T, Kawada T, Sata Y, Turner MJ, Fukumitsu M, Yamamoto H, Kamiya A, Shishido T, Sugimachi M. Sodium ion transport participates in non-neuronal acetylcholine release in the renal cortex of anesthetized rabbits. J Physiol Sci 2017; 67:587-593. [PMID: 27660058 PMCID: PMC10717196 DOI: 10.1007/s12576-016-0489-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022]
Abstract
This study examined the mechanism of release of endogenous acetylcholine (ACh) in rabbit renal cortex by applying a microdialysis technique. In anesthetized rabbits, a microdialysis probe was implanted into the renal cortex and perfused with Ringer's solution containing high potassium concentration, high sodium concentration, a Na+/K+-ATPase inhibitor (ouabain), or an epithelial Na+ channel blocker (benzamil). Dialysate samples were collected at baseline and during exposure to each agent, and ACh concentrations in the samples were measured by high-performance liquid chromatography. High potassium had no effect on renal ACh release. High sodium increased dialysate ACh concentrations significantly. Ouabain increased dialysate ACh concentration significantly. Benzamil decreased dialysate ACh concentrations significantly both at baseline and under high sodium. The finding that high potassium-induced depolarization does not increase ACh release suggests that endogenous ACh is released in renal cortex mainly by non-neuronal mechanism. Sodium ion transport may be involved in the non-neuronal ACh release.
Collapse
Affiliation(s)
- Shuji Shimizu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan.
| | - Tsuyoshi Akiyama
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Osaka, 565-8565, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Yusuke Sata
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Michael James Turner
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Masafumi Fukumitsu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Hiromi Yamamoto
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Kindai University, Osaka, 589-8511, Japan
| | - Atsunori Kamiya
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Toshiaki Shishido
- Department of Research Promotion, National Cerebral and Cardiovascular Center, Osaka, 565-8565, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| |
Collapse
|
31
|
Henshall TL, Manning JA, Alfassy OS, Goel P, Boase NA, Kawabe H, Kumar S. Deletion of Nedd4-2 results in progressive kidney disease in mice. Cell Death Differ 2017; 24:2150-2160. [PMID: 28862701 PMCID: PMC5686353 DOI: 10.1038/cdd.2017.137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/05/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022] Open
Abstract
NEDD4-2 (NEDD4L), a ubiquitin protein ligase of the Nedd4 family, is a key regulator of cell surface expression and activity of the amiloride-sensitive epithelial Na+ channel (ENaC). While hypomorphic alleles of Nedd4-2 in mice show salt-sensitive hypertension, complete knockout results in pulmonary distress and perinatal lethality due to increased cell surface levels of ENaC. We now show that Nedd4-2 deficiency in mice also results in an unexpected progressive kidney injury phenotype associated with elevated ENaC and Na+Cl− cotransporter expression, increased Na+ reabsorption, hypertension and markedly reduced levels of aldosterone. The observed nephropathy is characterized by fibrosis, tubule epithelial cell apoptosis, dilated/cystic tubules, elevated expression of kidney injury markers and immune cell infiltration, characteristics reminiscent of human chronic kidney disease. Importantly, we demonstrate that the extent of kidney injury can be partially therapeutically ameliorated in mice with nephron-specific deletions of Nedd4-2 by blocking ENaC with amiloride. These results suggest that increased Na+ reabsorption via ENaC causes kidney injury and establish a novel role of NEDD4-2 in preventing Na+-induced nephropathy. Contrary to some recent reports, our data also indicate that ENaC is the primary in vivo target of NEDD4-2 and that Nedd4-2 deletion is associated with hypertension on a normal Na+ diet. These findings provide further insight into the critical function of NEDD4-2 in renal pathophysiology.
