1
|
Akashi M. Role of radiation emergency medicine: historical view-a perspective on the past, present, and future. JOURNAL OF RADIATION RESEARCH 2024; 65:i24-i31. [PMID: 39679889 DOI: 10.1093/jrr/rrae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/08/2024] [Indexed: 12/17/2024]
Abstract
The more science progresses, the more life and society change. Medicine also changes with the times and the culture. This is also true for radiation emergency medicine, which includes dose-assessment leading to diagnosis, treatment, medical follow-up and prognosis of persons who have developed acute injury or illness due to radioactive contamination or radiation exposure. Before the report of X-rays by Roentgen, there was evidence that X-rays had been emitted from the electrically excited Crookes tube and that skin injury had been caused by the X-rays. Thus, the history of radiation and its exposure started before Roentgen. During the early stage of radiation use, people were simply exposed to radiation but were unaware of any danger. Radioactive materials were found soon after Roentgen's report, and contamination with these materials occurred. Together with the development of science and technology, sophisticated radiation devices were produced, and the use and application of radiation became much enhanced. New radionuclides were found one after another, leading to identification of different qualities of radiation. Development of nuclear physics allowed people to artificially produce radionuclides and to construct a nuclear reactor. After World War II, nuclear power plants were constructed, and related facilities such as nuclear fuel processing, reprocessing and spent fuel storage facilities were built. If radiation accidents or events occur at such facilities, radiation exposure with thermal or chemical burns could occur. Together with the expansion of globalism in the world and division in the society, there are now increasing concerns regarding the malicious usage of radiation by radiological dispersal devices (RDDs) including a dirty bomb. Upon detonation of RDDs, blast and thermal injuries with radiation exposure could be caused. In the present society, the natures of exposure to radiation and contamination with radioactive materials have become much more complicated. Not even mentioning the atomic bomb, the detonation of RDDs also necessitates scenarios of medical responses to complicated injuries and the involvement of numbers of people. This article looks back at the history of radiation and addresses the medical responses to radiation injuries that change with the times.
Collapse
Affiliation(s)
- Makoto Akashi
- Faculty and Postgraduate School of Nursing, Tokyo Healthcare University, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8558, Japan
| |
Collapse
|
2
|
Lazarus HM, Gale RP. Cytokine therapy of acute radiation syndrome. Best Pract Res Clin Haematol 2024; 37:101599. [PMID: 40074513 DOI: 10.1016/j.beha.2025.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Radiological accidents/incidents are common with nearly 400 reported since 1944 exposing about 3000 people to substantial doses of ionizing radiations with 127 deaths. Damage to hematopoietic stem and progenitor cells with resulting bone marrow failure is a common consequence of exposure to whole body acute high-dose and -dose-rate ionizing radiations and is termed hematopoietic-acute radiation syndrome, or H-ARS. Therapy of H-ARS includes transfusions, anti-bacterial and -viral drugs, molecularly-cloned hematopoietic growth factors and hematopoietic cell transplants. We considered the role of recombinant human granulocyte-colony-stimulating factor (rhu G-CSF; filgrastim) and recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF; sargramostim) in the setting of H-ARS. The favorable benefit-to-risk ratio of these drugs over hematopoietic cell transplants suggests giving them soon after exposure to acute high-dose and-dose-rate whole body ionizing radiations.
Collapse
Affiliation(s)
- Hillard M Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Kirti, Sharma AK, Yashavarddhan MH, Kumar R, Shaw P, Kalonia A, Shukla SK. Exosomes: A new perspective for radiation combined injury as biomarker and therapeutics. Tissue Cell 2024; 91:102563. [PMID: 39270512 DOI: 10.1016/j.tice.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Radiation Combined Injuries (RCI) pose formidable public health risks, particularly in the context of nuclear incidents, necessitating specialized treatments and development of biomarkers. RCI encompasses instances where ionizing radiation exposure coincides with burns, wounds, or trauma. However, the limited understanding of cellular responses hinders progress in developing effective therapies. This article underscores the pivotal role of exosomes, nano-sized particles (30-120 nm) actively secreted by cells, in addressing the intricate challenges posed by RCI. Exosomes serve as vehicles for the transportation of bioactive molecules, including proteins, lipids, and miRNA, thereby facilitating processes critical to radiotherapy, burn injury, and wound healing. Exosomes hold significant promise for the transformation of RCI management by reducing inflammation, promoting wound healing, managing sepsis, altering immunological responses, and modulating signal transduction pathways. Moreover, exosomes are also being explored as biomarker for various diseases and stress conditions including radiation exposure and associated injuries. This comprehensive review highlights the burgeoning potential of exosomes in advancing the management of RCI, thereby enhancing public health preparedness and response.
Collapse
Affiliation(s)
- Kirti
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Ajay Kumar Sharma
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| | - M H Yashavarddhan
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Rishav Kumar
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Priyanka Shaw
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Aman Kalonia
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Sandeep Kumar Shukla
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| |
Collapse
|
4
|
Wang L, Lin B, Zhai M, Hull L, Cui W, Xiao M. Endothelial Dysfunction and Impaired Wound Healing Following Radiation Combined Skin Wound Injury. Int J Mol Sci 2024; 25:12498. [PMID: 39684207 DOI: 10.3390/ijms252312498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Currently, there are no U.S. Food and Drug Administration (FDA)-approved medical countermeasures (MCMs) for radiation combined injury (RCI), partially due to limited understanding of its mechanisms. Our previous research suggests that endothelial dysfunction may contribute to a poor prognosis of RCI. In this study, we demonstrated an increased risk of mortality, body weight loss, and delayed skin wound healing in RCI mice compared to mice with skin wounds alone or radiation injury (RI) 30 days post-insult. Furthermore, we evaluated biomarkers of endothelial dysfunction, inflammation, and impaired wound healing in mice at early time points after RCI. Mice were exposed to 9.0 Gy total-body irradiation (TBI) followed by skin wound. Samples were collected on days 3, 7, and 14 post-TBI. Endothelial dysfunction markers were measured by ELISA, and skin wound healing was assessed histologically. Our results show that endothelial damage and inflammation are more severe and persistent in the RCI compared to the wound-alone group. Additionally, RCI impairs granulation tissue formation, reduces myofibroblast presence, and delays collagen deposition, correlating with more severe endothelial damage. TGF signaling may play a key role in this impaired healing. These findings suggest that targeting the endothelial dysfunction and TGF-β pathways may provide potential therapeutic strategies for improving delayed wound healing in RCI, which could subsequently influence outcomes such as survival after RCI.
Collapse
Affiliation(s)
- Li Wang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Lisa Hull
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Wanchang Cui
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Mang Xiao
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Li D, Lu Y, Xiao F, Cheng X, Hu C, Zhu X, Wang X, Duan H, Du L, Zhang Q. A recombinant plasmid encoding human hepatocyte growth factor promotes healing of combined radiation-trauma skin injury involved in regulating Nrf2 pathway in mice. JOURNAL OF RADIATION RESEARCH 2024; 65:279-290. [PMID: 38682896 PMCID: PMC11115442 DOI: 10.1093/jrr/rrae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/01/2024] [Indexed: 05/01/2024]
Abstract
Combined radiation-trauma skin injury represents a severe and intractable condition that urgently requires effective therapeutic interventions. In this context, hepatocyte growth factor (HGF), a multifunctional growth factor with regulating cell survival, angiogenesis, anti-inflammation and antioxidation, may be valuable for the treatment of combined radiation-trauma injury. This study investigated the protective effects of a recombinant plasmid encoding human HGF (pHGF) on irradiated human immortalized keratinocytes (HaCaT) cells in vitro, and its capability to promote the healing of combined radiation-trauma injuries in mice. The pHGF radioprotection on irradiated HaCaT cells in vitro was assessed by cell viability, the expression of Nrf2, Bcl-2 and Bax, as well as the secretion of inflammatory cytokines. In vivo therapeutic treatment, the irradiated mice with full-thickness skin wounds received pHGF local injection. The injuries were appraised based on relative wound area, pathology, immunohistochemical detection, terminal deoxynucleotidyl transferase dUTP nick end labelling assay and cytokine content. The transfection of pHGF increased the cell viability and Nrf2 expression in irradiated HaCaT cells. pHGF also significantly upregulated Bcl-2 expression, decreased the Bax/Bcl-2 ratio and inhibited the expression of interleukin-1β and tumor necrosis factor-α in irradiated cells. Local pHGF injection in vivo caused high HGF protein expression and noticeable accelerated healing of combined radiation-trauma injury. Moreover, pHGF administration upregulated Nrf2, vascular endothelial growth factor, Bcl-2 expression, downregulated Bax expression and mitigated inflammatory response. In conclusion, the protective effect of pHGF may be related to inhibiting apoptosis and inflammation involving by upregulating Nrf2. Local pHGF injection distinctly promoted the healing of combined radiation-trauma injury and demonstrates potential as a gene therapy intervention for combined radiation-trauma injury in clinic.
Collapse
Affiliation(s)
- Dujuan Li
- Department of Pharmacy & Pharmacology, University of South China, 28 Changsheng West Road, Zhengxiang District, Hengyang, Hunan 421001, China
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Yuxin Lu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Fengjun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xiaochen Cheng
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Chunsheng Hu
- Department of Pharmacology, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, 319 Honghe avenue, Yongchuan District, Chongqing 402160, China
| | - Xuefeng Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xiaoying Wang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Haiying Duan
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Li Du
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Qinglin Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
6
|
Lv X, Zhao N, Long S, Wang G, Ran X, Gao J, Wang J, Wang T. 3D skin bioprinting as promising therapeutic strategy for radiation-associated skin injuries. Wound Repair Regen 2024; 32:217-228. [PMID: 38602068 DOI: 10.1111/wrr.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/16/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation-associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three-dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation-associated skin injuries. Combining with the cutting-edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation-associated skin injuries.
