1
|
Wu Y, Li G, Dong M, Deng Y, Zhao Z, Zhou J, Xian S, Yang L, Yi M, Yang J, Hu Y, Li X, Chen P, Liu L. Metabolomic machine learning predictor for arsenic-associated hypertension risk in male workers. J Pharm Biomed Anal 2025; 259:116761. [PMID: 40024027 DOI: 10.1016/j.jpba.2025.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Arsenic (As)-induced hypertension is a significant public health concern, highlighting the need for early risk prediction. This study aimed to develop a predictive model for occupational As exposure and hypertension using metabolomics and machine learning. A total of 365 male smelting workers from southern regions were selected. Forty workers from high and low urinary arsenic (U-As) exposure groups were chosen for non-targeted metabolomics analysis. Univariate analysis revealed that U-As is a risk factor for blood pressure and hypertension (P < 0.05). Restricted cubic spline (RCS) analysis showed that both systolic and diastolic blood pressure, as well as hypertension risks, increased with U-As, with a threshold at 32 µg/L. Of 1145 metabolites, 383 differentially expressed metabolites (382 upregulated, 1 downregulated) were identified. Least absolute shrinkage and selection operator (LASSO) regression was used to construct a predictive model for occupational hypertension, with N-hexosyl leucine, myristic acid, gamma-glutamylvaline, and pregnanediol disulfate as predictors. The area under the curve (AUC) of the receiver operating characteristic (ROC) for the predictive model was 0.917, indicating strong predictability and accuracy. This model, based on metabolomics and machine learning, provides an effective tool for early identification and intervention for occupational populations at high risk of hypertension due to As exposure.
Collapse
Affiliation(s)
- Youyi Wu
- School of Public Health, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Guoliang Li
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Ming Dong
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Yaotang Deng
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Zhiqiang Zhao
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Jiazhen Zhou
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Simin Xian
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Le Yang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Mushi Yi
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Jieyi Yang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Yue Hu
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Xinhua Li
- Shaoguan Hospital for Occupational Disease Prevention and Treatment, Shaoguan, Guangdong 512026, China
| | - Ping Chen
- Shaoguan Hospital for Occupational Disease Prevention and Treatment, Shaoguan, Guangdong 512026, China
| | - Lili Liu
- School of Public Health, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China.
| |
Collapse
|
2
|
Massie PL, Garcia M, Decker A, Liu R, MazloumiBakhshayesh M, Kulkarni D, Justus MP, Gallardo J, Abrums A, Markle K, Pace C, Campen M, Clark RM. Essential and Non-Essential Metals and Metalloids and Their Role in Atherosclerosis. Cardiovasc Toxicol 2025:10.1007/s12012-025-09998-y. [PMID: 40251456 DOI: 10.1007/s12012-025-09998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Peripheral arterial disease (PAD) is becoming more prevalent in the aging developed world and can have significant functional impacts on patients. There is a recent recognition that environmental toxicants such as circulating metals and metalloids may contribute to the pathogenesis of atherosclerotic disease, but the mechanisms are complex. While the broad toxic biologic effects of metals in human systems have been extensively reviewed, the role of non-essential exposure and essential metal aberrancy in PAD specifically is less frequently discussed. This review of the literature describes current scientific knowledge regarding the individual roles several major metals and metalloids play in atherogenesis and highlights areas where a dearth of data exist. The roles of lead (Pb), arsenic (As), cadmium (Cd), iron (Fe), copper (Cu), selenium (Se) are included. Contemporary outcomes of therapeutic trials aimed at chelation therapy of circulating metals to impact cardiovascular outcomes are also discussed. This review highlights the supported notion of differential metal presence within peripheral plaques themselves, although distinguishing their roles within these plaques requires further illumination.
Collapse
Affiliation(s)
- Pierce L Massie
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Aerlin Decker
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Milad MazloumiBakhshayesh
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Deepali Kulkarni
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew P Justus
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Jorge Gallardo
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Avalon Abrums
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Kristin Markle
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Carolyn Pace
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Ross M Clark
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
3
|
Han Y, Gao T, Li X, Wāng Y. Didactical approaches and insights into environmental processes and cardiovascular hazards of arsenic contaminants. CHEMOSPHERE 2024; 352:141381. [PMID: 38360414 DOI: 10.1016/j.chemosphere.2024.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Arsenic, as a metalloid, has the ability to move and transform in different environmental media. Its widespread contamination has become a significant environmental problem and public concern. Arsenic can jeopardize multiple organs through various pathways, influenced by environmental bioprocesses. This article provides a comprehensive overview of current research on the cardiovascular hazards of arsenic. A bibliometric analysis revealed that there are 376 papers published in 145 journals, involving 40 countries, 631 institutions, and 2093 authors, all focused on arsenic-related concerns regarding cardiovascular health. China and the U.S. have emerged as the central hubs of collaborative relationships and have the highest number of publications. Hypertension and atherosclerosis are the most extensively studied topics, with redox imbalance, apoptosis, and methylation being the primary mechanistic clues. Cardiovascular damage caused by arsenic includes arrhythmia, cardiac remodeling, vascular leakage, and abnormal angiogenesis. However, the current understanding is still inadequate over cardiovascular impairments, underlying mechanisms, and precautionary methods of arsenic, thus calling an urgent need for further studies to bridge the gap between environmental processes and arsenic hazards.