Collapse
Affiliation(s)
- Tanya L Henshall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Jantina A Manning
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Omri S Alfassy
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Pranay Goel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia.,School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Natasha A Boase
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Hiroshi Kawabe
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, Göttingen 37075, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia.,School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
32
|
Kino T, Ishigami T, Murata T, Doi H, Nakashima-Sasaki R, Chen L, Sugiyama M, Azushima K, Wakui H, Minegishi S, Tamura K. Eplerenone-Resistant Salt-Sensitive Hypertension in Nedd4-2 C2 KO Mice. Int J Mol Sci 2017; 18:ijms18061250. [PMID: 28604611 PMCID: PMC5486073 DOI: 10.3390/ijms18061250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 12/25/2022] Open
Abstract
The epithelial sodium channel (ENaC) plays critical roles in maintaining fluid and electrolyte homeostasis and is located in the aldosterone-sensitive distal nephron (ASDN). We previously found that Nedd4-2 C2 knockout (KO) mice showed salt-sensitive hypertension with paradoxically enhanced ENaC gene expression in ASDN under high oral salt intake. Eplerenone (EPL), a selective aldosterone blocker, is a promising therapeutic option for resistant or/and salt-sensitive hypertension. We examined the effect of EPL on Nedd4-2 C2 KO mice with respect to blood pressure, metabolic parameters, and molecular level changes in ASDN under high oral salt intake. We found that EPL failed to reduce blood pressure in KO mice with high oral salt intake and upregulated ENaC expression in ASDN. Thus, salt-sensitive hypertension in Nedd4-2 C2 KO was EPL-resistant. Gene expression analyses of laser-captured specimens in ASDN suggested the presence of non-aldosterone-dependent activation of ENaC transcription in ASDN of Nedd4-2 C2 KO mice, which was abolished by amiloride treatment. Our results from Nedd4-2 C2 KO mice suggest that enhanced ENaC gene expression is critically involved in salt-sensitive hypertension under certain conditions of specific enzyme isoforms for their ubiquitination.
Collapse
Affiliation(s)
- Tabito Kino
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Tsumugi Murata
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Hiroshi Doi
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Rie Nakashima-Sasaki
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Lin Chen
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Michiko Sugiyama
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| |
Collapse
|
33
|
Wang ZR, Liu HB, Sun YY, Hu QQ, Li YX, Zheng WW, Yu CJ, Li XY, Wu MM, Song BL, Mu JJ, Yuan ZY, Zhang ZR, Ma HP. Dietary salt blunts vasodilation by stimulating epithelial sodium channels in endothelial cells from salt-sensitive Dahl rats. Br J Pharmacol 2017; 175:1305-1317. [PMID: 28409833 DOI: 10.1111/bph.13817] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/26/2017] [Accepted: 04/04/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Our recent studies show that the reduced activity of epithelial sodium channels (ENaC) in endothelial cells accounts for the adaptation of vasculature to salt in Sprague-Dawley rats. The present study examines a hypothesis that enhanced ENaC activity mediates the loss of vasorelaxation in Dahl salt-sensitive (SS) rats. EXPERIMENTAL APPROACH We used the cell-attached patch-clamp technique to record ENaC activity in split-open mesenteric arteries. Western blot and immunofluorescence staining were used to evaluate the levels of aldosterone, ENaC, eNOS and NO. Blood pressure was measured with the tail-cuff method and the artery relaxation was measured with the wire myograph assay. KEY RESULTS High-salt (HS) diet significantly increased plasma aldosterone and ENaC activity in the endothelial cells of Dahl SS rats. The endothelium-dependent artery relaxation was blunted by HS challenge in these rats. Amiloride, a potent blocker of ENaC, increased both phosphorylated eNOS and NO and therefore prevented the HS-induced loss of vasorelaxation. As, in SS rats, endogenous aldosterone was already elevated by HS challenge, exogenous aldosterone did not further elevate ENaC activity in the rats fed with HS. Eplerenone, a mineralocorticoid receptor antagonist, attenuated the effects of HS on both ENaC activity and artery relaxation. CONCLUSIONS AND IMPLICATIONS These data suggest that HS diet blunts artery relaxation and causes hypertension via a pathway associated with aldosterone-dependent activation of ENaC in endothelial cells. This pathway provides one of the mechanisms by which HS causes hypertension in Dahl SS rats. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Zi-Rui Wang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Hui-Bin Liu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying-Ying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing-Qing Hu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yu-Xia Li