Collapse
Affiliation(s)
- Xiaofan Lv
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Na Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuang Long
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guojian Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xinze Ran
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jining Gao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
7
|
Sharma AK, Kalonia A, Kumar R, Kirti, Shaw P, Yashvarddhan MH, Vibhuti A, Shukla SK. Alleviation of radiation combined skin injury in rat model by topical application of ascorbate formulation. Int J Radiat Biol 2024; 100:689-708. [PMID: 38306495 DOI: 10.1080/09553002.2024.2310016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE This research endeavor was undertaken to elucidate the impact of an innovative ascorbate formulation on the regeneration process of full-thickness excision wounds in a rat model exposed to whole-body gamma irradiation, replicating conditions akin to combat or radiation emergency scenarios. MATERIALS AND METHODS We established a comprehensive rat model by optimizing whole body γ-radiation doses (5-9 Gy) and full-thickness excision wound sizes (1-3 cm2) to mimic radiation combined injury (RCI). The developed RCI model was used to explore the healing potential of ascorbate formulation. The study includes various treatment groups (i.e., sham control, radiation alone, wound alone, radiation + wound, and radiation + wound + formulation). The ascorbate formulation was applied twice daily, with a 12-hour gap between each application, starting 1 hour after the initiation of the wound. The healing potential of the formulation in the RCI context was evaluated over 14 days through hematological, molecular, and histological parameters. RESULTS The combination of a 5 Gy radiation dose and a 1 cm2 wound was identified as the optimal setting to develop the RCI model for subsequent studies. The formulation was used topically immediately following RCI, and then twice daily until complete healing. Treatment with the ascorbate formulation yielded noteworthy outcomes and led to a substantial reduction (p < .05) in the wound area, accelerated epithelialization periods, and an increased wound contraction rate. The formulation's localized healing response improved organ weights, normalized blood parameters, and enhanced hematopoietic and immune systems. A gene expression study revealed the treatment up-regulated TGF-β and FGF, and down-regulated PDGF-α, TNF-α, IL-1β, IL-6, MIP-1α, and MCP-1 (p < .05). Histopathological assessments supported the formulation's effectiveness in restoring cellular architecture and promoting tissue regeneration. CONCLUSION Topical application of the ascorbate formulation in RCI resulted in a significant improvement in delayed wound healing, leading to accelerated wound closure by mitigating the expression of inflammatory responses.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Aman Kalonia
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Rishav Kumar
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Kirti
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Priyanka Shaw
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - M H Yashvarddhan
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, Sonipat, Haryana, India
| | - Sandeep Kumar Shukla
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| |
Collapse
|
8
|
Seim RF, Herring LE, Mordant AL, Willis ML, Wallet SM, Coleman LG, Maile R. Involvement of extracellular vesicles in the progression, diagnosis, treatment, and prevention of whole-body ionizing radiation-induced immune dysfunction. Front Immunol 2023; 14:1188830. [PMID: 37404812 PMCID: PMC10316130 DOI: 10.3389/fimmu.2023.1188830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Acute radiation syndrome (ARS) develops after exposure to high doses of ionizing radiation and features immune suppression and organ failure. Currently, there are no diagnostics to identify the occurrence or severity of exposure and there are limited treatments and preventative strategies to mitigate ARS. Extracellular vesicles (EVs) are mediators of intercellular communication that contribute to immune dysfunction across many diseases. We investigated if EV cargo can identify whole body irradiation (WBIR) exposure and if EVs promote ARS immune dysfunction. We hypothesized that beneficial EVs derived from mesenchymal stem cells (MSC-EVs) would blunt ARS immune dysfunction and might serve as prophylactic radioprotectants. Mice received WBIR (2 or 9 Gy) with assessment of EVs at 3 and 7 days after exposure. LC-MS/MS proteomic analysis of WBIR-EVs found dose-related changes as well as candidate proteins that were increased with both doses and timepoints (34 total) such as Thromboxane-A Synthase and lymphocyte cytosolic protein 2. Suprabasin and Sarcalumenin were increased only after 9 Gy suggesting these proteins may indicate high dose/lethal exposure. Analysis of EV miRNAs identified miR-376 and miR-136, which were increased up to 200- and 60-fold respectively by both doses of WBIR and select miRNAs such as miR-1839 and miR-664 were increased only with 9 Gy. WBIR-EVs (9 Gy) were biologically active and blunted immune responses to LPS in RAW264.7 macrophages, inhibiting canonical signaling pathways associated with wound healing and phagosome formation. When given 3 days after exposure, MSC-EVs slightly modified immune gene expression changes in the spleens of mice in response to WBIR and in a combined radiation plus burn injury exposure (RCI). MSC-EVs normalized the expression of certain key immune genes such as NFκBia and Cxcr4 (WBIR), Map4k1, Ccr9 and Cxcl12 (RCI) and lowered plasma TNFα cytokine levels after RCI. When given prophylactically (24 and 3 hours before exposure), MSC-EVs prolonged survival to the 9 Gy lethal exposure. Thus, EVs are important participants in ARS. EV cargo might be used to diagnose WBIR exposure, and MSC-EVs might serve as radioprotectants to blunt the impact of toxic radiation exposure.
Collapse
Affiliation(s)
- Roland F. Seim
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Angie L. Mordant
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Micah L. Willis
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Shannon M. Wallet
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Leon G. Coleman
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Robert Maile
- Department of Surgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Fang Z, Lv Y, Zhang H, He Y, Gao H, Chen C, Wang D, Chen P, Tang S, Li J, Qiu Z, Shi X, Chen L, Yang J, Chen X. A multifunctional hydrogel loaded with two nanoagents improves the pathological microenvironment associated with radiation combined with skin wounds. Acta Biomater 2023; 159:111-127. [PMID: 36736645 DOI: 10.1016/j.actbio.2023.01.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Persistent oxidative stress and recurring waves of inflammation with excessive reactive oxygen species (ROS) and free radical accumulation could be generated by radiation. Exposure to radiation in combination with physical injuries such as wound trauma would produce a more harmful set of medical complications, which was known as radiation combined with skin wounds (RCSWs). However, little attention has been given to RCSW research despite the unsatisfactory therapeutic outcomes. In this study, a dual-nanoagent-loaded multifunctional hydrogel was fabricated to ameliorate the pathological microenvironment associated with RCSWs. The injectable, adhesive, and self-healing hydrogel was prepared by crosslinking carbohydrazide-modified gelatin (Gel-CDH) and oxidized hyaluronic acid (OHA) through the Schiff-base reaction under mild condition. Polydopamine nanoparticles (PDA-NPs) and mesenchymal stem cell-secreted small extracellular vesicles (MSC-sEV) were loaded to relieve radiation-produced tissue inflammation and oxidation impairment and enhance cell vitality and angiogenesis individually or jointly. The proposed PDA-NPs@MSC-sEV hydrogel enhanced cell vitality, as shown by cell proliferation, migration, colony formation, and cell cycle and apoptosis assays in vitro, and promoted reepithelization by attenuating microenvironment pathology in vivo. Notably, a gene set enrichment analysis of proteomic data revealed significant enrichment with adipogenic and hypoxic pathways, which play prominent roles in wound repair. Specifically, target genes were predicted based on differential transcription factor expression. The results suggested that MSC-sEV- and PDA-NP-loaded multifunctional hydrogels may be promising nanotherapies for RCSWs. STATEMENT OF SIGNIFICANCE: The small extracellular vesicle (sEV) has distinct advantages compared with MSCs, and polydopamine nanoparticles (PDA-NPs), known as the biological materials with good cell affinity and histocompatibility which have been reported to scavenge ROS free radicals. In this study, an adhesive, injectable, self-healing, antibacterial, ROS scavenging and amelioration of the radiation related microenvironment hydrogel encapsulating nanoscale particles of MSC-sEV and PDA-NPs (PDA-NPs@MSC-sEV hydrogel) was synthesized for promoting radiation combined with skin wounds (RCSWs). GSEA analysis profiled by proteomics data revealed significant enrichments in the regulations of adipogenic and hypoxic pathways with this multi-functional hydrogel. This is the first report of combining this two promising nanoscale agents for the special skin wounds associated with radiation.
Collapse
Affiliation(s)
- Zhuoqun Fang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Yicheng Lv
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Haoruo Zhang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Yuxiang He
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Hangqi Gao
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Caixiang Chen
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Dezhi Wang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Penghong Chen
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Shijie Tang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Junjing Li
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Zhihuang Qiu
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xian'ai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Liangwan Chen
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Xiaosong Chen
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China.
| |
Collapse
|
10
|
MacVittie TJ. Where are the medical countermeasures against the ARS and DEARE? A current topic relative to an animal model research platform, radiation exposure context, the acute and delayed effects of acute exposure, and the FDA animal rule. Int J Radiat Biol 2023:1-15. [PMID: 36811500 DOI: 10.1080/09553002.2023.2181999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE A question echoed by the National Biodefense Science Board (NBSB) in 2010, remains a reasonable question in 2023; 'Where are the Countermeasures?'. A critical path for development of medical countermeasures (MCM) against acute, radiation-induced organ-specific injury within the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE) requires the recognition of problems and solutions inherent in the path to FDA approval under the Animal Rule. Keep Rule number one in mind, It's not easy. CONSIDERATIONS The current topic herein is focused on defining the nonhuman primate model(s) for efficient MCM development relative to consideration of prompt and delayed exposure in the context of the nuclear scenario. The rhesus macaque is a predictive model for human exposure of partial-body irradiation with marginal bone marrow sparing that allows definition of the multiple organ injury in the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE). The continued definition of natural history is required to delineate an associative or causal interaction within the concurrent multi-organ injury characteristic of the ARS and DEARE. A more efficient development of organ specific MCM for both pre-exposure and post-exposure prophylaxis to include acute radiation-induced combined injury requires closing critical gaps in knowledge and urgent support to rectify the national shortage of nonhuman primates. The rhesus macaque is a validated, predictive model of the human response to prompt and delayed radiation exposure, medical management and MCM treatment. A rational approach to further development of the cynomolgus macaque as a comparable model is urgently required for continued development of MCM for FDA approval. CONCLUSION It is imperative to examine the key variables relative to animal model development and validation, The pharmacokinetics, pharmacodynamics and exposure profiles, of candidate MCM relative to route, administration schedule and optimal efficacy define the fully effective dose. The conduct of adequate and well-controlled pivotal efficacy studies as well as safety and toxicity studies support approval under the FDA Animal Rule and label definition for human use.
Collapse
Affiliation(s)
- Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Wang L, Lin B, Zhai M, Cui W, Hull L, Zizzo A, Li X, Kiang JG, Xiao M. Deteriorative Effects of Radiation Injury Combined with Skin Wounding in a Mouse Model. TOXICS 2022; 10:toxics10120785. [PMID: 36548618 PMCID: PMC9783596 DOI: 10.3390/toxics10120785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 05/14/2023]
Abstract
Radiation-combined injury (RCI) augments the risk of morbidity and mortality when compared to radiation injury (RI) alone. No FDA-approved medical countermeasures (MCMs) are available for treating RCI. Previous studies implied that RI and RCI elicit differential mechanisms leading to their detrimental effects. We hypothesize that accelerating wound healing improves the survival of RCI mice. In the current study, we examined the effects of RCI at different doses on lethality, weight loss, wound closure delay, and proinflammatory status, and assessed the relative contribution of systemic and local elements to their delayed wound closure. Our data demonstrated that RCI increased the lethality and weight loss, delayed skin wound closure, and induced a systemic proinflammatory status in a radiation dose-dependent manner. We also demonstrated that delayed wound closure did not specifically depend on the extent of hematopoietic suppression, but was significantly influenced by the toxicity of the radiation-induced systemic inflammation and local elements, including the altered levels of proinflammatory chemokines and factors, and the dysregulated collagen homeostasis in the wounded area. In conclusion, the results from our study indicate a close association between delayed wound healing and the significantly altered pathways in RCI mice. This insightful information may contribute to the evaluation of the prognosis of RCI and development of MCMs for RCI.
