1
|
Captur G, Doykov I, Chung SC, Field E, Barnes A, Zhang E, Heenan I, Norrish G, Moon JC, Elliott PM, Heywood WE, Mills K, Kaski JP. Novel Multiplexed Plasma Biomarker Panel Has Diagnostic and Prognostic Potential in Children With Hypertrophic Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004448. [PMID: 38847081 PMCID: PMC11188636 DOI: 10.1161/circgen.123.004448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is defined clinically by pathological left ventricular hypertrophy. We have previously developed a plasma proteomics biomarker panel that correlates with clinical markers of disease severity and sudden cardiac death risk in adult patients with HCM. The aim of this study was to investigate the utility of adult biomarkers and perform new discoveries in proteomics for childhood-onset HCM. METHODS Fifty-nine protein biomarkers were identified from an exploratory plasma proteomics screen in children with HCM and augmented into our existing multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay. The association of these biomarkers with clinical phenotypes and outcomes was prospectively tested in plasma collected from 148 children with HCM and 50 healthy controls. Machine learning techniques were used to develop novel pediatric plasma proteomic biomarker panels. RESULTS Four previously identified adult HCM markers (aldolase fructose-bisphosphate A, complement C3a, talin-1, and thrombospondin 1) and 3 new markers (glycogen phosphorylase B, lipoprotein a and profilin 1) were elevated in pediatric HCM. Using supervised machine learning applied to training (n=137) and validation cohorts (n=61), this 7-biomarker panel differentiated HCM from healthy controls with an area under the curve of 1.0 in the training data set (sensitivity 100% [95% CI, 95-100]; specificity 100% [95% CI, 96-100]) and 0.82 in the validation data set (sensitivity 75% [95% CI, 59-86]; specificity 88% [95% CI, 75-94]). Reduced circulating levels of 4 other peptides (apolipoprotein L1, complement 5b, immunoglobulin heavy constant epsilon, and serum amyloid A4) found in children with high sudden cardiac death risk provided complete separation from the low and intermediate risk groups and predicted mortality and adverse arrhythmic outcomes (hazard ratio, 2.04 [95% CI, 1.0-4.2]; P=0.044). CONCLUSIONS In children, a 7-biomarker proteomics panel can distinguish HCM from controls with high sensitivity and specificity, and another 4-biomarker panel identifies those at high risk of adverse arrhythmic outcomes, including sudden cardiac death.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health & Ageing, UCL, London, United Kingdom (G.C.)
- UCL Institute of Cardiovascular Science, UCL, London, United Kingdom (G.C., J.C.M., P.M.E.)
- The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, UCL, London, United Kingdom (G.C.)
| | - Ivan Doykov
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Sheng-Chia Chung
- UCL Institute of Health Informatics Research, Division of Infection and Immunity, London, United Kingdom (S.-C.C.)
| | - Ella Field
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Annabelle Barnes
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Enpei Zhang
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
- UCL Medical School, University College London, London, United Kingdom (E.Z.)
| | - Imogen Heenan
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Gabrielle Norrish
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - James C. Moon
- Barts Heart Centre, the Cardiovascular Magnetic Resonance Unit, London, United Kingdom (J.C.M.)
| | - Perry M. Elliott
- Barts Heart Centre, the Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, London, United Kingdom (P.M.E.)