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Wei-Wan Zheng
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Chang-Jiang Yu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Xin-Yuan Li
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ming-Ming Wu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Bin-Lin Song
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Jian-Jun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, Xi'an, China
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, Xi'an, China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.,Department of Clinical Pharmacy, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
34
|
Pavlov TS, Levchenko V, Ilatovskaya DV, Li H, Palygin O, Pastor-Soler NM, Hallows KR, Staruschenko A. Lack of Effects of Metformin and AICAR Chronic Infusion on the Development of Hypertension in Dahl Salt-Sensitive Rats. Front Physiol 2017; 8:227. [PMID: 28473772 PMCID: PMC5397526 DOI: 10.3389/fphys.2017.00227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
In the kidney, reabsorption via the epithelial sodium channel (ENaC) is involved in long-term blood pressure control. Previously we demonstrated that ENaC hyperactivity is associated with development of salt-sensitive (SS) hypertension in Dahl SS rats. AMP-activated kinase (AMPK), playing a role in cellular energy homeostasis, has been shown to decrease ENaC activity. Here, we tested whether metformin and AICAR, two drugs that activate AMPK, affect the development of salt-induced hypertension. High salt diet significantly increased mean arterial pressure (MAP) in Dahl SS rats. Blood pressure elevation was accompanied by a short-term decline of heart rate and increased circadian arterial pressure dipping. Metformin and AICAR were delivered intravenously at doses of 200 and 20 mg/kg/day, respectively. However, both control and drug-treated groups had similar development of high blood pressure within 3 weeks of 8% NaCl dietary salt intake. In the metformin-treated animals MAP reached 164.9 ± 9.1 mmHg, which was not significantly different from the control group (171.8 ± 5.6 mmHg). Patch clamp analysis revealed that the metformin-treated rats had no difference in the activity of ENaC. AICAR treatment also did not affect the development of hypertension and kidney injury. MAP reached 182.8 ± 4.8 and 178.0 ± 2.8 mmHg in AICAR and vehicle treated groups, respectively. Of note, we found that high-salt diet activated AMPK in the Dahl SS rats, and treatment with these AMPK activators had no significant further effect on AMPK activity. We conclude that AMPK activators, at least under these conditions, do not affect development of hypertension during high-salt diet in the Dahl SS rat model.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA.,Division of Hypertension and Vascular Research, Henry Ford HospitalDetroit, MI, USA
| | | | | | - Hui Li
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los AngelesLos Angeles, CA, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
| | - Nuria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los AngelesLos Angeles, CA, USA
| | - Kenneth R Hallows
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los AngelesLos Angeles, CA, USA
| | | |
Collapse
|
35
|
Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Renal Physiol 2016; 313:F135-F140. [PMID: 28003189 DOI: 10.1152/ajprenal.00427.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
Salt-sensitive hypertension is associated with renal and vascular dysfunctions, which lead to impaired fluid excretion, increased cardiac output, and total peripheral resistance. It is commonly accepted that increased renal sodium handling and plasma volume expansion are necessary factors for the development of salt-induced hypertension. The epithelial sodium channel (ENaC) is a trimeric ion channel expressed in the distal nephron that plays a critical role in the regulation of sodium reabsorption in both normal and pathological conditions. In this mini-review, we summarize recent studies investigating the role of ENaC in the development of salt-sensitive hypertension. On the basis of experimental data obtained from the Dahl salt-sensitive rats, we and others have demonstrated that abnormal ENaC activation in response to a dietary NaCl load contributes to the development of high blood pressure in this model. The role of different humoral factors, such as the components of the renin-angiotensin-aldosterone system, members of the epidermal growth factors family, arginine vasopressin, and oxidative stress mediating the effects of dietary salt on ENaC are discussed in this review to highlight future research directions and to determine potential molecular targets for drug development.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan; and