Collapse
Affiliation(s)
- Li Wang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Wanchang Cui
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Lisa Hull
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Alex Zizzo
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xianghong Li
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Mang Xiao
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-2597
| |
Collapse
|
12
|
Yamamoto K, Takita M, Kami M, Tani Y, Yamamoto C, Zhao T, Ohira T, Maeda M, Yasumura S, Sakai A, Hosoya M, Okazaki K, Yabe H, Tsubokura M, Shimabukuro M, Ohto H, Kamiya K. Loss of participation among evacuees aged 20-37 years in the disaster cohort study after the Great East Japan Earthquake. Sci Rep 2022; 12:19600. [PMID: 36380078 PMCID: PMC9665037 DOI: 10.1038/s41598-022-23896-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to clarify the characteristics of young evacuees who had missed the Comprehensive Health Check of the Fukushima Health Management Survey (FHMS) after the Great East Japan Earthquake in 2011. The FHMS has been conducted as a prospective cohort study to evaluate the health status of evacuees annually after the great earthquake in 2011. This study focused on the annual participation rate in the Comprehensive Health Check of evacuees aged between 20 and 37 years in 2011 who evacuated due to the Fukushima Daiichi Nuclear Power Plant accident. The characteristics of subjects who did not participate after the second survey year were identified with a multivariate logistic regression model. The participation rate was estimated at 26.6% (9720 among 36,502 residents) and 15.6% (5691 residents) in 2011 and 2012, respectively. The logistic regression model revealed the following characteristics at baseline as independent predictors of non-participation after the second year of the survey: age ≤ 24 years (adjusted odds ratio 2.11, 95% CI 1.84-2.42), 25-29 years of age (1.28, 1.13-1.45), men (1.52, 1.38-1.69), evacuation outside the municipality but within Fukushima prefecture (1.54, 1.40-1.70), evacuation outside the Fukushima prefecture (1.40, 1.21-1.63), anemia (1.23, 1.06-1.43), smoking habit (1.34, 1.21-1.48), and drinking habit (1.20, 1.09-1.32). A medical history of heart disease showed opposite odds ratios, which indicate the association with continuous participation (0.43, 0.26-0.72, respectively). We observed deteriorated participation in the prospective study of the Comprehensive Health Check of the FHMS among evacuees of a younger age group, men, those evacuated outside their municipalities, and those with history of anemia, smoking and drinking habits. Hence, the cohort study may have missed certain population groups with worse health behaviors. Thus, it is necessary to consider various measures to increase the participation rate in the disaster cohort study to understand the long-term health effects of disasters on younger residents in evacuation zones.
Collapse
Affiliation(s)
- Kana Yamamoto
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan.
- Medical Governance Research Institute, 2-12-13 -201 Takanawa, Minato, Tokyo, 108-0074, Japan.
| | - Morihito Takita
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
- Medical Governance Research Institute, 2-12-13 -201 Takanawa, Minato, Tokyo, 108-0074, Japan
| | - Masahiro Kami
- Medical Governance Research Institute, 2-12-13 -201 Takanawa, Minato, Tokyo, 108-0074, Japan
| | - Yuta Tani
- Medical Governance Research Institute, 2-12-13 -201 Takanawa, Minato, Tokyo, 108-0074, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Tetsuya Ohira
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
- Department of Epidemiology, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1295, Japan
| | - Masaharu Maeda
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
- Department of Disaster Psychology, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1295, Japan
| | - Seiji Yasumura
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
- Department of Public Health, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1295, Japan
| | - Akira Sakai
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1295, Japan
| | - Mitsuaki Hosoya
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1295, Japan
| | - Kanako Okazaki
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
- Department of Epidemiology, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1295, Japan
- Department of Physical Therapy, Fukushima Medical University School of Health Sciences, Fukushima, Fukushima, 960-8516, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1295, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Michio Shimabukuro
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
- Department of Diabetes, Endocrinology and Metabolism School of Medicine, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1295, Japan
| | - Hitoshi Ohto
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Kenji Kamiya
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| |
Collapse
|
13
|
Lazarus HM, McManus J, Gale RP. Sargramostim in acute radiation syndrome. Expert Opin Biol Ther 2022; 22:1345-1352. [DOI: 10.1080/14712598.2022.2143261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hillard M Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Robert Peter Gale
- Haematology Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
14
|
Satyamitra MM, Perez-Horta Z, DiCarlo AL, Cassatt DR, Rios CI, Price PW, Taliaferro LP. NIH Policies and Regulatory Pathways to U.S. FDA licensure: Strategies to Inform Advancement of Radiation Medical Countermeasures and Biodosimetry Devices. Radiat Res 2022; 197:533-553. [PMID: 35113982 DOI: 10.1667/rade-21-00198.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Abstract
The Radiation and Nuclear Countermeasures Program within the National Institute of Allergy and Infectious Diseases (NIAID), is tasked with the mandate of identifying biodosimetry tests to assess exposure and medical countermeasures (MCMs) to mitigate/treat injuries to individuals exposed to significant doses of ionizing radiation from a radiological/nuclear incident, hosted. To fulfill this mandate, the Radiation and Nuclear Countermeasures Program (RNCP), hosted a workshop in 2018 workshop entitled "Policies and Regulatory Pathways to U.S. FDA licensure: Radiation Countermeasures and Biodosimetry Devices." The purpose of the meeting was to facilitate the advancement of MCMs and biodosimetry devices by assessing the research devices and animal models used in preclinical studies; government policies on reproducibility, rigor and robustness; regulatory considerations for MCMs and biodosimetry devices; and lessons learned from sponsors of early stage MCM or biodosimetry devices. Meeting presentations were followed by a NIAID-led, open discussion among academic investigators, industry researchers and U.S. government representatives.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Zulmarie Perez-Horta
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Paul W Price
- Office of Regulatory Affairs, Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| |
Collapse
|
15
|
Taliaferro LP, DiCarlo AL, Satyamitra MM. NIH Policies and Regulatory Pathways for the Advancement of Radiation Medical Countermeasures and Biodosimetry Tools to U.S. FDA Licensure. Radiat Res 2021; 197:475645. [PMID: 34919721 PMCID: PMC9762489 DOI: 10.1667/rade-21-00206.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| |
Collapse
|
16
|
DiCarlo AL, Homer MJ, Coleman CN. United States medical preparedness for nuclear and radiological emergencies. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:10.1088/1361-6498/ac0d3f. [PMID: 34153947 PMCID: PMC8648948 DOI: 10.1088/1361-6498/ac0d3f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
With the end of the Cold War in 1991, U.S. Government (USG) investments in radiation science and medical preparedness were phased out; however, the events of 11 September, which involved a terroristic attack on American soil, led to the re-establishment of funding for both radiation preparedness and development of approaches to address injuries. Similar activities have also been instituted worldwide, as the global threat of a radiological or nuclear incident continues to be a concern. Much of the USG's efforts to plan for the unthinkable have centred on establishing clear lines of communication between agencies with responsibility for triage and medical response, and external stakeholders. There have also been strong connections made between those parts of the government that establish policies, fund research, oversee regulatory approval, and purchase and stockpile necessary medical supplies. Progress made in advancing preparedness has involved a number of subject matter meetings and tabletop exercises, publication of guidance documents, assessment of available resources, clear establishment of anticipated concepts of operation for multiple radiation and nuclear scenarios, and identification/mobilization of resources. From a scientific perspective, there were clear research gaps that needed to be addressed, which included the need to identify accurate biomarkers and design biodosimetry devices to triage large numbers of civilians, develop decorporation agents that are more amenable for mass casualty use, and advance candidate products to address injuries caused by radiation exposure and thereby improve survival. Central to all these activities was the development of several different animal constructs, since efficacy testing of these approaches requires extensive work in research models that accurately simulate what would be expected in humans. Recent experiences with COVID-19 have provided an opportunity to revisit aspects of radiation preparedness, and leverage those lessons learned to enhance readiness for a possible future radiation public health emergency.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States of America
| | - Mary J Homer
- Biomedical Advanced Research and Development Authority (BARDA), Department of Health and Human Services (HHS), Washington, DC, United States of America
| | - C Norman Coleman
- Radiation Research Program (RRP), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States of America
| |
Collapse
|
17
|
Cherniavskiy I, Vinnikov V. Prognostic assessment of the zone of occurrence of radiation combined injuries within a nuclear blast area. Int J Radiat Biol 2021; 98:878-889. [PMID: 34699327 DOI: 10.1080/09553002.2021.1998707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND A detonation of nuclear weapon (NW) is considered as one of the most devastating radiological scenarios in the list of modern global threats. An essential proportion of victims in a mass casualty radiation event may require an immediate medical care due to radiation combined injuries (RCI). Surprisingly, there is a lack of clear guidance for quantitative prognosis of the spatial distribution of expected RCI casesin a given nuclear explosion scenario. PURPOSE This work is aimed at the presentation of a new, improved model, allowing more confident evaluation of the contributions from different NW destructive forces to RCI formation, thus leading to more accurate approximation of the zone around the epicenter for a guided search for RCI cases. MATERIALS AND METHODS The model is made compatible with a classic approach and provides the estimates of radial distance from the epicenter, at which NW explosion can produce RCI. Mathematical formalism comprises a set of equations for the reciprocal assessment of a distance-effect for radiation dose (separately for neutrons and gamma-rays), thermal wave and blast shock wave depending on the NW type, detonation yield and altitude, environmental conditions (i.e. season) and shielding factors. The model's capabilities were demonstrated using an example of the RCI grade causing a profound operational performance decrement of military personnel in two marginal scenarios: Troops deployed in an open area or a tank crew. RESULTS A remarkable difference in the expected radial zones of possible RCI occurrence was found between the actions of a 'historical' atomic bomb, thermonuclear weapons, and low-yield neutron munitions, also with a noticeable impact of the season factor (summer/winter). For a tank crew the clinically manageable RCI are possible only in very high yield explosion scenarios, while the damage caused by radiation alone possess much higher risk. CONCLUSIONS Suggested formalism may provide guidance for a preliminary planning of countermeasures, targeting of radiation reconnaissance, and clarification of triage results in a broad range of radiological scenarios based on NW detonation. Further improvement of the model is possible by considering neutrons' and gamma-rays' relative biological efficacy, possible shielding factors, and a synergetic effect of NW's destructive forces.