| | - Wendy E. Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Juan Pablo Kaski
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| |
Collapse
|
2
|
Ren AJ, Wei C, Liu YJ, Liu M, Wang P, Fan J, Wang K, Zhang S, Qin Z, Ren QX, Zheng Y, Chen YX, Xie Z, Gao L, Zhu Y, Zhang Y, Yang HT, Zhang WJ. ZBTB20 Regulates SERCA2a Activity and Myocardial Contractility Through Phospholamban. Circ Res 2024; 134:252-265. [PMID: 38166470 DOI: 10.1161/circresaha.123.323798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Intracellular Ca2+ cycling determines myocardial contraction and relaxation in response to physiological demands. SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a) is responsible for the sequestration of cytosolic Ca2+ into intracellular stores during cardiac relaxation, and its activity is reversibly inhibited by PLN (phospholamban). However, the regulatory hierarchy of SERCA2a activity remains unclear. METHODS Cardiomyocyte-specific ZBTB20 knockout mice were generated by crossing ZBTB20flox mice with Myh6-Cre mice. Echocardiography, blood pressure measurements, Langendorff perfusion, histological analysis and immunohistochemistry, quantitative reverse transcription-PCR, Western blot analysis, electrophysiological measurements, and chromatin immunoprecipitation assay were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS Specific ablation of ZBTB20 in cardiomyocyte led to a significant increase in basal myocardial contractile parameters both in vivo and in vitro, accompanied by an impairment in cardiac reserve and exercise capacity. Moreover, the cardiomyocytes lacking ZBTB20 showed an increase in sarcoplasmic reticular Ca2+ content and exhibited a remarkable enhancement in both SERCA2a activity and electrically stimulated contraction. Mechanistically, PLN expression was dramatically reduced in cardiomyocytes at the mRNA and protein levels by ZBTB20 deletion or silencing, and PLN overexpression could largely restore the basal contractility in ZBTB20-deficient cardiomyocytes. CONCLUSIONS These data point to ZBTB20 as a fine-tuning modulator of PLN expression and SERCA2a activity, thereby offering new perspective on the regulation of basal contractility in the mammalian heart.
Collapse
Affiliation(s)
- An-Jing Ren
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
- Experimental Teaching Center, College of Basic Medical Sciences, Naval Medical University, Shanghai, China (A.-J.R., J.F.)
| | - Chunchun Wei
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Ya-Jin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology and Chu Hsien-I Memorial Hospital, Tianjin Medical University Tianjin, China (Y.-J.L., Y. Zhu, W.J.Z.)
| | - Mengna Liu
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Ping Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Juan Fan
- Experimental Teaching Center, College of Basic Medical Sciences, Naval Medical University, Shanghai, China (A.-J.R., J.F.)
| | - Kai Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Sha Zhang
- Department of Cardiovascular Diseases, Changhai Hospital, Naval Medical University, Shanghai, China (S.Z.)
| | - Zhenbang Qin
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Qiu-Xiao Ren
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Yanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China (Y. Zheng, H.-T.Y.)
| | - Yu-Xia Chen
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.X.)
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (L.G.)
| | - Yi Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology and Chu Hsien-I Memorial Hospital, Tianjin Medical University Tianjin, China (Y.-J.L., Y. Zhu, W.J.Z.)
| | - Youyi Zhang
- Institute of Vascular Medicine, National Key Laboratory of Cardiovascular Homeostasis and Remodeling, Peking University Third Hospital, Beijing, China (Y. Zhang)
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China (Y. Zheng, H.-T.Y.)
| | - Weiping J Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology and Chu Hsien-I Memorial Hospital, Tianjin Medical University Tianjin, China (Y.-J.L., Y. Zhu, W.J.Z.)
| |
Collapse
|
3
|
Xie Q, Ma L, Xiao Z, Yang M, Chen M. Role of profilin-1 in vasculopathy induced by advanced glycation end products (AGEs). J Diabetes Complications 2023; 37:108415. [PMID: 36989867 DOI: 10.1016/j.jdiacomp.2023.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
AIMS To construct a simple and feasible rat model to mimic diabetic vasculopathy by chronic injection of advanced glycation end products (AGEs) and further determine the role of profilin-1 in vasculopathy in AGE-injection rats. METHODS Sprague-Dawley rats were injected with AGEs-BSA (25 mg/kg/day) for 0, 20, 30, 40, and 60 days by caudal vein. Then, the morphological changes in the aorta, heart, and kidney and the expression of profilin-1 were assessed. In cultured endothelial cells, shRNA profilin-1 was used to clarify the role of profilin-1 in AGEs-induced vascular endothelial lesions and inflammatory reactions. RESULTS The aorta, heart, and kidney of the AGE-injection rats had obvious morphological changes. Also, the indicators of vascular remodeling in the aorta significantly increased, accompanied by the increased expression of profilin-1 in the aorta, heart, and kidney and polysaccharide content on the kidney basement membrane. In addition, the protein level of profilin-1 was markedly upregulated in the aorta of AGEs-injected rats and endothelial cells incubated with AGEs. shRNA profilin-1 markedly attenuated the upregulated expression of profilin-1, receptor for AGEs (RAGE), and NF-κB in endothelial cells incubated with AGEs, as well as reduced the high levels of ICAM-1, IL-8, TNF-α, ROS, and apoptosis induced by AGEs. CONCLUSIONS Exogenous AGEs can mimic diabetic vasculopathy in vivo to some extent and increase profilin-1 expression in the target organs of diabetic complications. Blockade of profilin-1 attenuates vascular lesions and inflammatory reactions, suggesting its critical role in the metabolic memory mediated by AGEs.