Collapse
Affiliation(s)
- Yapeng Han
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Tiantian Gao
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiaozhi Li
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Karachaliou C, Sgourou A, Kakkos S, Kalavrouziotis I. Arsenic exposure promotes the emergence of cardiovascular diseases. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:467-486. [PMID: 34253004 DOI: 10.1515/reveh-2021-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies conducted in the past decade 2010-2020 refer to the impact of arsenic (As) exposure on cardiovascular risk factors. The arsenic effect on humans is complex and mainly depends on the varying individual susceptibilities, its numerous toxic expressions and the variation in arsenic metabolism between individuals. In this review we present relevant data from studies which document the association of arsenic exposure with various biomarkers, the effect of several genome polymorphisms on arsenic methylation and the underling molecular mechanisms influencing the cardiovascular pathology. The corresponding results provide strong evidence that high and moderate-high As intake induce oxidative stress, inflammation and vessel endothelial dysfunction that are associated with increased risk for cardiovascular diseases (CVDs) and in particular hypertension, myocardial infarction, carotid intima-media thickness and stroke, ventricular arrhythmias and peripheral arterial disease. In addition, As exposure during pregnancy implies risks for blood pressure abnormalities among infants and increased mortality rates from acute myocardial infarction during early adulthood. Low water As concentrations are associated with increased systolic, diastolic and pulse pressure, coronary heart disease and incident stroke. For very low As concentrations the relevant studies are few. They predict a risk for myocardial infarction, stroke and ischemic stroke and incident CVD, but they are not in agreement regarding the risk magnitude.
Collapse
Affiliation(s)
- Christiana Karachaliou
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| | - Argyro Sgourou
- School of Science and Technology, Biology Lab, Hellenic Open University, Patras, Greece
| | - Stavros Kakkos
- Department of Vascular Surgery, Medical School of Patras, University of Patras, Patras, Greece
| | - Ioannis Kalavrouziotis
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| |
Collapse
|
5
|
Xu L, Polya DA. Exploratory study of the association in the United Kingdom between hypertension and inorganic arsenic (iAs) intake from rice and rice products. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2505-2538. [PMID: 32347515 PMCID: PMC8275557 DOI: 10.1007/s10653-020-00573-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Hypertension risks arising from chronic exposure to inorganic arsenic (iAs) are well documented. Consumption of rice is a major iAs exposure route for over 3 billion people; however, there is a lack of epidemiological evidence demonstrating an association of hypertension risks with iAs intake from rice, especially in areas where there is little exposure from drinking water but a growing demand for rice intake. To address this, we conducted an individual-level cross-sectional analysis to quantify the extent to which daily iAs intake from rice and rice products (E-iAsing,rice) modifies the association between hypertension risks and previously well-established risk factors. The analysis was based on secondary dietary, socio-demographic and health status data of 598 participants recorded in the UK National Diet and Nutrition Survey 2014-2016. E-iAsing,rice and five blood pressure endpoints were derived with potential associations explored through generalized linear models. According to the results, a negative but not significant relationship was found between hypertension risks and E-iAsing,rice after adjusting for major risk factors, notably age, gender, diabetes and obesity, with relatively higher risks being observed for male, middle-aged, overweight, alcohol consumer or Asian or Asian British, Black or Black British and mixed ethnic groups. Though inconclusive and mainly limited by potential incomplete adjustment for major confounders and intrinsic disadvantages of a cross-sectional design, this study was the first quantifying the individual level dose-response relationship between E-iAsing,rice and hypertension risks and is consistent with previous studies on the limited associations of hypertension with low-level arsenic exposure from drinking water. Larger scale cohort studies are indicated to quantify the association but in any event it is likely to be weak.