Collapse
Affiliation(s)
- Igor Cherniavskiy
- Department of Radiation, Chemical and Biological Protection, Military Institute of Tank Forces of the National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
| | - Volodymyr Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, Kharkiv, Ukraine
| |
Collapse
|
18
|
Glowacki J, Epperly MW, Bellare A, Wipf P, Greenberger JS. Combined injury: irradiation with skin or bone wounds in rodent models. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:10.1088/1361-6498/ac125b. [PMID: 34233299 PMCID: PMC11559084 DOI: 10.1088/1361-6498/ac125b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
A radiation combined injury is defined as an injury that occurs in the setting of irradiation, such as those expected after a nuclear accident, radiation dispersal device release (a 'dirty bomb'), or a nuclear weapon detonation. There is much research on irradiation-associated burns and their healing, but there is less known about other injuries sustained in the context of irradiation. Animal models are limited in their correlations to clinical situations but can support research on specific questions about injuries and their healing. Mouse models of irradiation with skin or bone wounds are validated as highly reproducible and quantitative. They show dose-dependent impairment of wound healing, with later recovery. Irradiation-induced delay of bone wound healing was mitigated to different extents by single doses of gramicidin S-nitroxide JP4-039, a plasmid expressing manganese superoxide dismutase, amifostine/WR2721, or the bifunctional sulfoxide MMS-350. These models should be useful for research on mechanisms of radiation dermal and osseous damage and for further development of new radioprotectors. They also provide information of potential relevance to the effects of clinical radiation therapies.
Collapse
Affiliation(s)
- Julie Glowacki
- Department of Orthopedic Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States of America
| | - Anuj Bellare
- Department of Orthopedic Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
19
|
Singh VK, Seed TM, Cheema AK. Metabolomics-based predictive biomarkers of radiation injury and countermeasure efficacy: current status and future perspectives. Expert Rev Mol Diagn 2021; 21:641-654. [PMID: 34024238 DOI: 10.1080/14737159.2021.1933448] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION There is an urgent need for specific and sensitive bioassays to augment biodosimetric assessments of unwanted and excessive radiation exposures that originate from unexpected nuclear/radiological events, including nuclear accidents, acts of terrorism, or the use of a radiological dispersal device. If sufficiently intense, such ionizing radiation exposures are likely to impact normal metabolic processes within the cells and organs of the body, thus inducing multifaceted biological responses. AREAS COVERED This review covers the application of metabolomics, an emerging and promising technology based on quantitative and qualitative determinations of small molecules in biological samples for the rapid assessment of an individual's exposure to ionizing radiation. Recent advancements in the analytics of high-resolution chromatography, mass spectrometry, and bioinformatics have led to untargeted (global) and targeted (quantitative phase) approaches to identify biomarkers of radiation injury and countermeasure efficacy. Biomarkers are deemed essential for both assessing the radiation exposure levels and for extrapolative processes involved in determining scaling factors of a given radiation countering medicinal between experimental animals and humans. EXPERT OPINION The discipline of metabolomics appears to be highly informative in assessing radiation exposure levels and for identifying biomarkers of radiation injury and countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants,Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA.,Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
20
|
Singh VK, Seed TM. Repurposing Pharmaceuticals Previously Approved by Regulatory Agencies to Medically Counter Injuries Arising Either Early or Late Following Radiation Exposure. Front Pharmacol 2021; 12:624844. [PMID: 34040517 PMCID: PMC8141805 DOI: 10.3389/fphar.2021.624844] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing risks of radiological or nuclear attacks or associated accidents have served to renew interest in developing radiation medical countermeasures. The development of prospective countermeasures and the subsequent gain of Food and Drug Administration (FDA) approval are invariably time consuming and expensive processes, especially in terms of generating essential human data. Due to the limited resources for drug development and the need for expedited drug approval, drug developers have turned, in part, to the strategy of repurposing agents for which safety and clinical data are already available. Approval of drugs that are already in clinical use for one indication and are being repurposed for another indication is inherently faster and more cost effective than for new agents that lack regulatory approval of any sort. There are four known growth factors which have been repurposed in the recent past as radiomitigators following the FDA Animal Rule: Neupogen, Neulasta, Leukine, and Nplate. These four drugs were in clinic for several decades for other indications and were repurposed. A large number of additional agents approved by various regulatory authorities for given indications are currently under investigation for dual use for acute radiation syndrome or for delayed pathological effects of acute radiation exposure. The process of drug repurposing, however, is not without its own set of challenges and limitations.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | |
Collapse
|
21
|
Medhora M, Gasperetti T, Schamerhorn A, Gao F, Narayanan J, Lazarova Z, Jacobs ER, Tarima S, Fish BL. Wound Trauma Exacerbates Acute, but not Delayed, Effects of Radiation in Rats: Mitigation by Lisinopril. Int J Mol Sci 2020; 21:ijms21113908. [PMID: 32486174 PMCID: PMC7312718 DOI: 10.3390/ijms21113908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
The goal of this study is to understand and mitigate the effects of wounds on acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE), for preparedness against a radiological attack or accident. Combined injuries from concomitant trauma and radiation are likely in these scenarios. Either exacerbation or mitigation of radiation damage by wound trauma has been previously reported in preclinical studies. Female WAG/RijCmcr rats received 13 Gy X-rays, with partial-body shielding of one leg. Within 2 h, irradiated rats and non-irradiated controls were given full-thickness skin wounds with or without lisinopril, started orally 7 days after irradiation. Morbidity, skin wound area, breathing interval and blood urea nitrogen were measured up to 160 days post-irradiation to independently evaluate wound trauma and DEARE. Wounding exacerbated morbidity in irradiated rats between 5 and 14 days post-irradiation (during the ARS phase), and irradiation delayed wound healing. Wounding did not alter delayed morbidities from radiation pneumonitis or nephropathy after 30 days post-irradiation. Lisinopril did not mitigate wound healing, but markedly decreased morbidity during DEARE from 31 through 160 days. The results derived from this unique model of combined injuries suggest different molecular mechanisms of injury and healing of ARS and DEARE after radiation exposure.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Pulmonary Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, WI 53295, USA
- Correspondence: ; Tel.: +1-414-955-5612; Fax: +1-414-955-6459
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| | - Ashley Schamerhorn
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| | - Zelmira Lazarova
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Elizabeth R. Jacobs
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Pulmonary Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, WI 53295, USA
| | - Sergey Tarima
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| |
Collapse
|
22
|
Temporal Effects on Radiation Responses in Nonhuman Primates: Identification of Biofluid Small Molecule Signatures by Gas Chromatography⁻Mass Spectrometry Metabolomics. Metabolites 2019; 9:metabo9050098. [PMID: 31096611 PMCID: PMC6571779 DOI: 10.3390/metabo9050098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022] Open
Abstract
Whole body exposure to ionizing radiation damages tissues leading to physical symptoms which contribute to acute radiation syndrome. Radiation biodosimetry aims to determine characteristic early biomarkers indicative of radiation exposure and is necessary for effective triage after an unanticipated radiological incident. Radiation metabolomics can address this aim by assessing metabolic perturbations following exposure. Gas chromatography-mass spectrometry (GC-MS) is a standardized platform ideal for compound identification. We performed GC time-of-flight MS for the global profiling of nonhuman primate urine and serum samples up to 60 d after a single 4 Gy γ-ray total body exposure. Multivariate statistical analysis showed higher group separation in urine vs. serum. We identified biofluid markers involved in amino acid, lipid, purine, and serotonin metabolism, some of which may indicate host microbiome dysbiosis. Sex differences were observed for amino acid fold changes in serum samples. Additionally, we explored mitochondrial dysfunction by tricarboxylic acid intermediate analysis in the first week with a GC tandem quadrupole MS platform. By adding this temporal component to our previous work exploring dose effects at 7 d, we observed the highest fold changes occurring at 3 d, returning closer to basal levels by 7 d. These results emphasize the utility of both MS-based metabolomics for biodosimetry and complementary analytical platforms for increased metabolome coverage.