Collapse
Affiliation(s)
- Qiying Xie
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liping Ma
- Department of Cardiology, The First Affiliated Hospital of Shangdong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, Shandong 250014, China
| | - Zhilin Xiao
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mei Yang
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Meifang Chen
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
4
|
Actin-Binding Proteins in Cardiac Hypertrophy. Cells 2022; 11:cells11223566. [PMID: 36428995 PMCID: PMC9688942 DOI: 10.3390/cells11223566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The heart reacts to a large number of pathological stimuli through cardiac hypertrophy, which finally can lead to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain elusive. Actin participates in the formation of highly differentiated myofibrils under the regulation of actin-binding proteins (ABPs), which provides a structural basis for the contractile function and morphological change in cardiomyocytes. Previous studies have shown that the functional abnormality of ABPs can contribute to cardiac hypertrophy. Here, we review the function of various actin-binding proteins associated with the development of cardiac hypertrophy, which provides more references for the prevention and treatment of cardiomyopathy.
Collapse
|
5
|
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7:231. [PMID: 35817770 PMCID: PMC9272665 DOI: 10.1038/s41392-022-01082-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China. .,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
6
|
Ni GH, Cheng JF, Li YJ, Xie QY, Yang TL, Chen MF. Effect of profilin-1 on the asymmetric dimethylarginine-induced vascular lesion-associated hypertension. Kaohsiung J Med Sci 2021; 38:149-156. [PMID: 34741409 DOI: 10.1002/kjm2.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/07/2022] Open
Abstract
Previous studies have demonstrated that the levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis, are strongly associated with hypertension, diabetes, and cardiovascular diseases. Profilin-1, an actin-binding protein, has been documented to be involved in endothelial injury and in the proliferation of vascular smooth muscle cells resulting from hypertension. However, the role of profilin-1 in ADMA-induced vascular injury in hypertension remains largely unknown. Forty healthy subjects and forty-two matched patients with essential hypertension were enrolled, and the related indexes of vascular injury in plasma were detected. Rat aortic smooth muscle cells (RASMCs) were treated with different concentrations of ADMA for different periods of time and transfected with profilin-1 small hairpin RNA to interrupt the expression of profilin-1. To determine the role of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway, RASMCs were pretreated with AG490 or rapamycin. The expression of profilin-1 was tested using real-time polymerase chain reaction (PCR) and western blot analysis. Cell proliferation was measured by flow cytometry and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazoliumbromide assays. Compared with healthy subjects, the levels of ADMA and profilin-1 were markedly elevated in hypertensive individuals, while the levels of NO were significantly decreased (p < 0.05). In vitro, studies showed ADMA-induced profilin-1 expression in a concentration- and time-dependent manner in RASMCs (p < 0.05), concomitantly with promoting the proliferation of RASMCs. Furthermore, ADMA-mediated proliferation of RASMCs and upregulation expression of profilin-1 were inhibited by blockade of the JAK2/STAT3 pathway or knockdown of profilin-1. Profilin-1 implicated in the ADMA-mediated vascular lesions in hypertension.
Collapse
Affiliation(s)
- Guo-Hua Ni
- Health Management Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (Chengdu Jinjiang Sohome Comprehensive Outpatient Clinic), Chengdu, China
| | - Jin-Fang Cheng
- Department of Cardiology, Shanxi Baiqiuen Hospital, Taiyuan, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qi-Ying Xie
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tian-Lun Yang
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mei-Fang Chen
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Abstract
Dynamic remodeling of the actin cytoskeleton is an essential feature for virtually all actin-dependent cellular processes, including cell migration, cell cycle progression, chromatin remodeling and gene expression, and even the DNA damage response. An altered actin cytoskeleton is a structural hallmark associated with numerous pathologies ranging from cardiovascular diseases to immune disorders, neurological diseases and cancer. The actin cytoskeleton in cells is regulated through the orchestrated actions of a myriad of actin-binding proteins. In this Review, we provide a brief overview of the structure and functions of the actin-monomer-binding protein profilin-1 (Pfn1) and then discuss how dysregulated expression of Pfn1 contributes to diseases associated with the cardiovascular system.
