1
|
Plett PA, Chua HL, Wu T, Sampson CH, Guise TA, Wright L, Pagnotti GM, Feng H, Chin-Sinex H, Pike F, Cox GN, MacVittie TJ, Sandusky G, Orschell CM. Effect of Age at Time of Irradiation, Sex, Genetic Diversity, and Granulopoietic Cytokine Radiomitigation on Lifespan and Lymphoma Development in Murine H-ARS Survivors. Radiat Res 2024; 202:580-598. [PMID: 39099001 DOI: 10.1667/rade-24-00065.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/11/2024] [Indexed: 08/06/2024]
Abstract
Acute, high-dose radiation exposure results in life-threatening acute radiation syndrome (ARS) and debilitating delayed effects of acute radiation exposure (DEARE). The DEARE are a set of chronic multi-organ illnesses that can result in early death due to malignancy and other diseases. Animal models have proven essential in understanding the natural history of ARS and DEARE and licensure of medical countermeasures (MCM) according to the FDA Animal Rule. Our lab has developed models of hematopoietic (H)-ARS and DEARE in inbred C57BL/6J and Jackson Diversity Outbred (JDO) mice of both sexes and various ages and have used these models to identify mechanisms of radiation damage and effective MCMs. Herein, aggregate data from studies conducted over decades in our lab, consisting of 3,250 total-body lethally irradiated C57BL/6J young adult mice and 1,188 H-ARS survivors from these studies, along with smaller datasets in C57BL/6J pediatric and geriatric mice and JDO mice, were examined for lifespan and development of thymic lymphoma in survivors up to 3 years of age. Lifespan was found to be significantly shortened in H-ARS survivors compared to age-matched nonirradiated controls in all four models. Males and females exhibited similar lifespans except in the young adult C57BL/6J model where males survived longer than females after 16 months of age. The incidence of thymic lymphoma was increased in H-ARS survivors from the young adult and pediatric C57BL/6J models. Consistent with our findings in H-ARS, geriatric mice appeared more radioresistant than other models, with a lifespan and thymic lymphoma incidence more similar to nonirradiated controls than other models. Increased levels of multiple pro-inflammatory cytokines in DEARE bone marrow and serum correlated with shortened lifespan and malignancy, consistent with other animal models and human data. Of interest, G-CSF levels in bone marrow and serum 8-11 months after irradiation were significantly increased in females. Importantly, treatment with granulopoietic cytokine MCM for radiomitigation of H-ARS did not influence the long-term survival rate or incidence of thymic lymphoma in any model. Taken together, these findings indicate that the lifespan of H-ARS survivors was significantly decreased regardless of age at time of exposure or genetic diversity, and was unaffected by earlier treatment with granulopoietic cytokines for radiomitigation of H-ARS.
Collapse
Affiliation(s)
- P Artur Plett
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hui Lin Chua
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tong Wu
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Carol H Sampson
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theresa A Guise
- Department of Medicine, Endocrinology,, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Laura Wright
- Department of Medicine, Endocrinology,, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Gabriel M Pagnotti
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Hailin Feng
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Helen Chin-Sinex
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Francis Pike
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christie M Orschell
- Department of Medicine, Divisions of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
2
|
Hood MN, Ayompe E, Holmes-Hampton GP, Korotcov A, Wuddie K, Aschenake Z, Ahmed AE, Creavalle M, Knollmann-Ritschel B. Preliminary Promising Findings for Manganese Chloride as a Novel Radiation Countermeasure Against Acute Radiation Syndrome. Mil Med 2024; 189:598-607. [PMID: 39160887 DOI: 10.1093/milmed/usae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/01/2024] [Accepted: 04/05/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Military members and first responders may, at moment's notice, be asked to assist in incidents that may result in radiation exposure such as Operation Tomadachi in which the U.S. Navy provided significant relief for the Fukushima Daiichi Nuclear Reactor accident in Japan after an earthquake and tsunami in 2011. We are also currently facing potential threats from nuclear power plants in the Ukraine should a power disruption to a nuclear plant interfere with cooling or other safety measures. Exposure to high doses of radiation results in acute radiation syndrome (ARS) characterized by symptoms arising from hematopoietic, gastrointestinal, and neurovascular injuries. Although there are mitigators FDA approved to treat ARS, there are currently no FDA-approved prophylactic medical interventions to help protect persons who may need to respond to radiation emergencies. There is