Collapse
|
23
|
Pannkuk EL, Laiakis EC, Gill K, Jain SK, Mehta KY, Nishita D, Bujold K, Bakke J, Gahagen J, Authier S, Chang P, Fornace AJ. Liquid Chromatography-Mass Spectrometry-Based Metabolomics of Nonhuman Primates after 4 Gy Total Body Radiation Exposure: Global Effects and Targeted Panels. J Proteome Res 2019; 18:2260-2269. [PMID: 30843397 DOI: 10.1021/acs.jproteome.9b00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rapid assessment of radiation signatures in noninvasive biofluids may aid in assigning proper medical treatments for acute radiation syndrome (ARS) and delegating limited resources after a nuclear disaster. Metabolomic platforms allow for rapid screening of biofluid signatures and show promise in differentiating radiation quality and time postexposure. Here, we use global metabolomics to differentiate temporal effects (1-60 d) found in nonhuman primate (NHP) urine and serum small molecule signatures after a 4 Gy total body irradiation. Random Forests analysis differentially classifies biofluid signatures according to days post 4 Gy exposure. Eight compounds involved in protein metabolism, fatty acid β oxidation, DNA base deamination, and general energy metabolism were identified in each urine and serum sample and validated through tandem MS. The greatest perturbations were seen at 1 d in urine and 1-21 d in serum. Furthermore, we developed a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) method to quantify a six compound panel (hypoxanthine, carnitine, acetylcarnitine, proline, taurine, and citrulline) identified in a previous training cohort at 7 d after a 4 Gy exposure. The highest sensitivity and specificity for classifying exposure at 7 d after a 4 Gy exposure included carnitine and acetylcarnitine in urine and taurine, carnitine, and hypoxanthine in serum. Receiver operator characteristic (ROC) curve analysis using combined compounds show excellent sensitivity and specificity in urine (area under the curve [AUC] = 0.99) and serum (AUC = 0.95). These results highlight the utility of MS platforms to differentiate time postexposure and acquire reliable quantitative biomarker panels for classifying exposed individuals.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States.,Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Kirandeep Gill
- Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Shreyans K Jain
- Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Khyati Y Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Denise Nishita
- SRI International , Menlo Park , California 94025 , United States
| | - Kim Bujold
- Citoxlab North America , Laval , QC H7V 4B3 , Canada
| | - James Bakke
- SRI International , Menlo Park , California 94025 , United States
| | - Janet Gahagen
- SRI International , Menlo Park , California 94025 , United States
| | - Simon Authier
- Citoxlab North America , Laval , QC H7V 4B3 , Canada
| | - Polly Chang
- SRI International , Menlo Park , California 94025 , United States
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States.,Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| |
Collapse
|
24
|
Groves AM, Williams JP, Hernady E, Reed C, Fenton B, Love T, Finkelstein JN, Johnston CJ. A Potential Biomarker for Predicting the Risk of Radiation-Induced Fibrosis in the Lung. Radiat Res 2018; 190:513-525. [PMID: 30117783 PMCID: PMC11878646 DOI: 10.1667/rr15122.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biomarkers could play an essential role during triage in the aftermath of a radiological event, where exposure to radiation will be heterogeneous and complicated by concurrent trauma. Used alongside biodosimetry, biomarkers can identify victims in need of treatment for acute radiation effects, and might also provide valuable information on later developing consequences that need to be addressed as part of a treatment strategy. Indeed, because the lung is particularly sensitive to radiation and resultant late effects not only affect quality of life, but can also lead to morbidity, the risk of developing downstream pulmonary complications in exposed individuals requires assessment. In this study, analyses of changes in pulmonary and circulating content of club cell secretory protein (CCSP) and surfactant protein D (SP-D), expressed by epithelial club cells and type II pneumocytes in the lung, respectively, were used to evaluate pulmonary epithelial damage in several lung injury models. Using a combined radiation exposure model, fibrosis-susceptible C57BL/6J (C57) and alveolitis-prone C3H/HeJ (C3H) mice received 5 Gy total-body irradiation plus 2.5-10 Gy whole-lung irradiation, and lung and plasma samples were collected throughout the course of the radiation response, at time points ranging from 24 h to 26 weeks postirradiation. Radiation significantly reduced bronchiole CCSP coverage in C57 mice at 26 weeks, a response that varied in extent among animals, but correlated with the severity of fibrosis in each animal. Interestingly, plasma CCSP content was elevated in C57 mice at multiple time points preceding and during the fibrotic period; this response that was not observed in C3H mice. Circulating CCSP/SP-D ratios, calculated as an index of lung integrity, were similarly increased throughout the time course in C57, but not C3H, mice. Furthermore, when the thoracic doses were reduced to subthreshold levels for fibrosis induction (2.5 or 7.5 Gy), although the CCSP/SP-D ratio in lung homogenates demonstrated dose-responsive changes, this was not reflected in the plasma ratios at acute and late time points. Importantly, plasma CCSP/SP-D ratios also were not significantly altered in C57 mice exposed to LPS, and only transiently decreased in influenza-exposed mice, demonstrating a level of specificity for radiation-induced lung injury. These results indicate that the CCSP/SP-D ratio, measured in plasma, is sensitive to individual variation in radiation sensitivity, correlates with fibrosis development, can be detected early after exposure and is specific to radiation-induced injury. This suggests that the CCSP/SP-D ratio may be useful as a biomarker of radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Angela M. Groves
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Eric Hernady
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Christina Reed
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
| | - Bruce Fenton
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Tanzy Love
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - Jacob N. Finkelstein
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Carl J. Johnston
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
25
|
Albrecht H, Yang HY, Kiuru M, Maksaereekul S, Durbin-Johnson B, Wong MS, Stevenson TR, Rocke DM, Isseroff RR. The Beta 2 Adrenergic Receptor Antagonist Timolol Improves Healing of Combined Burn and Radiation Wounds. Radiat Res 2018; 189:441-445. [PMID: 29373090 DOI: 10.1667/rr14884.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In a scenario involving a nuclear detonation during war or a terrorist attack, acute radiation exposure combined with thermal and blast effects results in severe skin injury. Although the cutaneous injury in such a scenario may not be lethal, it may lead to inflammation, delayed wound healing and loss of the skin barrier, resulting in an increased risk of infection. In this study, we tested the potential use of timolol, a beta-adrenergic receptor antagonist, to improve epidermal wound closure after combined burn and radiation injury using an ex vivo human skin culture model. Daily application of 10 μ M timolol after combined injury (burn and 10 Gy ex vivo irradiation) increased wound epithelialization by 5-20%. In addition, exposure to 10 Gy significantly suppressed epidermal keratinocyte proliferation by 46% at 48 h postirradiation. Similar to what has been observed in a thermal burn injury, the enzyme phenylethanolamine N-methyltransferase (PNMT), which generates epinephrine, was elevated in the combined thermal burn and radiation wounds. This likely resulted in elevated tissue levels of this catecholamine, which has been shown to delay healing. Thus, with the addition of timolol to the wound to block the binding of locally generated epinephrine to the beta-adrenergic receptor, healing is improved. This work suggests that by antagonizing local epinephrine action within the wound, a beta-adrenergic receptor antagonist such as timolol may be a useful adjunctive treatment to improve healing in the combined burn and radiation injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David M Rocke
- Departments of a Public Health Sciences.,d Biomedical Engineering, University of California, Davis, Davis, California
| | - R Rivkah Isseroff
- b Dermatology.,e Dermatology Section, VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
26
|
Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, Koumenis C, Segal R. Radiation Mitigating Properties of Intranasally Administered KL 4 Surfactant in a Murine Model of Radiation-Induced Lung Damage. Radiat Res 2017; 188:491-504. [PMID: 28877030 DOI: 10.1667/rr14686.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The threat of exposure to ionizing radiation from a nuclear reactor accident or deliberate terrorist actions is a significant public health concern. The lung is particularly susceptible to radiation-induced injury from external sources or inhalation of radioactive particles from radioactive fallout. Radiation-induced lung disease can manifest with an acute radiation pneumonitis and/or delayed effects leading to pulmonary fibrosis. As prior warning of radiation exposure is unlikely, medical countermeasures (MCMs) to mitigate radiation-induced lung disease that can be given in mass-casualty situations many hours or days postirradiation are needed to prevent both early and late lung damage. In this study, KL4 surfactant (lucinactant) was evaluated as a radiation mitigator in a well-characterized mouse model of targeted thoracic radiation exposure, for its effect on both early (several weeks) and late (18 weeks) lung damage. Here, 120 mg/kg total phospholipid of KL4 surfactant was administered twice daily intranasally, (enabling intrapulmonary inhalation of drug) to C57BL/6 mice 24 h after a single 13.5 Gy dose of thoracic irradiation (LD50 dose). Both early and chronic phase (2 and 4 weeks and 18 weeks postirradiation, respectively) assessments were performed. Mice were evaluated for evidence of reduced arterial blood oxygenation and early and chronic lung and systemic inflammation, lung fibrosis and oxidative stress. Analysis was done by performing lung function/respiration dynamics and measuring cellular protein content of bronchoalveolar lavage fluid (BALF), and levels of cytokines, 8-iso-prostaglandin F2α, hydroxyproline in lung and plasma, along with evaluating lung histology. The results of this study showed that intranasal delivery of KL4 surfactant was able to preserve lung function as evidenced by adequate arterial oxygen saturation and reduced lung inflammation and oxidative stress; total white count and absolute neutrophil count was decreased in BALF, as were plasma pro-inflammatory cytokine levels and biomarker of oxidative stress. KL4 surfactant is a promising MCM for mitigation of lung tissue damage after targeted, thoracic irradiation and has the potential to be developed as a broad-spectrum, multi-use MCM against chemical, biological, radiological or nuclear threat agents with potential to cause lung injury.
Collapse
Affiliation(s)
- Melpo Christofidou-Solomidou
- a Division of Pulmonary, Allergy, and Critical Care Medicine and the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Ralph A Pietrofesa
- a Division of Pulmonary, Allergy, and Critical Care Medicine and the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Evguenia Arguiri
- a Division of Pulmonary, Allergy, and Critical Care Medicine and the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Constantinos Koumenis
- b Department of Radiation Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Robert Segal
- c Windtree Therapeutics, Inc., Warrington, Pennsylvania, 18976
| |
Collapse
|
27
|
Singh VK, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int J Radiat Biol 2017. [PMID: 28650707 DOI: 10.1080/09553002.2017.1332438] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The increasing global risk of nuclear and radiological accidents or attacks has driven renewed research interest in developing medical countermeasures to potentially injurious exposures to acute irradiation. Clinical symptoms and signs of a developing acute radiation injury, i.e. the acute radiation syndrome, are grouped into three sub-syndromes named after the dominant organ system affected, namely the hematopoietic, gastrointestinal, and neurovascular systems. The availability of safe and effective countermeasures against the above threats currently represents a significant unmet medical need. This is the first article within a three-part series covering the nature of the radiation sub-syndromes, various animal models for radiation countermeasure development, and the agents currently approved by the United States Food and Drug Administration for countering the medical consequences of several of these prominent radiation exposure-associated syndromes. CONCLUSIONS From the U.S. and global perspectives, biomedical research concerning medical countermeasure development is quite robust, largely due to increased government funding following the 9/11 incidence and subsequent rise of terrorist-associated threats. A wide spectrum of radiation countermeasures for specific types of radiation injuries is currently under investigation. However, only a few radiation countermeasures have been fully approved by regulatory agencies for human use during radiological/nuclear contingencies. Additional research effort, with additional funding, clearly will be needed in order to fill this significant, unmet medical health problem.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
28
|
Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ. Gas Chromatography/Mass Spectrometry Metabolomics of Urine and Serum from Nonhuman Primates Exposed to Ionizing Radiation: Impacts on the Tricarboxylic Acid Cycle and Protein Metabolism. J Proteome Res 2017; 16:2091-2100. [PMID: 28351153 PMCID: PMC5720681 DOI: 10.1021/acs.jproteome.7b00064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ionizing radiation (IR) directly damages cells and tissues or indirectly damages them through reactive free radicals that may lead to longer term adverse sequelae such as cancers, persistent inflammation, or possible death. Potential exposures include nuclear reactor accidents, improper disposal of equipment containing radioactive materials or medical errors, and terrorist attacks. Metabolomics (comprehensive analysis of compounds <1 kDa) by mass spectrometry (MS) has been proposed as a tool for high-throughput biodosimetry and rapid assessment of exposed dose and triage needed. While multiple studies have been dedicated to radiation biomarker discovery, many have utilized liquid chromatography (LC) MS platforms that may not detect particular compounds (e.g., small carboxylic acids or isomers) that complementary analytical tools, such as gas chromatography (GC) time-of-flight (TOF) MS, are ideal for. The current study uses global GC-TOF-MS metabolomics to complement previous LC-MS analyses on nonhuman primate biofluids (urine and serum) 7 days after exposure to 2, 4, 6, 7, and 10 Gy IR. Multivariate data analysis was used to visualize differences between control and IR exposed groups. Univariate analysis was used to determine a combined 26 biomarkers in urine and serum that significantly changed after exposure to IR. We found several metabolites involved in tricarboxylic acid cycle function, amino acid metabolism, and host microbiota that were not previously detected by global and targeted LC-MS studies.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, United States
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Simon Authier
- CiToxLAB North America, Laval, Quebec H7V 4B3, Canada
| | - Karen Wong
- CiToxLAB North America, Laval, Quebec H7V 4B3, Canada
| | - Albert J. Fornace
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|
29
|
Antonic V, Jackson IL, Ganga G, Shea-Donohue T, Vujaskovic Z. Development of A Novel Murine Model of Combined Radiation and Peripheral Tissue Trauma Injuries. Radiat Res 2017; 187:241-250. [PMID: 28118112 DOI: 10.1667/rr14557.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Detonation of a 10-kiloton nuclear bomb in an urban setting would result in >1 million casualties, the majority of which would present with combined injuries. Combined injuries, such as peripheral tissue trauma and radiation exposure, trigger inflammatory events that lead to multiple organ dysfunction (MOD) and death, with gastrointestinal (GI) and pulmonary involvement playing crucial roles. The objective of this study was to develop an animal model of combined injuries, peripheral tissue trauma (TBX animal model) combined with total body irradiation with 5% bone marrow shielding (TBI/BM5) to investigate if peripheral tissue trauma contributes to reduced survival. Male C57BL/6J mice were exposed to TBX10%, irradiation (TBI/BM5), or combined injuries (TBX10% + TBI/BM5). Experiments were conducted to evaluate mortality at day 7 after TBI/BM5. Serial euthanasia was performed at day 1, 3 and 6 or 7 after TBI/BM5 to evaluate the time course of pathophysiologic processes in combined injuries. Functional tests were performed to assess pulmonary function and GI motility. Postmortem samples of lungs and jejunum were collected to assess tissue damage. Results indicated higher lethality and shorter survival in the TBX10% +T BI/BM5 group than in the TBX10% or TBI/BM5 groups (day 1 vs. day 7 and 6, respectively). TBI/BM5 alone had no effects on the lungs but significantly impaired GI function at day 6. As expected, in the animals that received severe trauma (TBX10%), we observed impairment in lung function and delay in GI transit in the first 3 days, effects that decreased at later time points. Trauma combined with radiation (TBX10% + TBI/BM5) significantly augmented impairment of the lung and GI function in comparison to TBX10% and TBI/BM5 groups at 24 h. Histologic evaluation indicated that combined injuries caused greater tissue damage in the intestines in TBX10% + TBI/BM5 group when compared to other groups. We describe here the first combined tissue trauma/radiation injury model that will allow conduction of mechanistic studies to identify new therapeutic targets and serve as a platform for testing novel therapeutic interventions.