Collapse
Affiliation(s)
| | - David Gau
- Bioengineering, University of Pittsburgh
| | - Partha Roy
- Bioengineering, University of Pittsburgh.,Pathology, University of Pittsburgh, 306 Center for Bioengineering, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
8
|
Paszek E, Zajdel W, Rajs T, Żmudka K, Legutko J, Kleczyński P. Profilin 1 and Mitochondria-Partners in the Pathogenesis of Coronary Artery Disease? Int J Mol Sci 2021; 22:1100. [PMID: 33499277 PMCID: PMC7865810 DOI: 10.3390/ijms22031100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis remains a large health and economic burden. Even though it has been studied for more than a century, its complex pathophysiology has not been elucidated. The relatively well-established contributors include: chronic inflammation in response to oxidized cholesterol, reactive oxygen species-induced damage and apoptosis. Recently, profilin 1, a regulator of actin dynamics emerged as a potential new player in the field. Profilin is abundant in stable atherosclerotic plaques and in thrombi extracted from infarct-related arteries in patients with acute myocardial infarction. The exact role of profilin in atherosclerosis and its complications, as well as its mechanisms of action, remain unknown. Here, we summarize several pathways in which profilin may act through mitochondria in a number of processes implicated in atherosclerosis.
Collapse
Affiliation(s)
- Elżbieta Paszek
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
| | - Wojciech Zajdel
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
| | - Tomasz Rajs
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
| | - Krzysztof Żmudka
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland
| | - Jacek Legutko
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland
| | - Paweł Kleczyński
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland
| |
Collapse
|
9
|
Ren AJ, Chen C, Zhang S, Liu M, Wei C, Wang K, Ma X, Song Y, Wang R, Zhang H, Chen YX, Wu H, Xie Z, Zhang Y, Zhang WJ. Zbtb20 deficiency causes cardiac contractile dysfunction in mice. FASEB J 2020; 34:13862-13876. [PMID: 32844471 DOI: 10.1096/fj.202000160rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
The zinc-finger protein ZBTB20 regulates development and metabolism in multiple systems, and is essential for postnatal survival in mice. However, its potential role in the cardiovascular system remains undefined. Here, we demonstrate that ZBTB20 is critically involved in the regulation of cardiac contractility and blood pressure in mice. At the age of 16 days, the relatively healthy Zbtb20-null mice exhibited hypotension without obvious change of heart rate or other evidence for heart failure. Moreover, Zbtb20 deletion led to a marked reduction in heart size, left ventricular wall thickness, and cell size of cardiomyocytes, which was largely proportional to the decreased body growth. Notably, echocardiographic and hemodynamic analyses showed that cardiac contractility was greatly impaired in the absence of ZBTB20. Mechanistically, ZBTB20 deficiency decreased cardiac ATP contents, and compromised the enzyme activity of mitochondrial complex I in heart as well as L-type calcium current density in cardiomyocytes. Furthermore, the developmental activation of some mitochondrial function-related genes was significantly attenuated in Zbtb20-null myocardium, which included Hspb8, Ckmt2, Cox7a1, Tfrc, and Ogdhl. Put together, these results suggest that ZBTB20 plays a crucial role in the regulation of heart development, energy metabolism, and contractility.
Collapse
Affiliation(s)
- An-Jing Ren
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Chao Chen
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Sha Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China.,Department of Cardiovascular Diseases, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mengna Liu
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Chunchun Wei
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Kai Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Xianhua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Rui Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Hai Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Hong Wu
- Department of Cardiovascular Diseases, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Weiping J Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China.,NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| |
Collapse
|
10
|
Abstract
Profilin is a ubiquitously expressed protein well known as a key regulator of actin polymerisation. The actin cytoskeleton is involved in almost all cellular processes including motility, endocytosis, metabolism, signal transduction and gene transcription. Hence, profilin's role in the cell goes beyond its direct and essential function in regulating actin dynamics. This review will focus on the interactions of Profilin 1 and its ligands at the plasma membrane, in the cytoplasm and the nucleus of the cells and the regulation of profilin activity within those cell compartments. We will discuss the interactions of profilin in cell signalling pathways and highlight the importance of the cell context in the multiple functions that this small essential protein has in conjunction with its role in cytoskeletal organisation and dynamics. We will review some of the mechanisms that control profilin expression and the implications of changed expression of profilin in the light of cancer biology and other pathologies.