| | | |
Collapse
|
36
|
Kakizoe Y, Miyasato Y, Onoue T, Nakagawa T, Hayata M, Uchimura K, Morinaga J, Mizumoto T, Adachi M, Miyoshi T, Sakai Y, Tomita K, Mukoyama M, Kitamura K. A serine protease inhibitor attenuates aldosterone-induced kidney injuries via the suppression of plasmin activity. J Pharmacol Sci 2016; 132:145-153. [DOI: 10.1016/j.jphs.2016.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022] Open
|
37
|
Raij L, Tian R, Wong JS, He JC, Campbell KN. Podocyte injury: the role of proteinuria, urinary plasminogen, and oxidative stress. Am J Physiol Renal Physiol 2016; 311:F1308-F1317. [PMID: 27335373 DOI: 10.1152/ajprenal.00162.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022] Open
Abstract
Podocytes are the key target for injury in proteinuric glomerular diseases that result in podocyte loss, progressive focal segmental glomerular sclerosis (FSGS), and renal failure. Current evidence suggests that the initiation of podocyte injury and associated proteinuria can be separated from factors that drive and maintain these pathogenic processes leading to FSGS. In nephrotic urine aberrant glomerular filtration of plasminogen (Plg) is activated to the biologically active serine protease plasmin by urokinase-type plasminogen activator (uPA). In vivo inhibition of uPA mitigates Plg activation and development of FSGS in several proteinuric models of renal disease including 5/6 nephrectomy. Here, we show that Plg is markedly increased in the urine in two murine models of proteinuric kidney disease associated with podocyte injury: Tg26 HIV-associated nephropathy and the Cd2ap-/- model of FSGS. We show that human podocytes express uPA and three Plg receptors: uPAR, tPA, and Plg-RKT. We demonstrate that Plg treatment of podocytes specifically upregulates NADPH oxidase isoforms NOX2/NOX4 and increases production of mitochondrial-dependent superoxide anion (O2-) that promotes endothelin-1 synthesis. Plg via O2- also promotes expression of the B scavenger receptor CD36 and subsequent increased intracellular cholesterol uptake resulting in podocyte apoptosis. Taken together, our findings suggest that following disruption of the glomerular filtration barrier at the onset of proteinuric disease, podocytes are exposed to Plg resulting in further injury mediated by oxidative stress. We suggest that chronic exposure to Plg could serve as a "second hit" in glomerular disease and that Plg is potentially an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Leopoldo Raij
- Renal and Hypertension Division, University of Miami Miller School of Medicine, Miami, Florida; .,Nephrology and Hypertension Section Miami Veterans Affairs Medical Center (111C1), Miami, Florida; and
| | - Runxia Tian
- Nephrology and Hypertension Section Miami Veterans Affairs Medical Center (111C1), Miami, Florida; and
| | - Jenny S Wong
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John C He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
38
|
Minegishi S, Ishigami T, Kino T, Chen L, Nakashima-Sasaki R, Araki N, Yatsu K, Fujita M, Umemura S. An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice. Sci Rep 2016; 6:27137. [PMID: 27256588 PMCID: PMC4891730 DOI: 10.1038/srep27137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/13/2016] [Indexed: 11/14/2022] Open
Abstract
Epithelial sodium channels (ENaCs) play critical roles in the maintenance of fluid and electrolyte homeostasis, and their genetic abnormalities cause one type of hereditary salt-sensitive hypertension, Liddle syndrome. As we reported previously, both human and rodent Nedd4L/Nedd4-2 showed molecular diversity, with and without a C2 domain in their N-terminal. Nedd4L/Nedd4-2 isoforms with a C2 domain are hypothesized to be related closely to ubiquitination of ENaCs. We generated Nedd4-2 C2 domain knockout mice. We demonstrate here that loss of Nedd4-2 C2 isoform causes salt-sensitive hypertension under conditions of a high dietary salt intake in vivo. The knockout mice had reduced urinary sodium excretion, osmotic pressure and increased water intake and urine volume with marked dilatation of cortical tubules while receiving a high salt diet. To the contrary, there was no difference in metabolic data between wild-type and knockout mice receiving a normal control diet. In the absence of Nedd4-2 C2 domain, a high salt intake accelerated ENaC expression. Coimmunoprecipitation studies revealed suppressed ubiquitination for ENaC with a high salt intake. Taken together, our findings demonstrate that during a high oral salt intake the Nedd4-2 C2 protein plays a pivotal role in maintaining adaptive salt handling in the kidney.