Collapse
Affiliation(s)
- Vlado Antonic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Isabel L Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gurung Ganga
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Terez Shea-Donohue
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Pannkuk EL, Fornace AJ, Laiakis EC. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules. Int J Radiat Biol 2017; 93:1151-1176. [PMID: 28067089 DOI: 10.1080/09553002.2016.1269218] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. CONCLUSIONS Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.
Collapse
Affiliation(s)
- Evan L Pannkuk
- a Tumor Biology Program , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA
| | - Albert J Fornace
- b Molecular Oncology , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA.,c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| | - Evagelia C Laiakis
- c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| |
Collapse
|
31
|
Neutrophil Accumulation in the Small Intestine Contributes to Local Tissue Destruction Following Combined Radiation and Burn Injury. J Burn Care Res 2016; 37:97-105. [PMID: 25501789 DOI: 10.1097/bcr.0000000000000220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The threat of nuclear disaster makes combined radiation and burn injury (CRI) a relevant topic when discussing modern trauma, as burn injuries are likely to occur with detonation of a conventional nuclear weapon. Previous studies in a murine model have shown that there is a breakdown of the gut epithelium and subsequent bacterial translocation into mesenteric lymph nodes after CRI. This study examines the early innate immune response of the small intestine after CRI. Using a previously established murine model of 5 to 5.5 Gy total body irradiation combined with 15% TBSA burn, the injury response of the small intestine was examined at 24, 48, and 72 hours by visual assessment, myeloperoxidase, and cytokine measurement. At 24 hours, intestinal damage as measured by villus blunting, crypt debris, and decreased mitosis, was apparent in all injury groups but the derangements persisted out to 72 hours only with CRI. The prolonged intestinal damage in CRI was accompanied by a 2-fold (P < .05) elevation in myeloperoxidase activity over sham animals at 48 hours and persisted as a 3-fold (P < .05) elevation at 72 hours after injury. Corresponding levels of KC were 8-fold (P < .05) higher than sham at 48 hours with persistent elevation at 72 hours. An enhanced innate immune response, partially mediated by the influx of neutrophils into the gastrointestinal tract is contributing to the hyperinflammatory state seen after CRI. Attenuation of the local gastrointestinal inflammatory response may play a major role in managing victims after nuclear disaster.
Collapse
|
32
|
Singh VK, Romaine PLP, Newman VL, Seed TM. Medical countermeasures for unwanted CBRN exposures: part II radiological and nuclear threats with review of recent countermeasure patents. Expert Opin Ther Pat 2016; 26:1399-1408. [PMID: 27610458 PMCID: PMC5152556 DOI: 10.1080/13543776.2016.1231805] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: The global threat of a chemical, biological, radiological, or nuclear (CBRN) disaster is an important priority for all government agencies involved in domestic security and public health preparedness. Radiological/nuclear (RN) attacks or accidents have become a larger focus of the United States Food and Drug administration (US FDA) over time because of their increased likeliness. Clinical signs and symptoms of a developing acute radiation syndrome (ARS) are grouped into three sub-syndromes named for the dominant organ system affected, namely the hematopoietic (H-ARS), gastrointestinal (GI-ARS), and neurovascular systems. The availability of safe and effective countermeasures against radiological/nuclear threats currently represents a significant unmet medical need. Areas covered: This article reviews the development of RN threat medical countermeasures and highlights those specific countermeasures that have been recently patented and approved following the FDA Animal Rule. Patents for such agents from 2015 have been presented. Expert opinion: Two granulocyte colony-stimulating factor (G-CSF)-based radiation countermeasures (Neupogen® (Amgen, Thousand Oaks, CA) and Neulasta® (Amgen, Thousand Oaks, CA)) have recently been approved by the FDA for treatment of H-ARS and both these agents are radiomitigators, used after radiation exposure. To date, there are no FDA-approved radioprotectors for ARS.
Collapse
Affiliation(s)
- Vijay K Singh
- a Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Patricia L P Romaine
- b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Victoria L Newman
- b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
33
|
Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ. Targeted Metabolomics of Nonhuman Primate Serum after Exposure to Ionizing Radiation: Potential Tools for High-throughput Biodosimetry. RSC Adv 2016; 6:51192-51202. [PMID: 28367319 PMCID: PMC5373493 DOI: 10.1039/c6ra07757a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a need for research to rapidly determine an individual's absorbed dose and its potential health effects after a potential radiological or nuclear event that could expose large portions of a population to ionizing radiation (IR). Studies on biomarker identification after radiation exposure could aid in biodosimetry, identifying individual dose absorbed, as well as biologic response, and administering immediate and proper medical care. Metabolomics on easily accessible biofluids is an emerging field with potential for high-throughput biodosimetry. While tremendous effort has been put into obtaining discovery based global radiation signatures from a number of biofluids and model organisms, quantitative targeted analysis on a subset of known radiation biomarkers is required to develop an optimized panel of biomarkers for future clinical applications. The current study analyzes levels of several known broad chemical groups (acylcarnitines, amino acids, phosphatidylcholines, and biogenic amines) affected by IR in serum from nonhuman primates (NHP) 7 days after exposure through multiple reaction monitoring (MRM) analysis with a triple quadrupole mass spectrometry (MS) platform. We identified several novel metabolites affected by IR exposure through univariate and unsupervised multivariate analyses. Levels of acylcarnitines, amino acids, and phospholipids were perturbed indicating altered protein metabolism, fatty acid β-oxidation, and inflammation. Fold changes in carnitine and short-chain acylcarnitines (acetylcarnitine, propionylcarnitine, butyrylcarnitine, and valerylcarnitine) complement previous global radiation signatures on NHP; notably, the levels of change were lower than previously observed in urine. Decreased levels of glutamate, citrulline, and arginine after IR are biomarkers indicating gastrointestinal syndrome and perturbations to the urea cycle. Sex differences were also assessed and were more prevalent in circulating acylcarnitines and phospholipids after IR exposure. These biomarkers may be combined with previously described compounds from DNA damage to develop a defined metabolomic biodosimetry panel to be analyzed by MS platforms, which are increasingly available in clinical laboratories.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | | | | | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
34
|
Pannkuk EL, Laiakis EC, Mak TD, Astarita G, Authier S, Wong K, Fornace AJ. A Lipidomic and Metabolomic Serum Signature from Nonhuman Primates Exposed to Ionizing Radiation. Metabolomics 2016; 12:80. [PMID: 28220056 PMCID: PMC5314995 DOI: 10.1007/s11306-016-1010-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Due to dangers associated with potential accidents from nuclear energy and terrorist threats, there is a need for high-throughput biodosimetry to rapidly assess individual doses of radiation exposure. Lipidomics and metabolomics are becoming common tools for determining global signatures after disease or other physical insult and provide a "snapshot" of potential cellular damage. OBJECTIVES The current study assesses changes in the nonhuman primate (NHP) serum lipidome and metabolome 7 days following exposure to ionizing radiation (IR). METHODS Serum sample lipids and metabolites were extracted using a biphasic liquid-liquid extraction and analyzed by ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry. Global radiation signatures were acquired in data-independent mode. RESULTS Radiation exposure caused significant perturbations in lipid metabolism, affecting all major lipid species, including free fatty acids, glycerolipids, glycerophospholipids and esterified sterols. In particular, we observed a significant increase in the levels of polyunsaturated fatty acids (PUFA)-containing lipids in the serum of NHPs exposed to 10 Gy radiation, suggesting a primary role played by PUFAs in the physiological response to IR. Metabolomics profiling indicated an increase in the levels of amino acids, carnitine, and purine metabolites in the serum of NHPs exposed to 10 Gy radiation, suggesting perturbations to protein digestion/absorption, biological oxidations, and fatty acid β-oxidation. CONCLUSIONS This is the first report to determine changes in the global NHP serum lipidome and metabolome following radiation exposure and provides information for developing metabolomic biomarker panels in human-based biodosimetry.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Tytus D. Mak
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, MD
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Health Sciences, Waters Corporation, Milford, MA
| | | | | | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
- Address for correspondence: Georgetown University, 3970 Reservoir Road, NW, New, Research Building, Room E504, Washington, DC 20057, , Phone: 202-687-7843, Fax: 202-687-3140
| |
Collapse
|
35
|
Singh VK, Newman VL, Romaine PL, Hauer-Jensen M, Pollard HB. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev Mol Diagn 2015; 16:65-81. [PMID: 26568096 PMCID: PMC4732464 DOI: 10.1586/14737159.2016.1121102] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several candidate drugs for acute radiation syndrome (ARS) have been identified that have low toxicity and significant radioprotective and radiomitigative efficacy. Inasmuch as exposing healthy human volunteers to injurious levels of radiation is unethical, development and approval of new radiation countermeasures for ARS are therefore presently based on animal studies and Phase I safety study in healthy volunteers. The Animal Efficacy Rule, which underlies the Food and Drug Administration approval pathway, requires a sound understanding of the mechanisms of injury, drug efficacy, and efficacy biomarkers. In this context, it is important to identify biomarkers for radiation injury and drug efficacy that can extrapolate animal efficacy results, and can be used to convert drug doses deduced from animal studies to those that can be efficacious when used in humans. Here, we summarize the progress of studies to identify candidate biomarkers for the extent of radiation injury and for evaluation of countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Victoria L Newman
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Patricia Lp Romaine
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Martin Hauer-Jensen
- c Departments of Pharmaceutical Sciences, Surgery, and Pathology , University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare Systems , Little Rock , AR , USA
| | - Harvey B Pollard
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
36
|