Collapse
|
11
|
Ni Y, Wang X, Yin X, Li Y, Liu X, Wang H, Liu X, Zhang J, Gao H, Shi B, Zhao S. Plectin protects podocytes from adriamycin-induced apoptosis and F-actin cytoskeletal disruption through the integrin α6β4/FAK/p38 MAPK pathway. J Cell Mol Med 2018; 22:5450-5467. [PMID: 30187999 PMCID: PMC6201223 DOI: 10.1111/jcmm.13816] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/16/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Podocyte injury is an early pathological change characteristic of various glomerular diseases, and apoptosis and F‐actin cytoskeletal disruption are typical features of podocyte injury. In this study, we found that adriamycin (ADR) treatment resulted in typical podocyte injury and repressed plectin expression. Restoring plectin expression protected against ADR‐induced podocyte injury whereas siRNA‐mediated plectin silencing produced similar effects as ADR‐induced podocyte injury, suggesting that plectin plays a key role in preventing podocyte injury. Further analysis showed that plectin repression induced significant integrin α6β4, focal adhesion kinase (FAK) and p38 MAPK phosphorylation. Mutating Y1494, a key tyrosine residue in the integrin β4 subunit, blocked FAK and p38 phosphorylation, thereby alleviating podocyte injury. Inhibitor studies demonstrated that FAK Y397 phosphorylation promoted p38 activation, resulting in podocyte apoptosis and F‐actin cytoskeletal disruption. In vivo studies showed that administration of ADR to rats resulted in significantly increased 24‐hour urine protein levels along with decreased plectin expression and activated integrin α6β4, FAK, and p38. Taken together, these findings indicated that plectin protects podocytes from ADR‐induced apoptosis and F‐actin cytoskeletal disruption by inhibiting integrin α6β4/FAK/p38 pathway activation and that plectin may be a therapeutic target for podocyte injury‐related glomerular diseases.
Collapse
Affiliation(s)
- Yongliang Ni
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Urology, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Xin Wang
- Department of Urology, Tengzhou Central People's Hospital affiliated to Jining Medical College, Xintan Road 181, Tengzhou, China
| | - Xiaoxuan Yin
- Department of Traditional Chinese Medicine, Yankuang Group General Hospital, Zoucheng, China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xigao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Haixin Wang
- Department of Urology, Yankuang Group General Hospital, Zoucheng, China
| | - Xiangjv Liu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| | - Jun Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| | - Haiqing Gao
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shaohua Zhao
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| |
Collapse
|
12
|
Downregulation of Profilin-1 Expression Attenuates Cardiomyocytes Hypertrophy and Apoptosis Induced by Advanced Glycation End Products in H9c2 Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9716087. [PMID: 29238726 PMCID: PMC5697376 DOI: 10.1155/2017/9716087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Cardiomyocytes hypertrophy and apoptosis induced by advanced glycation end products (AGEs) is the crucial pathological foundation contributing to the onset and development of diabetic cardiomyopathy (DCM). However, the mechanism remains poorly understood. Here, we report that profilin-1 (PFN-1), a well-known actin-binding protein, serves as a potent regulator in AGEs-induced cardiomyocytes hypertrophy and apoptosis. PFN-1 was upregulated in AGEs-treated H9c2 cells, which was associated with increased cardiomyocytes hypertrophy and apoptosis. Silencing PFN-1 expression remarkably attenuated AGEs-induced H9c2 cell hypertrophy and apoptosis. Mechanistically, AGEs increased PFN-1 expression through elevating ROS production and RhoA and ROCK2 expression. Consequently, elevated PFN-1 promoted actin cytoskeleton disorganization. When either ROS production/ROCK activation was blocked or cells were treated with Cytochalasin D (actin depolymerizer), H9c2 cells were protected against AGEs-induced cardiac myocyte abnormalities, concomitantly with downregulated expression of PFN-1 and improved actin cytoskeleton alteration. Collectively, these data suggest that PFN-1 may play an important role in AGEs-induced hypertrophy and apoptosis in H9c2 cells.