strong evidence that manganese (Mn) has radiation protective efficacy as a promising prophylactic countermeasure. MATERIALS AND METHODS All animal procedures were approved by the Institutional Animal Care and Use Committee. Male and female B6D2F1J mice, 10 to 11 weeks old, were used for neurotoxicity studies and temporal effects of Mn. Four groups were evaluated: (1) vehicle injection, (2) dose of 4.5 mg/kg for 3 days, (3) dose of 13.5 mg/kg, and (4) sham. Irradiated mice were exposed to 9.5 Gy whole body Co60 γ-radiation. MRI was performed with a high dose of manganese chloride (MnCl2) (150 mg/kg) to assess the distribution of the MnCl2. RESULTS The mice have promising survival curves (highest survival-13.5 mg/kg dose over 3 days of MnCl2 at 80% [87% female, 73% male] P = 0.0004). The complete blood count (CBC) results demonstrated a typical hematopoietic response in all of the irradiated groups, followed by mildly accelerated recovery by day 28 in the treated groups. No difference between groups was measured by Rota Rod, DigiGait, and Y-maze. Histologic evaluation of the bone marrow sections in the group given 13.5 mg/kg dose over 3 days had the best return to cellularity at 80%. MRI showed a systemic distribution of MnCl2. DISCUSSION The preliminary data suggest that a dose of 13.5 mg/kg of MnCl2 given over 3 days prior to exposure of radiation may have a protective benefit while not exhibiting the neurobehavioral problems. A countermeasure that can prophylactically protect emergency personnel entering an area contaminated with high levels of radiation is needed, especially in light that nuclear accidents are a continued global threat. There is a need for a protective agent with easy long-term storage, easy to transport, easy to administer, and low cost. Histologic evaluation supports the promising effect of MnCl2 in protecting tissue, especially the bone marrow using the dose given over 3 days (4.5 mg/kg per day) of MnCl2. CONCLUSIONS Initial experiments show that MnCl2 is a promising safe and effective prophylactic countermeasure against ARS. MRI data support the systemic distribution of MnCl2 which is needed in order to protect multiple tissues in the body. The pathology data in bone marrow and the brain support faster recovery from radiation exposure in the treated animals and decreased organ damage.
Collapse
Affiliation(s)
- Maureen N Hood
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emmanuel Ayompe
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandru Korotcov
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kefale Wuddie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zemenu Aschenake
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Anwar E Ahmed
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Marqus Creavalle
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
3
|
Winters TA, Cassatt DR, Harrison-Peters JR, Hollingsworth BA, Rios CI, Satyamitra MM, Taliaferro LP, DiCarlo AL. Considerations of Medical Preparedness to Assess and Treat Various Populations During a Radiation Public Health Emergency. Radiat Res 2023; 199:301-318. [PMID: 36656560 PMCID: PMC10120400 DOI: 10.1667/rade-22-00148.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
During a radiological or nuclear public health emergency, given the heterogeneity of civilian populations, it is incumbent on medical response planners to understand and prepare for a potentially high degree of interindividual variability in the biological effects of radiation exposure. A part of advanced planning should include a comprehensive approach, in which the range of possible human responses in relation to the type of radiation expected from an incident has been thoughtfully considered. Although there are several reports addressing the radiation response for special populations (as compared to the standard 18-45-year-old male), the current review surveys published literature to assess the level of consideration given to differences in acute radiation responses in certain sub-groups. The authors attempt to bring clarity to the complex nature of human biology in the context of radiation to facilitate a path forward for radiation medical countermeasure (MCM) development that may be appropriate and effective in special populations. Consequently, the focus is on the medical (as opposed to logistical) aspects of preparedness and response. Populations identified for consideration include obstetric, pediatric, geriatric, males, females, individuals of different race/ethnicity, and people with comorbidities. Relevant animal models, biomarkers of radiation injury, and MCMs are highlighted, in addition to underscoring gaps in knowledge and the need for consistent and early inclusion of these populations in research. The inclusion of special populations in preclinical and clinical studies is essential to address shortcomings and is an important consideration for radiation public health emergency response planning. Pursuing this goal will benefit the population at large by considering those at greatest risk of health consequences after a radiological or nuclear mass casualty incident.