Collapse
Affiliation(s)
- Lingqian Xu
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK
| | - David A Polya
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
6
|
Kabir R, Sinha P, Mishra S, Ebenebe OV, Taube N, Oeing CU, Keceli G, Chen R, Paolocci N, Rule A, Kohr MJ. Inorganic arsenic induces sex-dependent pathological hypertrophy in the heart. Am J Physiol Heart Circ Physiol 2021; 320:H1321-H1336. [PMID: 33481702 PMCID: PMC8260381 DOI: 10.1152/ajpheart.00435.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 01/17/2023]
Abstract
Arsenic exposure though drinking water is widespread and well associated with adverse cardiovascular outcomes, yet the pathophysiological mechanisms by which iAS induces these effects are largely unknown. Recently, an epidemiological study in an American population with a low burden of cardiovascular risk factors found that iAS exposure was associated with altered left ventricular geometry. Considering the possibility that iAS directly induces cardiac remodeling independently of hypertension, we investigated the impact of an environmentally relevant iAS exposure on the structure and function of male and female hearts. Adult male and female C56BL/6J mice were exposed to 615 μg/L iAS for 8 wk. Males exhibited increased systolic blood pressure via tail cuff photoplethysmography, left ventricular wall thickening via transthoracic echocardiography, and increased plasma atrial natriuretic peptide via enzyme immunoassay. RT-qPCR revealed increased myocardial RNA transcripts of Acta1, Myh7, and Nppa and decreased Myh6, providing evidence of pathological hypertrophy in the male heart. Similar changes were not detected in females, and nitric oxide-dependent mechanisms of cardioprotection in the heart appeared to remain intact. Further investigation found that Rcan1 was upregulated in male hearts and that iAS activated NFAT in HEK-293 cells via luciferase assay. Interestingly, iAS induced similar hypertrophic gene expression changes in neonatal rat ventricular myocytes, which were blocked by calcineurin inhibition, suggesting that iAS may induce pathological cardiac hypertrophy in part by targeting the calcineurin-NFAT pathway. As such, these results highlight iAS exposure as an independent cardiovascular risk factor and provide biological impetus for its removal from human consumption.NEW & NOTEWORTHY This investigation provides the first mechanistic link between an environmentally relevant dose of inorganic arsenic (iAS) and pathological hypertrophy in the heart. By demonstrating that iAS exposure may cause pathological cardiac hypertrophy not only by increasing systolic blood pressure but also by potentially activating calcineurin-nuclear factor of activated T cells and inducing fetal gene expression, these results provide novel mechanistic insight into the theat of iAS exposure to the heart, which is necessary to identify targets for medical and public health intervention.
Collapse
MESH Headings
- Animals
- Arsenites/toxicity
- Calcineurin/metabolism
- Female
- Gene Expression Regulation
- HEK293 Cells
- Humans
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Isolated Heart Preparation
- Male
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NFATC Transcription Factors/metabolism
- Sex Factors
- Signal Transduction
- Sodium Compounds/toxicity
- Time Factors
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Water Pollutants, Chemical/toxicity
- Mice
Collapse
Affiliation(s)
- Raihan Kabir
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Prithvi Sinha
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nicole Taube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Chistian U Oeing
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
7
|
Xu L, Mondal D, Polya DA. Positive Association of Cardiovascular Disease (CVD) with Chronic Exposure to Drinking Water Arsenic (As) at Concentrations below the WHO Provisional Guideline Value: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072536. [PMID: 32272785 PMCID: PMC7178156 DOI: 10.3390/ijerph17072536] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 01/25/2023]
Abstract
To the best of our knowledge, a dose-response meta-analysis of the relationship between cardiovascular disease (CVD) and arsenic (As) exposure at drinking water As concentrations lower than the WHO provisional guideline value (10 µg/L) has not been published yet. We conducted a systematic review and meta-analyses to estimate the pooled association between the relative risk of each CVD endpoint and low-level As concentration in drinking water both linearly and non-linearly using a random effects dose-response model. In this study, a significant positive association was found between the risks of most CVD outcomes and drinking water As concentration for both linear and non-linear models (p-value for trend < 0.05). Using the preferred linear model, we found significant increased risks of coronary heart disease (CHD) mortality and CVD mortality as well as combined fatal and non-fatal CHD, CVD, carotid atherosclerosis disease and hypertension in those exposed to drinking water with an As concentration of 10 µg/L compared to the referent (drinking water As concentration of 1 µg/L) population. Notwithstanding limitations included, the observed significant increased risks of CVD endpoints arising from As concentrations in drinking water between 1 µg/L and the 10 µg/L suggests further lowering of this guideline value should be considered.