Collapse
|
13
|
Yang D, Liu W, Ma L, Wang Y, Ma J, Jiang M, Deng X, Huang F, Yang T, Chen M. Profilin‑1 contributes to cardiac injury induced by advanced glycation end‑products in rats. Mol Med Rep 2017; 16:6634-6641. [PMID: 28901418 PMCID: PMC5865800 DOI: 10.3892/mmr.2017.7446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiac injury, including hypertrophy and fibrosis, induced by advanced glycation end products (AGEs) has an important function in the onset and development of diabetic cardiomyopathy. Profilin-1, a ubiquitously expressed and multifunctional actin-binding protein, has been reported to be an important mediator in cardiac hypertrophy and fibrosis. However, whether profilin-1 is involved in AGE-induced cardiac hypertrophy and fibrosis remains to be determined. Therefore, the present study aimed to investigate the function of profilin-1 in cardiac injury induced by AGEs. The model of cardiac injury was established by chronic tail vein injection of AGEs (50 mg/kg/day for 8 weeks) in Sprague-Dawley rats. Rats were randomly assigned to control, AGEs, AGEs + profilin-1 shRNA adenovirus vectors (AGEs + S)or AGEs + control adenovirus vectors (AGEs + V) groups. Profilin-1 shRNA adenovirus vectors were injected via the tail vein to knockdown profilin-1 expression at a dose of 3×109 plaque forming units every 4 weeks. Echocardiography was performed to measure cardiac contractile function. Cardiac tissues were stained with Masson's trichrome stain to evaluate ventricular remodeling. The serum levels of procollagen type III N-terminal peptide were detected by ELISA. The expression of profilin-1, receptor for AGEs (RAGE), Rho, p65, atrial natriuretic peptide, β-myosin heavy chain, matrix metalloproteinase (MMP)-2 and MMP-9 were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and/or western blot analysis and immunohistochemistry staining. The results demonstrated that chronic injection of exogenous AGEs led to cardiac dysfunction, hypertrophy and fibrosis, as determined by echocardiography, Masson trichrome staining and the expression of associated genes. The expression of profilin-1 was markedly increased in heart tissue at the mRNA and protein level following AGE administration, as determined by RT-qPCR and western blotting, which was further confirmed by immunohistochemistry staining. Furthermore, the expression of RAGE, Rho and p65 was also increased at the protein level. Notably, knockdown of profilin-1 expression ameliorated AGE-induced cardiac injury and reduced the expression of RAGE, Rho and p65. These results indicate an important role for profilin-1 in AGE-induced cardiac injury, which may provide a novel therapeutic target for patients with diabetic heart failure.
Collapse
Affiliation(s)
- Dafeng Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weiwei Liu
- Department of Cardiology, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Liping Ma
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ya Wang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jing Ma
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Minna Jiang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xu Deng
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410006, P.R. China
| | - Fang Huang
- Department of Cardiology, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Meifang Chen
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
14
|
Qin L, Zhu N, Ao BX, Liu C, Shi YN, Du K, Chen JX, Zheng XL, Liao DF. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis. Int J Mol Sci 2016; 17:429. [PMID: 27011179 PMCID: PMC4813279 DOI: 10.3390/ijms17030429] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/18/2023] Open
Abstract
Lipid disorder and inflammation play critical roles in the development of atherosclerosis. Reverse cholesterol transport is a key event in lipid metabolism. Caveolae and caveolin-1 are in the center stage of cholesterol transportation and inflammation in macrophages. Here, we propose that reverse cholesterol transport and inflammation in atherosclerosis can be integrated by caveolae and caveolin-1.