Collapse
Affiliation(s)
- Shintaro Minegishi
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Tomoaki Ishigami
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Tabito Kino
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Lin Chen
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Rie Nakashima-Sasaki
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Naomi Araki
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Keisuke Yatsu
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Megumi Fujita
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| | - Satoshi Umemura
- Yokohama City University Graduate School of Medicine, Department of Medical Science and Cardio-Renal Medicine
| |
Collapse
|
39
|
Effects of diuretics on sodium-dependent glucose cotransporter 2 inhibitor-induced changes in blood pressure in obese rats suffering from the metabolic syndrome. J Hypertens 2016; 34:893-906. [DOI: 10.1097/hjh.0000000000000871] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Wang D, Wang Y, Liu FQ, Yuan ZY, Mu JJ. High Salt Diet Affects Renal Sodium Excretion and ERRα Expression. Int J Mol Sci 2016; 17:480. [PMID: 27043552 PMCID: PMC4848936 DOI: 10.3390/ijms17040480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022] Open
Abstract
Kidneys regulate the balance of water and sodium and therefore are related to blood pressure. It is unclear whether estrogen-related receptor α (ERRα), an orphan nuclear receptor and transcription factor highly expressed in kidneys, affects the reabsorption of water and sodium. The aim of this study was to determine whether changes in the expressions of ERRα, Na⁺/K⁺-ATPase and epithelial sodium channel (ENaC) proteins affected the reabsorption of water and sodium in kidneys of Dahl salt-sensitive (DS) rats. SS.13BN rats, 98% homologous to the DS rats, were used as a normotensive control group. The 24 h urinary sodium excretion of the DS and SS.13BN rats increased after the 6-week high salt diet intervention, while sodium excretion was increased in DS rats with daidzein (agonist of ERRα) treatment. ERRα expression was decreased, while β- and γ-ENaC mRNA expressions were increased upon high sodium diet treatment in the DS rats. In the chromatin immunoprecipitation (CHIP) assay, positive PCR signals were obtained in samples treated with anti-ERRα antibody. The transcriptional activity of ERRα was decreased upon high salt diet intervention. ERRα reduced the expressions of β- and γ-ENaC by binding to the ENaC promoter, thereby increased Na+ reabsorption. Therefore, ERRα might be one of the factors causing salt-sensitive hypertension.
Collapse
Affiliation(s)
- Dan Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Fu-Qiang Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Jian-Jun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, No. 277 Yanta West Road, Xi'an 710061, China.
| |
Collapse
|
41
|
Kitamura K. [The Cutting-edge of Medicine; Molecular basis of salt-sensitivity and renal injury]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2016; 105:300-306. [PMID: 27228728 DOI: 10.2169/naika.105.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
42
|
Liu HB, Zhang J, Sun YY, Li XY, Jiang S, Liu MY, Shi J, Song BL, Zhao D, Ma HP, Zhang ZR. Dietary salt regulates epithelial sodium channels in rat endothelial cells: adaptation of vasculature to salt. Br J Pharmacol 2015; 172:5634-46. [PMID: 25953733 DOI: 10.1111/bph.13185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 04/03/2015] [Accepted: 04/26/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The epithelial sodium channel (ENaC) is expressed in vascular endothelial cells and is a negative modulator of vasodilation. However, the role of endothelial ENaCs in salt-sensitive hypertension remains unclear. Here, we have investigated how endothelial ENaCs in Sprague-Dawley (SD) rats respond to high-salt (HS) challenge. EXPERIMENTAL APPROACH BP and plasma aldosterone levels were measured. We used patch-clamp technique to record ENaC activity in split-open mesenteric arteries (MAs). Western blot and Griess assay were used to detect expression of α-ENaCs, eNOS and NO. Vasorelaxation in second-order MAs was measured with wire myograph assays. KEY RESULTS Functional ENaCs were observed in endothelial cells and their activity was significantly decreased after 1 week of HS diet. After 3 weeks of HS diet, ENaC expression was also reduced. When either ENaC activity or expression was reduced, endothelium-dependent relaxation (EDR) of MAs, in response to ACh, was enhanced. This enhancement of EDR was mimicked by amiloride, a blocker of ENaCs. By contrast, HS diet significantly increased contractility of MAs, accompanied by decreased eNOS activity and NO levels. However, ACh-induced release of NO was much higher in MAs isolated from HS rats than those from NS rats. CONCLUSIONS AND IMPLICATIONS HS intake increased the BP of SD rats, but simultaneously enhanced EDR by reducing ENaC activity and expression due to feedback inhibition. Therefore, ENaCs may play an important role in endothelial cells allowing the vasculature to adapt to HS conditions.
Collapse
Affiliation(s)
- Hui-Bin Liu
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Jun Zhang
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ying-Ying Sun
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Xin-Yuan Li
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Shuai Jiang
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ming-Yu Liu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Jing Shi
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Bin-Lin Song
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Dan Zhao
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhi-Ren Zhang
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| |
Collapse
|
43
|
Ray EC, Rondon-Berrios H, Boyd CR, Kleyman TR. Sodium retention and volume expansion in nephrotic syndrome: implications for hypertension. Adv Chronic Kidney Dis 2015; 22:179-84. [PMID: 25908466 PMCID: PMC4409655 DOI: 10.1053/j.ackd.2014.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 01/09/2023]
Abstract
Sodium retention is a major clinical feature of nephrotic syndrome. The mechanisms responsible for sodium retention in this setting have been a subject of debate for years. Excessive sodium retention occurs in some individuals with nephrotic syndrome in the absence of activation of the renin-angiotensin-aldosterone system, suggesting an intrinsic defect in sodium excretion by the kidney. Recent studies have provided new insights regarding mechanisms by which sodium transporters are activated by factors present in nephrotic urine. These mechanisms likely have a role in the development of hypertension in nephrotic syndrome, where hypertension may be difficult to control, and provide new therapeutic options for the management of blood pressure and edema in the setting of nephrotic syndrome.