Islam A, Bolduc DL, Zhai M, Kiang JG, Swift JM. Captopril Increases Survival after Whole-Body Ionizing Irradiation but Decreases Survival when Combined with Skin-Burn Trauma in Mice. Radiat Res 2015; 184:273-9. [PMID: 26305295 DOI: 10.1667/rr14113.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Past and recent radiation events have involved a high incidence of radiation combined injury where victims often succumb to serious infections as a consequence of bacterial translocation and subsequent sepsis. The risk of infection is exacerbated in radiation combined skin-burn injury (RCI), which increase vulnerability. Furthermore, no suitable countermeasures for radiation combined skin-burn injury have been established. In this study, we evaluated captopril as a potential countermeasure to radiation combined skin-burn injury. Captopril is an FDA-approved angiotensin-converting enzyme inhibitor that was previously reported to stimulate hematopoietic recovery after exposure to ionizing radiation. Female B6D2F1/J mice were whole-body bilateral (60)Co gamma-photon irradiated (dose rate of 0.4 Gy/min) with 9.5 Gy (LD70/30 for RCI), followed by nonlethal dorsal skin-burn injury under anesthesia (approximately 15% total-body surface-area burn). Mice were provided with acidified drinking water with or without dissolved captopril (0.55 g/l) for 30 days immediately after injury and were administered topical gentamicin (0.1% cream; day 1-10) and oral levofloxacin (90-100 mg/kg; day 3-16). Surviving mice were euthanized on day 30 after analyses of water consumption, body weight and survival. Our data demonstrate that, while treatment with captopril did mitigate mortality induced by radiation injury (RI) alone (55% captopril vs. 80% vehicle; n = 20, P < 0.05), it also resulted in decreased survival after radiation combined skin-burn injury (22% captopril vs. 41% vehicle; n = 22, P < 0.05). Moreover, captopril administration via drinking water produced an uneven dosage pattern among the different injury groups ranging from 74 ± 5.4 to 115 ± 2.2 mg/kg/day. Captopril treatment also did not counteract the negative alterations in hematology, splenocytes or bone marrow cellularity after either radiation injury or radiation combined skin-burn injury. These data suggest that captopril may exert its actions differently between the two injury models (RI vs. RCI) and that captopril dosing, when combined with topical and systemic antibiotic treatments, may not be a suitable countermeasure for RCI.
Collapse
Affiliation(s)
- Aminul Islam
- a Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - David L Bolduc
- a Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Min Zhai
- a Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Juliann G Kiang
- a Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland.,b Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,c Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joshua M Swift
- a Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland.,c Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,d Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
37
|
Islam A, Ghimbovschi S, Zhai M, Swift JM. An Exploration of Molecular Correlates Relevant to Radiation Combined Skin-Burn Trauma. PLoS One 2015; 10:e0134827. [PMID: 26247844 PMCID: PMC4527694 DOI: 10.1371/journal.pone.0134827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022] Open
Abstract
Background Exposure to high dose radiation in combination with physical injuries such as burn or wound trauma can produce a more harmful set of medical complications requiring specialist interventions. Currently these interventions are unavailable as are the precise biomarkers needed to help both accurately assess and treat such conditions. In the present study, we tried to identify and explore the possible role of serum exosome microRNA (miRNA) signatures as potential biomarkers for radiation combined burn injury (RCBI). Methodology Female B6D2F1/J mice were assigned to four experimental groups (n = 6): sham control (SHAM), burn injury (BURN), radiation injury (RI) and combined radiation skin burn injury (CI). We performed serum multiplex cytokine analysis and serum exosome miRNA expression profiling to determine novel miRNA signatures and important biological pathways associated with radiation combined skin-burn trauma. Principal Findings Serum cytokines, IL-5 and MCP-1, were significantly induced only in CI mice (p<0.05). From 890 differentially expressed miRNAs identified, microarray analysis showed 47 distinct miRNA seed sequences significantly associated with CI mice compared to SHAM control mice (fold change ≥ 1.2, p<0.05). Furthermore, only two major miRNA seed sequences (miR-690 and miR-223) were validated to be differentially expressed for CI mice specifically (fold change ≥ 1.5, p<0.05). Conclusions Serum exosome miRNA signature data of adult mice, following RCBI, provides new insights into the molecular and biochemical pathways associated with radiation combined skin-burn trauma in vivo.
Collapse
Affiliation(s)
- Aminul Islam
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
- * E-mail:
| | - Svetlana Ghimbovschi
- Children’s National Medical Center, Department of Integrative Systems Biology, Washington DC, United States of America
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
| | - Joshua M. Swift
- Naval Medical Research Center, Undersea Medicine Department, Silver Spring, Maryland, United States of America
| |
Collapse
|
38
|
Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ. Global Metabolomic Identification of Long-Term Dose-Dependent Urinary Biomarkers in Nonhuman Primates Exposed to Ionizing Radiation. Radiat Res 2015; 184:121-33. [PMID: 26230079 DOI: 10.1667/rr14091.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to concerns surrounding potential large-scale radiological events, there is a need to determine robust radiation signatures for the rapid identification of exposed individuals, which can then be used to guide the development of compact field deployable instruments to assess individual dose. Metabolomics provides a technology to process easily accessible biofluids and determine rigorous quantitative radiation biomarkers with mass spectrometry (MS) platforms. While multiple studies have utilized murine models to determine radiation biomarkers, limited studies have profiled nonhuman primate (NHP) metabolic radiation signatures. In addition, these studies have concentrated on short-term biomarkers (i.e., <72 h). The current study addresses the need for biomarkers beyond 72 h using a NHP model. Urine samples were collected at 7 days postirradiation (2, 4, 6, 7 and 10 Gy) and processed with ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight (QTOF) MS, acquiring global metabolomic radiation signatures. Multivariate data analysis revealed clear separation between control and irradiated groups. Thirteen biomarkers exhibiting a dose response were validated with tandem MS. There was significantly higher excretion of l-carnitine, l-acetylcarnitine, xanthine and xanthosine in males versus females. Metabolites validated in this study suggest perturbation of several pathways including fatty acid β oxidation, tryptophan metabolism, purine catabolism, taurine metabolism and steroid hormone biosynthesis. In this novel study we detected long-term biomarkers in a NHP model after exposure to radiation and demonstrate differences between sexes using UPLC-QTOF-MS-based metabolomics technology.
Collapse
Affiliation(s)
- Evan L Pannkuk
- a Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Evagelia C Laiakis
- a Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | | | | | - Albert J Fornace
- a Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC;,c Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC; and.,d Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
39
|
Elliott TB, Bolduc DL, Ledney GD, Kiang JG, Fatanmi OO, Wise SY, Romaine PLP, Newman VL, Singh VK. Combined immunomodulator and antimicrobial therapy eliminates polymicrobial sepsis and modulates cytokine production in combined injured mice. Int J Radiat Biol 2015; 91:690-702. [PMID: 25994812 PMCID: PMC4673550 DOI: 10.3109/09553002.2015.1054526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Purpose: A combination therapy for combined injury (CI) using a non-specific immunomodulator, synthetic trehalose dicorynomycolate and monophosphoryl lipid A (STDCM-MPL), was evaluated to augment oral antimicrobial agents, levofloxacin (LVX) and amoxicillin (AMX), to eliminate endogenous sepsis and modulate cytokine production. Materials and methods: Female B6D2F1/J mice received 9.75 Gy cobalt-60 gamma-radiation and wound. Bacteria were isolated and identified in three tissues. Incidence of bacteria and cytokines were compared between treatment groups. Results: Results demonstrated that the lethal dose for 50% at 30 days (LD50/30) of B6D2F1/J mice was 9.42 Gy. Antimicrobial therapy increased survival in radiation-injured (RI) mice. Combination therapy increased survival after RI and extended survival time but did not increase survival after CI. Sepsis began five days earlier in CI mice than RI mice with Gram-negative species predominating early and Gram-positive species increasing later. LVX plus AMX eliminated sepsis in CI and RI mice. STDCM-MPL eliminated Gram-positive bacteria in CI and most RI mice but not Gram-negative. Treatments significantly modulated 12 cytokines tested, which pertain to wound healing or elimination of infection. Conclusions: Combination therapy eliminates infection and prolongs survival time but does not assure CI mouse survival, suggesting that additional treatment for proliferative-cell recovery is required.
Collapse
Affiliation(s)
- Thomas B Elliott
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - David L Bolduc
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - G David Ledney
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - Juliann G Kiang
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA.,b Department of Radiation Biology , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,c Department of Medicine , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Oluseyi O Fatanmi
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - Stephen Y Wise
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | | | - Victoria L Newman
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - Vijay K Singh
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA.,b Department of Radiation Biology , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
40
|
Modulation of Radiation Response by the Tetrahydrobiopterin Pathway. Antioxidants (Basel) 2015; 4:68-81. [PMID: 26785338 PMCID: PMC4665563 DOI: 10.3390/antiox4010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation (IR) is an integral component of our lives due to highly prevalent sources such as medical, environmental, and/or accidental. Thus, understanding of the mechanisms by which radiation toxicity develops is crucial to address acute and chronic health problems that occur following IR exposure. Immediate formation of IR-induced free radicals as well as their persistent effects on metabolism through subsequent alterations in redox mediated inter- and intracellular processes are globally accepted as significant contributors to early and late effects of IR exposure. This includes but is not limited to cytotoxicity, genomic instability, fibrosis and inflammation. Damage to the critical biomolecules leading to detrimental long-term alterations in metabolic redox homeostasis following IR exposure has been the focus of various independent investigations over last several decades. The growth of the "omics" technologies during the past decade has enabled integration of "data from traditional radiobiology research", with data from metabolomics studies. This review will focus on the role of tetrahydrobiopterin (BH4), an understudied redox-sensitive metabolite, plays in the pathogenesis of post-irradiation normal tissue injury as well as how the metabolomic readout of BH4 metabolism fits in the overall picture of disrupted oxidative metabolism following IR exposure.