Collapse
Affiliation(s)
- Li Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bao-Xue Ao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Chan Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ya-Ning Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ke Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Jian-Xiong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA.
| | - Xi-Long Zheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- Department of Biochemistry & Molecular Biology, the Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
15
|
Kooij V, Viswanathan MC, Lee DI, Rainer PP, Schmidt W, Kronert WA, Harding SE, Kass DA, Bernstein SI, Van Eyk JE, Cammarato A. Profilin modulates sarcomeric organization and mediates cardiomyocyte hypertrophy. Cardiovasc Res 2016; 110:238-48. [PMID: 26956799 PMCID: PMC4836629 DOI: 10.1093/cvr/cvw050] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 02/28/2016] [Indexed: 11/17/2022] Open
Abstract
Aims Heart failure is often preceded by cardiac hypertrophy, which is characterized by increased cell size, altered protein abundance, and actin cytoskeletal reorganization. Profilin is a well-conserved, ubiquitously expressed, multifunctional actin-binding protein, and its role in cardiomyocytes is largely unknown. Given its involvement in vascular hypertrophy, we aimed to test the hypothesis that profilin-1 is a key mediator of cardiomyocyte-specific hypertrophic remodelling. Methods and results Profilin-1 was elevated in multiple mouse models of hypertrophy, and a cardiomyocyte-specific increase of profilin in Drosophila resulted in significantly larger heart tube dimensions. Moreover, adenovirus-mediated overexpression of profilin-1 in neonatal rat ventricular myocytes (NRVMs) induced a hypertrophic response, measured by increased myocyte size and gene expression. Profilin-1 silencing suppressed the response in NRVMs stimulated with phenylephrine or endothelin-1. Mechanistically, we found that profilin-1 regulates hypertrophy, in part, through activation of the ERK1/2 signalling cascade. Confocal microscopy showed that profilin localized to the Z-line of Drosophila myofibrils under normal conditions and accumulated near the M-line when overexpressed. Elevated profilin levels resulted in elongated sarcomeres, myofibrillar disorganization, and sarcomeric disarray, which correlated with impaired muscle function. Conclusion Our results identify novel roles for profilin as an important mediator of cardiomyocyte hypertrophy. We show that overexpression of profilin is sufficient to induce cardiomyocyte hypertrophy and sarcomeric remodelling, and silencing of profilin attenuates the hypertrophic response.
Collapse
Affiliation(s)
- Viola Kooij
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA National Heart and Lung Institute, Imperial College London, 4th floor, ICTEM, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Meera C Viswanathan
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | - Dong I Lee
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | - Peter P Rainer
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA Division of Cardiology, Medical University of Graz, Graz, Austria
| | - William Schmidt
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | - William A Kronert
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, 4th floor, ICTEM, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - David A Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Jennifer E Van Eyk
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
16
|
Wang Y, Zhang J, Gao H, Zhao S, Ji X, Liu X, You B, Li X, Qiu J. Profilin-1 promotes the development of hypertension-induced artery remodeling. J Histochem Cytochem 2014; 62:298-310. [PMID: 24399041 DOI: 10.1369/0022155414520978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypertension is associated with the structural remodeling and stiffening of arteries and is known to increase cardiovascular risk. In the present study, we investigated the effects of overexpression and knock down of profilin-1 on the vascular structural remodeling in spontaneous hypertensive rats (SHRs) using an adenovirus injection to knock down or overexpress profilin-1 mRNA. As a control, blank adenovirus was injected into age-matched SHRs and Wistar-Kyoto rats (WKYs). We quantified arterial structural remodeling through morphological methods, with thoracic aortas stained with hematoxylin-eosin and picosirius red. Western blotting was performed to measure the protein expression of inducible nitric oxide synthase (iNOS) and p38 mitogen-activated protein kinase (p38), and peroxynitrite was quantified by immunohistochemical staining. Overexpression of profilin-1 significantly promoted aortic remodeling, including an increase in vessel size, wall thickness, and collagen content, whereas the knockdown of profilin-1 could reverse these effects. In addition, the expression of phosphorylated p38, iNOS and peroxynitrite was significantly upregulated in SHRs with profilin-1 overexpression along with an increased level of interleukin- 6 (IL-6). These changes could be reversed by knockdown of profilin-1. Our results demonstrate a crucial role for profilin-1 in hypertension-induced arterial structural remodeling at least in part through the p38-iNOS-peroxynitrite pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, P.R. China (YW, JZ, HG, SZ, XJ, XL, BY, XL, JQ)
| | | | | | | | | | | | | | | | | |
Collapse
|