Collapse
Affiliation(s)
- Evan C Ray
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Helbert Rondon-Berrios
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA.
| | - Cary R Boyd
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas R Kleyman
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
44
|
Mamenko M, Zaika O, Boukelmoune N, Madden E, Pochynyuk O. Control of ENaC-mediated sodium reabsorption in the distal nephron by Bradykinin. VITAMINS AND HORMONES 2015; 98:137-154. [PMID: 25817868 DOI: 10.1016/bs.vh.2014.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Kinins, such as Bradykinin (BK), are peptide hormones of the kallikrein-kinin system. Apart from being a vasodilator, BK also increases urinary sodium excretion to reduce systemic blood pressure. It is becoming appreciated that BK modulates function of the epithelial Na(+) channel in the distal part of the renal nephron to affect tubular sodium reabsorption. In this chapter, we outline the molecular details, as well as discuss the physiological relevance of this regulation for the whole organism sodium homeostasis and setting chronic blood pressure.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nabila Boukelmoune
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eric Madden
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
45
|
Svenningsen P, Andersen H, Nielsen LH, Jensen BL. Urinary serine proteases and activation of ENaC in kidney--implications for physiological renal salt handling and hypertensive disorders with albuminuria. Pflugers Arch 2014; 467:531-42. [PMID: 25482671 DOI: 10.1007/s00424-014-1661-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/21/2022]
Abstract
Serine proteases, both soluble and cell-attached, can activate the epithelial sodium channel (ENaC) proteolytically through release of a putative 43-mer inhibitory tract from the ectodomain of the γ-subunit. ENaC controls renal Na(+) excretion and loss-of-function mutations lead to low blood pressure, while gain-of-function mutations lead to impaired Na(+) excretion, hypertension, and hypokalemia. We review an emerging pathophysiological concept that aberrant glomerular filtration of plasma proteases, e.g., plasmin, prostasin, and kallikrein, contributes to proteolytic activation of ENaC, both in acute conditions with proteinuria, like nephrotic syndrome and preeclampsia, and in chronic diseases, such as diabetes with microalbuminuria. A vast literature on renin-angiotensin-aldosterone system and volume homeostasis from the last four decades show a number of common characteristics for conditions with albuminuria compatible with impaired renal Na(+) excretion: hypertension and volume retention is secondary to proteinuria in, e.g., preeclampsia and nephrotic syndrome; plasma concentrations of renin, angiotensin II, and aldosterone are frequently suppressed in proteinuric conditions, e.g., preeclampsia and diabetic nephropathy; blood pressure is salt-sensitive in conditions with microalbuminuria/proteinuria; and extracellular volume is expanded, plasma atrial natriuretic peptide (ANP) concentration is increased, and diuretics, like amiloride and spironolactone, are effective blood pressure-reducing add-ons. Active plasmin in urine has been demonstrated in diabetes, preeclampsia, and nephrosis. Urine from these patients activates, plasmin-dependently, amiloride-sensitive inward current in vitro. The concept predicts that patients with albuminuria may benefit particularly from reduced salt intake with RAS blockers; that distally acting diuretics, in particular amiloride, are warranted in low-renin/albuminuric conditions; and that urine serine proteases and their activators may be pharmacological targets.