Collapse
Affiliation(s)
- Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Jenna R. Harrison-Peters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
4
|
Orschell CM, Wu T, Patterson AM. Impact of Age, Sex, and Genetic Diversity in Murine Models of the Hematopoietic Acute Radiation Syndrome (H-ARS) and the Delayed Effects of Acute Radiation Exposure (DEARE). CURRENT STEM CELL REPORTS 2022; 8:139-149. [PMID: 36798890 PMCID: PMC9928166 DOI: 10.1007/s40778-022-00214-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Purpose of review Malicious or accidental radiation exposure increases risk for the hematopoietic acute radiation syndrome (H-ARS) and the delayed effects of acute radiation exposure (DEARE). Radiation medical countermeasure (MCM) development relies on robust animal models reflective of all age groups and both sexes. This review details critical considerations in murine H-ARS and DEARE model development including divergent radiation responses dependent on age, sex, and genetic diversity. Recent findings Radioresistance increases with murine age from pediatrics through geriatrics. Between sexes, radioresistance is higher in male weanlings, pubescent females, and aged males, corresponding with accelerated myelopoiesis. Jackson diversity outbred (JDO) mice resemble non-human primates in radiation response for modeling human diversity. Weanlings and JDO models exhibit less DEARE than other models. Summary Highly characterized age-, sex- and diversity-conscious murine models of H-ARS and DEARE provide powerful and essential tools in MCM development for all radiation victims.
Collapse
Affiliation(s)
| | - Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Andrea M. Patterson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Amundson SA. Transcriptomics for radiation biodosimetry: progress and challenges. Int J Radiat Biol 2021; 99:925-933. [PMID: 33970766 PMCID: PMC10026363 DOI: 10.1080/09553002.2021.1928784] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Transcriptomic-based approaches are being developed to meet the needs for large-scale radiation dose and injury assessment and provide population triage following a radiological or nuclear event. This review provides background and definition of the need for new biodosimetry approaches, and summarizes the major advances in this field. It discusses some of the major model systems used in gene signature development, and highlights some of the remaining challenges, including individual variation in gene expression, potential confounding factors, and accounting for the complexity of realistic exposure scenarios. CONCLUSIONS Transcriptomic approaches show great promise for both dose reconstruction and for prediction of individual radiological injury. However, further work will be needed to ensure that gene expression signatures will be robust and appropriate for their intended use in radiological or nuclear emergencies.
Collapse
Affiliation(s)
- Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Patterson AM, Sellamuthu R, Plett PA, Sampson CH, Chua HL, Fisher A, Vemula S, Feng H, Katz BP, Tudor G, Miller SJ, MacVittie TJ, Booth C, Orschell CM. Establishing Pediatric Mouse Models of the Hematopoietic Acute Radiation Syndrome and the Delayed Effects of Acute Radiation Exposure. Radiat Res 2021; 195:307-323. [PMID: 33577641 DOI: 10.1667/rade-20-00259.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 11/03/2022]
Abstract
Medical countermeasures (MCMs) for hematopoietic acute radiation syndrome (H-ARS) should be evaluated in well-characterized animal models, with consideration of at-risk populations such as pediatrics. We have developed pediatric mouse models of H-ARS and delayed effects of acute radiation exposure (DEARE) for efficacy testing of MCMs against radiation. Male and female C57BL/6J mice aged 3, 4, 5, 6, 7 and 8 weeks old (±1 day) were characterized for baseline hematopoietic and gastrointestinal parameters, radiation response, efficacy of a known MCM, and DEARE at six and 12 months after total-body irradiation (TBI). Weanlings (age 3 weeks) were the most radiosensitive age group with an estimated LD50/30 of 712 cGy, while mice aged 4 to 8 weeks were more radioresistant with an estimated LD50/30 of 767-787 cGy. Female weanlings were more radiosensitive than males at 3 and 4 weeks old but became significantly more radioresistant after the pubertal age of 5 weeks. The most dramatic increase in body weight, RBC counts and intestinal circumference length occurred from 3 to 5 weeks of age. The established radiomitigator Neulasta® (pegfilgrastim) significantly increased 30-day survival in all age groups, validating these models for MCM efficacy testing. Analyses of DEARE among pediatric survivors revealed depressed weight gain in males six months post-TBI, and increased blood urea nitrogen at 12 months post-TBI which was more severe in females. Hematopoietic DEARE at six months post-TBI appeared to be less severe in survivors from the 3- and 4-week-old groups but was equally severe in all age groups by 12 months of age. Similar to our other acute radiation mouse models, there was no appreciable effect of Neulasta used as an H-ARS MCM on the severity of DEARE. In summary, these data characterize a pediatric mouse model useful for assessing the efficacy of MCMs against ARS and DEARE in children.