Collapse
Affiliation(s)
- Lingqian Xu
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL, UK; (L.X.); (D.A.P.)
| | - Debapriya Mondal
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
- Correspondence: ; Tel.: +44-161-295-4137
| | - David A. Polya
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL, UK; (L.X.); (D.A.P.)
| |
Collapse
|
8
|
Kurzius-Spencer M, Harris RB, Hartz V, Roberge J, Hsu CH, O’Rourke MK, Burgess JL. Relation of dietary inorganic arsenic to serum matrix metalloproteinase-9 (MMP-9) at different threshold concentrations of tap water arsenic. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:445-51. [PMID: 25605447 PMCID: PMC4698357 DOI: 10.1038/jes.2014.92] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/24/2014] [Accepted: 11/13/2014] [Indexed: 05/23/2023]
Abstract
Arsenic (As) exposure is associated with cancer, lung and cardiovascular disease, yet the mechanisms involved are not clearly understood. Elevated matrix metalloproteinase-9 (MMP-9) levels are also associated with these diseases, as well as with exposure to water As. Our objective was to evaluate the effects of dietary components of inorganic As (iAs) intake on serum MMP-9 concentration at differing levels of tap water As. In a cross-sectional study of 214 adults, dietary iAs intake was estimated from 24-h dietary recall interviews using published iAs residue data; drinking and cooking water As intake from water samples and consumption data. Aggregate iAs intake (food plus water) was associated with elevated serum MMP-9 in mixed model regression, with and without adjustment for covariates. In models stratified by tap water As, aggregate intake was a significant positive predictor of serum MMP-9 in subjects exposed to water As≤10 μg/l. Inorganic As from food alone was associated with serum MMP-9 in subjects exposed to tap water As≤3 μg/l. Exposure to iAs from food and water combined, in areas where tap water As concentration is ≤10 μg/l, may contribute to As-induced changes in a biomarker associated with toxicity.
Collapse
Affiliation(s)
- Margaret Kurzius-Spencer
- University of Arizona, College of Medicine, Department of Pediatrics, Tucson, Arizona, USA
- University of Arizona, Mel & Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Robin B. Harris
- University of Arizona, Mel & Enid Zuckerman College of Public Health, Tucson, Arizona, USA
- University of Arizona, Arizona Cancer Center, Tucson, Arizona, USA
| | - Vern Hartz
- University of Arizona, Arizona Cancer Center, Tucson, Arizona, USA
| | - Jason Roberge
- Carolinas Healthcare System, Dickson Advanced Analytics Group, Charlotte, North Carolina, USA
| | - Chiu-Hsieh Hsu
- University of Arizona, Mel & Enid Zuckerman College of Public Health, Tucson, Arizona, USA
- University of Arizona, Arizona Cancer Center, Tucson, Arizona, USA
| | - Mary Kay O’Rourke
- University of Arizona, Mel & Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Jefferey L. Burgess
- University of Arizona, Mel & Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| |
Collapse
|
9
|
Wang D, Lin L, Li X, Sun GF. Effects of glutathione on the in vivo metabolism and oxidative stress of arsenic in mice. J Toxicol Sci 2016; 40:577-83. [PMID: 26354374 DOI: 10.2131/jts.40.577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In this study, we investigated the in vivo effects of exogenous glutathione and buthionine sulfoximine on arsenic methylation and antioxidant capacity in mice exposed to arsenic via drinking water. Thirty-six female albino mice were randomly divided into six groups. All groups were given free access to drinking water that contained arsenic continuously except the control group. After ten days, mice were treated with different levels of glutathione or buthionine sulfoximine. The levels of the metabolites of arsenic were determined in the liver and urine. The levels of glutathione and total antioxidant capacity were determined in the whole blood and liver. Our results showed that the increase of arsenic species in the liver as well as the decrease of blood and hepatic glutathione and total antioxidant capacity, were all relieved by exogenous glutathione consistently. We also observed the involvement of glutathione in promoting arsenic methylation and urinary elimination in vivo. Increase of total arsenic in the urine was mainly due to the increase of dimethylated arsenic. Furthermore, administration of glutathione increased the first methylation ratio and secondary methylation ratio in the liver and urine, which resulted in the consequent increase of dimethylated arsenic percent and decrease of inorganic arsenic percent in the urine. Opposite effects appeared with the administration of buthionine sulfoximine, a scavenger of glutathione. Our study indicated that exogenous glutathione not only accelerated the methylation and the excretion of arsenic, but also relieve the arsenic-induced oxidative stress. This provides a potential useful chemopreventive dietary component for human populations being at risk of arsenic exposure.