Collapse
Affiliation(s)
- Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
46
|
Cowley AW, Abe M, Mori T, O'Connor PM, Ohsaki Y, Zheleznova NN. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am J Physiol Renal Physiol 2014; 308:F179-97. [PMID: 25354941 DOI: 10.1152/ajprenal.00455.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hydrogen peroxide in the renal medulla result in reduction of medullary blood flow, enhanced Na(+) reabsorption, and hypertension. A shift in the redox balance between nitric oxide and reactive oxygen species (ROS) is found to occur naturally in the Dahl salt-sensitive (SS) rat model, where selective reduction of ROS production in the renal medulla reduces salt-induced hypertension. Excess medullary production of ROS in SS rats emanates from the medullary thick ascending limbs of Henle [from both the mitochondria and membrane NAD(P)H oxidases] in response to increased delivery and reabsorption of excess sodium and water. There is evidence that ROS and perhaps other mediators such as ATP diffuse from the mTAL to surrounding vasa recta capillaries, resulting in medullary ischemia, which thereby contributes to hypertension.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michiaki Abe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takefumi Mori
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yusuke Ohsaki
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
47
|
Associations of epithelial sodium channel genes with blood pressure: the GenSalt study. J Hum Hypertens 2014; 29:224-8. [PMID: 25231509 PMCID: PMC4357546 DOI: 10.1038/jhh.2014.78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/25/2014] [Accepted: 07/18/2014] [Indexed: 01/19/2023]
Abstract
In order to investigate associations of SCNN1A, SCNN1G and SCNN1B genes with blood pressure (BP) in Han Chinese population, we included 2 880 participants did not use antihypertensive medication in the month prior to the baseline survey in the current analysis. Forty-four tag-SNPs in epithelial sodium channel (ENaC) genes were selected and genotyped and nine BP measurements were obtained during 3-day examination. In single-marker analyses, we identified significant associations of SCNN1A marker rs13306613 with diastolic BP (DBP) and SCNN1B marker rs12447134 with systolic BP (SBP) under codominant model after Bonferroni correction (P= 2.82×10−5 and 4.63×10−4, respectively). In addition, 5 SNPs in SCNN1G and 4 SNPs in SCNN1B achieved nominal significance for SBP, DBP or mean arterial pressure (MAP) under the additive model. For example, the minor C allele of rs5735 in SCNN1G gene was associated with decreased SBP, DBP and MAP (P=0.016, 5.41×10−3, and 4.36×10−3, respectively). Gene-based results showed significant associations of SCNN1G and SCNN1Bwith BP levels. This study suggested that ENaC genes play important roles in BP regulation in the Han Chinese population. Future studies are warranted to replicate these findings and functional studies are needed to identify true causal variants in ENaC genes.
Collapse
|
48
|
Laffer CL, Elijovich F, Eckert GJ, Tu W, Pratt JH, Brown NJ. Genetic variation in CYP4A11 and blood pressure response to mineralocorticoid receptor antagonism or ENaC inhibition: an exploratory pilot study in African Americans. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION : JASH 2014; 8:475-80. [PMID: 25064769 PMCID: PMC4115247 DOI: 10.1016/j.jash.2014.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 11/23/2022]
Abstract
An rs3890011 variant of CYP4A11, which is in linkage disequilibrium with the loss-of-function variant rs1126742, is associated with hypertension in humans. In mice, Cyp4a deficiency results in salt-sensitive hypertension through activation of ENaC. We tested the hypothesis that the rs3890011 variant is associated with blood pressure response to drugs acting via the ENaC pathway. African Americans with volume-dependent, resistant hypertension were randomized to treatment with placebo, spironolactone, amiloride, or combination. Blood pressure responses were analyzed by CYP4A11 genotypes. Rs3890011 (GG:GC:CC = 20:35:28) and rs1126742 (TT:TC:CC = 45:31:7) were in linkage disequilibrium (D' = 1, r = 0.561). Expected small number of rs1126742 CC homozygotes precluded analysis of the effect of this genotype on treatment responses. Spironolactone reduced blood pressure in rs3890011 GG and GC individuals, but not in CC homozygotes (P = .002), whereas amiloride reduced blood pressure similarly in all rs3890011 genotypes. The antihypertensive effects of spironolactone and amiloride were comparable in GG and GC participants, but only amiloride reduced pressure in CC homozygotes (-6.3 ± 7.3/-3.2 ± 4.0 vs. +6.8 ± 7.9/+4.8 ± 8.6 mm Hg, P < .01/<.05). The aldosterone response to spironolactone was also blunted in the CC genotype. In individuals homozygous for the CYP4A11 rs3890011 C allele, blood pressure is resistant to mineralocorticoid receptor antagonism, but sensitive to ENaC inhibition, consistent with ENaC activation. Studies in a larger population are needed to replicate these findings.