Collapse
Affiliation(s)
- Andrea M Patterson
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rajendran Sellamuthu
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - P Artur Plett
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Carol H Sampson
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hui Lin Chua
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexa Fisher
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sasidhar Vemula
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hailin Feng
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Barry P Katz
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Steven J Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Christie M Orschell
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
7
|
Sakata Y, Yasudo H, Uchida M, Saito M, Azuma Y, Hasegawa S. Diagnostic Utility of Ultrasonography for Duodenal Ulcers in Pediatric Cases in Japan. Front Pediatr 2020; 7:547. [PMID: 32039112 PMCID: PMC6984193 DOI: 10.3389/fped.2019.00547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: To evaluate the diagnostic utility of wall hypertrophy of the duodenal bulb with a hyperechoic lumen, designated as the "HH sign," using ultrasound sonography (US) in pediatric duodenal ulcer (DU) patients. Study design: We performed a US for five pediatric subjects diagnosed with DU by upper gastroscopy to determine the presence of the potentially diagnostic HH sign. The sonographic images were analyzed before and after DU treatment. Computed tomography was performed in three cases and fecal occult blood test (FOBT) in all five cases. Results: Upper gastroscopy confirmed DU in all patients. While the HH sign was observed using US in four cases, with the DU located in the anterior bulb, the FOBT was positive in only one case. In these four cases, the HH sign diminished in response to treatment, as visualized by US. This was observed for both the initial as well as recurrent episodes. A mass-like region was observed in only one case, with the ulcer located in the proximity of the inferior duodenal wall. Conclusion: The HH sign is useful for the follow-up of DU, and US may be a suitable modality for the follow-up. We believe that this diagnostic marker can aid in following up a greater number of DU cases.
Collapse
Affiliation(s)
- Yasufumi Sakata
- Department of Pediatrics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroki Yasudo
- Department of Pediatrics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masashi Uchida
- Division of Pediatrics, Tokuyama Central Hospital, Yamaguchi, Japan
| | - Mitsuru Saito
- Division of Gastroenterology, Tokuyama Central Hospital, Yamaguchi, Japan
| | - Yoshihiro Azuma
- Department of Pediatrics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shunji Hasegawa
- Department of Pediatrics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
8
|
Kim YJ, Jeong J, Shin SH, Lee DY, Sohn KY, Yoon SY, Kim JW. Mitigating Effects of 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) on Hematopoietic Acute Radiation Syndrome after Total-Body Ionizing Irradiation in Mice. Radiat Res 2019; 192:602-611. [DOI: 10.1667/rr15440.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yong-Jae Kim
- Division of Global New Drug Development, Enzychem Lifesciences, Jecheon 27159, Republic of Korea
| | - Jinseon Jeong
- Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Su-Hyun Shin
- Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Do Young Lee
- Division of Global New Drug Development, Enzychem Lifesciences, Jecheon 27159, Republic of Korea
| | - Ki-Young Sohn
- Division of Global New Drug Development, Enzychem Lifesciences, Jecheon 27159, Republic of Korea
| | - Sun Young Yoon
- Division of Global New Drug Development, Enzychem Lifesciences, Jecheon 27159, Republic of Korea
| | - Jae Wha Kim
- Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Stricklin D, Prins R, Bellman J. Development of age-dependent dose modification factors for acute radiation lethality. Int J Radiat Biol 2019; 96:67-80. [DOI: 10.1080/09553002.2018.1547438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Robert Prins
- Applied Research Associates, Inc., Arlington, VA, USA
| | - Jacob Bellman
- Applied Research Associates, Inc., Arlington, VA, USA
| |
Collapse
|