Collapse
Affiliation(s)
- Da Wang
- Environment and Non-Communicable Disease Research Center, School of Public Health, China Medical University, China
| | | | | | | |
Collapse
|
10
|
Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Cerón RH, Morales DV, Terrazas FAB, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M. Chronic Exposure to Arsenic and Markers of Cardiometabolic Risk: A Cross-Sectional Study in Chihuahua, Mexico. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:104-11. [PMID: 26068977 PMCID: PMC4710594 DOI: 10.1289/ehp.1408742] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/10/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Exposure to arsenic (As) concentrations in drinking water > 150 μg/L has been associated with risk of diabetes and cardiovascular disease, but little is known about the effects of lower exposures. OBJECTIVE This study aimed to examine whether moderate As exposure, or indicators of individual As metabolism at these levels of exposure, are associated with cardiometabolic risk. METHODS We analyzed cross-sectional associations between arsenic exposure and multiple markers of cardiometabolic risk using drinking-water As measurements and urinary As species data obtained from 1,160 adults in Chihuahua, Mexico, who were recruited in 2008-2013. Fasting blood glucose and lipid levels, the results of an oral glucose tolerance test, and blood pressure were used to characterize cardiometabolic risk. Multivariable logistic, multinomial, and linear regression were used to assess associations between cardiometabolic outcomes and water As or the sum of inorganic and methylated As species in urine. RESULTS After multivariable adjustment, concentrations in the second quartile of water As (25.5 to < 47.9 μg/L) and concentrations of total speciated urinary As (< 55.8 μg/L) below the median were significantly associated with elevated triglycerides, high total cholesterol, and diabetes. However, moderate water and urinary As levels were also positively associated with HDL cholesterol. Associations between arsenic exposure and both dysglycemia and triglyceridemia were higher among individuals with higher proportions of dimethylarsenic in urine. CONCLUSIONS Moderate exposure to As may increase cardiometabolic risk, particularly in individuals with high proportions of urinary dimethylarsenic. In this cohort, As exposure was associated with several markers of increased cardiometabolic risk (diabetes, triglyceridemia, and cholesterolemia), but exposure was also associated with higher rather than lower HDL cholesterol. CITATION Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M. 2016. Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104-111; http://dx.doi.org/10.1289/ehp.1408742.
Collapse
Affiliation(s)
- Michelle A. Mendez
- Department of Nutrition, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
- Carolina Population Center, and
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carmen González-Horta
- Programa de Maestría en Ciencias en Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Blanca Sánchez-Ramírez
- Programa de Maestría en Ciencias en Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Lourdes Ballinas-Casarrubias
- Programa de Maestría en Ciencias en Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | | | | | | | - María C. Ishida
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - R. Jesse Saunders
- Department of Nutrition, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Zuzana Drobná
- Department of Nutrition, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John B. Buse
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dana Loomis
- International Agency for Research on Cancer, Monographs Section, Lyon Cedex, France
| | | | - Luz M. Del Razo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | - Miroslav Stýblo
- Department of Nutrition, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Butts CD, Bloom MS, Neamtiu IA, Surdu S, Pop C, Anastasiu D, Fitzgerald EF, Gurzau ES. A pilot study of low-moderate drinking water arsenic contamination and chronic diseases among reproductive age women in Timiş County, Romania. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:1001-4. [PMID: 26595744 PMCID: PMC4679485 DOI: 10.1016/j.etap.2015.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 05/09/2023]
Abstract
We conducted a pilot study of associations between drinking water contaminated by inorganic arsenic (iAs), mostly <10 μg/L, and self-reported chronic diseases in 297 pregnant women. Adjusted for confounding variables, we identified a positive association between iAs and heart disease (OR = 1.63, 95%CI 0.81-3.04, p = 0.094), which was stronger for women living at their current residence ≥ 10 years (OR = 2.47, 95%CI 0.87-10.43, p = 0.058). Confounder-adjusted associations were also suggested for iAs with kidney disease (OR = 1.32, 95%CI 0.77-2.21, p = 0.265) and with high blood pressure (OR = 1.36, 95%CI 0.68-2.39, p = 0.300). A post hoc power analysis indicated the need for a larger study with more statistical power.
Collapse
Affiliation(s)
- Celeste D Butts
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Michael S Bloom
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA.
| | | | - Simona Surdu
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Cristian Pop
- Environmental Health Center, Cluj-Napoca, Romania
| | - Doru Anastasiu
- University of Medicine and Pharmacy "Victor Babes", Timişoara, Romania; Gynecology Department of the Emergency County Hospital, Timişoara, Romania
| | - Edward F Fitzgerald
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Eugen S Gurzau
- Environmental Health Center, Cluj-Napoca, Romania; University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| |
Collapse
|