Collapse
Affiliation(s)
- Cheryl L Laffer
- The Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Fernando Elijovich
- The Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - George J Eckert
- The Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wanzhu Tu
- The Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; The Regenstrief Institute, Inc., Indianapolis, IN, USA
| | - J Howard Pratt
- The Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; The Richard L Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nancy J Brown
- The Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
49
|
Korte S, Sträter AS, Drüppel V, Oberleithner H, Jeggle P, Grossmann C, Fobker M, Nofer JR, Brand E, Kusche-Vihrog K. Feedforward activation of endothelial ENaC by high sodium. FASEB J 2014; 28:4015-25. [PMID: 24868010 DOI: 10.1096/fj.14-250282] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/19/2014] [Indexed: 01/11/2023]
Abstract
Kidney epithelial sodium channels (ENaCs) are known to be inactivated by high sodium concentrations (feedback inhibition). Recently, the endothelial sodium channel (EnNaC) was identified to control the nanomechanical properties of the endothelium. EnNaC-dependent endothelial stiffening reduces the release of nitric oxide, the hallmark of endothelial dysfunction. To study the regulatory impact of sodium on EnNaC, endothelial cells (EA.hy926 and ex vivo mouse endothelium) were incubated in aldosterone-free solutions containing either low (130 mM) or high (150 mM) sodium concentrations. By applying atomic force microscopy-based nanoindentation, an unexpected positive correlation between increasing sodium concentrations and cortical endothelial stiffness was observed, which can be attributed to functional EnNaC. In particular, an acute rise in sodium concentration (+20 mM) was sufficient to increase EnNaC membrane abundance by 90% and stiffening of the endothelial cortex by 18%. Despite the absence of exogenous aldosterone, these effects were prevented by the aldosterone synthase inhibitor FAD286 (100 nM) or the mineralocorticoid receptor (MR)-antagonist spironolactone (100 nM), indicating endogenous aldosterone synthesis and MR-dependent signaling. Interestingly, in the presence of high-sodium concentrations, FAD286 increased the transcription of the MR by 69%. Taken together, a novel feedforward activation of EnNaC by sodium is proposed that contrasts ENaC feedback inhibition in kidney.
Collapse
Affiliation(s)
- Stefanie Korte
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | - Verena Drüppel
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | - Pia Jeggle
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, University Halle-Wittenberg, Halle, Germany
| | - Manfred Fobker
- Center of Laboratory Medicine, University of Münster, Münster, Germany; and
| | - Jerzy-Roch Nofer
- Center of Laboratory Medicine, University of Münster, Münster, Germany; and
| | - Eva Brand
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | | |
Collapse
|
50
|
Mamenko M, Zaika O, Pochynyuk O. Direct regulation of ENaC by bradykinin in the distal nephron. Implications for renal sodium handling. Curr Opin Nephrol Hypertens 2014; 23:122-129. [PMID: 24378775 PMCID: PMC4114036 DOI: 10.1097/01.mnh.0000441053.81339.61] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Locally produced peptide hormones kinins, such as bradykinin, are thought to oppose many of the prohypertensive actions of the renin-angiotensin-aldosterone system. In the kidney, bradykinin, via stimulation of B2 receptors (B2R), favors natriuresis mostly due to the inhibition of tubular Na reabsorption. Recent experimental evidence identifies the epithelial Na channel (ENaC) as a key end effector of bradykinin actions in the distal tubular segments. The focus of this review is the physiological relevance and molecular details of the bradykinin signal to ENaC. RECENT FINDINGS The recent epidemiological GenSalt study demonstrated that genetic variants of the gene encoding B2R show significant associations with the salt sensitivity of blood pressure. Bradykinin was shown to have an inhibitory effect on the distal nephron sodium transport via stimulation of B2 receptor-phospholipase C (B2R-PLC) cascade to decrease ENaC open probability. Genetic ablation of bradykinin receptors in mice led to an augmented ENaC function, particularly during elevated sodium intake, likely contributing to the salt-sensitive hypertensive phenotype. Furthermore, augmentation of bradykinin signaling in the distal nephron was demonstrated to be an important component of the natriuretic and antihypertensive effects of angiotensin converting enzyme inhibition. SUMMARY Salt-sensitive inhibition of ENaC activity by bradykinin greatly advances our understanding of the molecular mechanisms that are responsible for shutting down distal tubule sodium reabsorption during volume expanded conditions to avoid salt-sensitive hypertension.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA
| | | | | |
Collapse
|