Collapse
|
41
|
Zawaski JA, Yates CR, Miller DD, Kaffes CC, Sabek OM, Afshar SF, Young DA, Yang Y, Gaber MW. Radiation Combined Injury Models to Study the Effects of Interventions and Wound Biomechanics. Radiat Res 2014; 182:640-52. [DOI: 10.1667/rr13751.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Janice A. Zawaski
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Charles R. Yates
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Omaima M. Sabek
- Department of Surgery, The Methodist Health System, Houston, Texas
| | - Solmaz F. Afshar
- Department of Surgery, The Methodist Health System, Houston, Texas
| | - Daniel A. Young
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Yunzhi Yang
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - M. Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
42
|
Laiakis EC, Mak TD, Anizan S, Amundson SA, Barker CA, Wolden SL, Brenner DJ, Fornace AJ. Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation. Radiat Res 2014; 181:350-61. [PMID: 24673254 PMCID: PMC4071158 DOI: 10.1667/rr13567.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The emergence of the threat of radiological terrorism and other radiological incidents has led to the need for development of fast, accurate and noninvasive methods for detection of radiation exposure. The purpose of this study was to extend radiation metabolomic biomarker discovery to humans, as previous studies have focused on mice. Urine was collected from patients undergoing total body irradiation at Memorial Sloan-Kettering Cancer Center prior to hematopoietic stem cell transplantation at 4-6 h postirradiation (a single dose of 1.25 Gy) and 24 h (three fractions of 1.25 Gy each). Global metabolomic profiling was obtained through analysis with ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (TOFMS). Prior to further analyses, each sample was normalized to its respective creatinine level. Statistical analysis was conducted by the nonparametric Kolmogorov-Smirnov test and the Fisher's exact test and markers were validated against pure standards. Seven markers showed distinct differences between pre- and post-exposure samples. Of those, trimethyl-l-lysine and the carnitine conjugates acetylcarnitine, decanoylcarnitine and octanoylcarnitine play an important role in the transportation of fatty acids across mitochondria for subsequent fatty acid β-oxidation. The remaining metabolites, hypoxanthine, xanthine and uric acid are the final products of the purine catabolism pathway, and high levels of excretion have been associated with increased oxidative stress and radiation induced DNA damage. Further analysis revealed sex differences in the patterns of excretion of the markers, demonstrating that generation of a sex-specific metabolomic signature will be informative and can provide a quick and reliable assessment of individuals in a radiological scenario. This is the first radiation metabolomics study in human urine laying the foundation for the use of metabolomics in biodosimetry and providing confidence in biomarker identification based on the overlap between animal models and humans.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington DC
| | - Tytus D. Mak
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| | - Sebastien Anizan
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| | - Sally A. Amundson
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Christopher A. Barker
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Suzanne L. Wolden
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David J. Brenner
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington DC
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| |
Collapse
|
43
|
Hyduke DR, Laiakis EC, Li HH, Fornace AJ. Identifying radiation exposure biomarkers from mouse blood transcriptome. ACTA ACUST UNITED AC 2014; 9:365-85. [PMID: 23797995 DOI: 10.1504/ijbra.2013.054701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ionising radiation is a pleiotropic stress agent that may induce a variety of adverse effects. Molecular biomarker approaches possess promise to assess radiation exposure, however, the pleiotropic nature of ionising radiation induced transcriptional responses and the historically poor inter-laboratory performance of omics-derived biomarkers serve as barriers to identification of unequivocal biomarker sets. Here, we present a whole-genome survey of the murine transcriptomic response to physiologically relevant radiation doses, 2 Gy and 8 Gy. We used this dataset with the Random Forest algorithm to correctly classify independently generated data and to identify putative metabolite biomarkers for radiation exposure.
Collapse
Affiliation(s)
- Daniel R Hyduke
- Department of Biochemistry and Molecular and Cellular Biology, and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
44
|
Kim JH, Thimmulappa RK, Kumar V, Cui W, Kumar S, Kombairaju P, Zhang H, Margolick J, Matsui W, Macvittie T, Malhotra SV, Biswal S. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. J Clin Invest 2014; 124:730-41. [PMID: 24463449 PMCID: PMC3904618 DOI: 10.1172/jci70812] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022] Open
Abstract
A nuclear disaster may result in exposure to potentially lethal doses of ionizing radiation (IR). Hematopoietic acute radiation syndrome (H-ARS) is characterized by severe myelosuppression, which increases the risk of infection, bleeding, and mortality. Here, we determined that activation of nuclear factor erythroid-2-related factor 2 (NRF2) signaling enhances hematopoietic stem progenitor cell (HSPC) function and mitigates IR-induced myelosuppression and mortality. Augmenting NRF2 signaling in mice, either by genetic deletion of the NRF2 inhibitor Keap1 or by pharmacological NRF2 activation with 2-trifluoromethyl-2'-methoxychalone (TMC), enhanced hematopoietic reconstitution following bone marrow transplantation (BMT). Strikingly, even 24 hours after lethal IR exposure, oral administration of TMC mitigated myelosuppression and mortality in mice. Furthermore, TMC administration to irradiated transgenic Notch reporter mice revealed activation of Notch signaling in HSPCs and enhanced HSPC expansion by increasing Jagged1 expression in BM stromal cells. Administration of a Notch inhibitor ablated the effects of TMC on hematopoietic reconstitution. Taken together, we identified a mechanism by which NRF2-mediated Notch signaling improves HSPC function and myelosuppression following IR exposure. Our data indicate that targeting this pathway may provide a countermeasure against the damaging effects of IR exposure.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Rajesh K. Thimmulappa
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Vineet Kumar
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Wanchang Cui
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Sarvesh Kumar
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Ponvijay Kombairaju
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Joseph Margolick
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - William Matsui
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Thomas Macvittie
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Sanjay V. Malhotra
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| | - Shyam Biswal
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Laboratory of Synthetic Chemistry, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
Department of Microbiology and Molecular Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland, USA.
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Singh VK, Wise SY, Fatanmi OO, Beattie LA, Ducey EJ, Seed TM. Alpha-tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation combined injury in mice. JOURNAL OF RADIATION RESEARCH 2014; 55:41-53. [PMID: 23814114 PMCID: PMC3885121 DOI: 10.1093/jrr/rrt088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 05/28/2023]
Abstract
The purpose of this study was to elucidate the role of alpha-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating combined injury associated with acute radiation exposure in combination with secondary physical wounding. CD2F1 mice were exposed to high doses of cobalt-60 gamma-radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMCs) from TS- and AMD3100-injected mice after irradiation. Within 1 h after irradiation, mice were exposed to secondary wounding. Mice were observed for 30 d after irradiation and cytokine analysis was conducted by multiplex Luminex assay at various time-points after irradiation and wounding. Our results initially demonstrated that transfusion of TS-mobilized progenitors from normal mice enhanced survival of acutely irradiated mice exposed 24 h prior to transfusion to supralethal doses (11.5-12.5 Gy) of (60)Co gamma-radiation. Subsequently, comparable transfusions of TS-mobilized progenitors were shown to significantly mitigate severe combined injuries in acutely irradiated mice. TS administered 24 h before irradiation was able to protect mice against combined injury as well. Cytokine results demonstrated that wounding modulates irradiation-induced cytokines. This study further supports the conclusion that the infusion of TS-mobilized progenitor-containing PBMCs acts as a bridging therapy in radiation-combined-injury mice. We suggest that this novel bridging therapeutic approach involving the infusion of TS-mobilized hematopoietic progenitors following acute radiation exposure or combined injury might be applicable to humans.
Collapse
Affiliation(s)
- Vijay K. Singh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4417 Maple Avenue, Bethesda, MD, USA
| | - Stephen Y. Wise
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Oluseyi O. Fatanmi
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Lindsay A. Beattie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Elizabeth J. Ducey
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | | |
Collapse
|
46
|
Jung E, Perrone EE, Brahmamdan P, McDonough JS, Leathersich AM, Dominguez JA, Clark AT, Fox AC, Dunne WM, Hotchkiss RS, Coopersmith CM. Inhibition of intestinal epithelial apoptosis improves survival in a murine model of radiation combined injury. PLoS One 2013; 8:e77203. [PMID: 24204769 PMCID: PMC3810465 DOI: 10.1371/journal.pone.0077203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/03/2013] [Indexed: 12/11/2022] Open
Abstract
World conditions place large populations at risk from ionizing radiation (IR) from detonation of dirty bombs or nuclear devices. In a subgroup of patients, ionizing radiation exposure would be followed by a secondary infection. The effects of radiation combined injury are potentially more lethal than either insult in isolation. The purpose of this study was to determine mechanisms of mortality and possible therapeutic targets in radiation combined injury. Mice were exposed to IR with 2.5 Gray (Gy) followed four days later by intratracheal methicillin-resistant Staphylococcus aureus (MRSA). While either IR or MRSA alone yielded 100% survival, animals with radiation combined injury had 53% survival (p = 0.01). Compared to IR or MRSA alone, mice with radiation combined injury had increased gut apoptosis, local and systemic bacterial burden, decreased splenic CD4 T cells, CD8 T cells, B cells, NK cells, and dendritic cells, and increased BAL and systemic IL-6 and G-CSF. In contrast, radiation combined injury did not alter lymphocyte apoptosis, pulmonary injury, or intestinal proliferation compared to IR or MRSA alone. In light of the synergistic increase in gut apoptosis following radiation combined injury, transgenic mice that overexpress Bcl-2 in their intestine and wild type mice were subjected to IR followed by MRSA. Bcl-2 mice had decreased gut apoptosis and improved survival compared to WT mice (92% vs. 42%; p<0.01). These data demonstrate that radiation combined injury results in significantly higher mortality than could be predicted based upon either IR or MRSA infection alone, and that preventing gut apoptosis may be a potential therapeutic target.
Collapse
Affiliation(s)
- Enjae Jung
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Erin E. Perrone
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Pavan Brahmamdan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jacquelyn S. McDonough
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ann M. Leathersich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jessica A. Dominguez
- Department of Basic Sciences, Bastyr University California, San Diego, California, United States of America
| | - Andrew T. Clark
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amy C. Fox
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - W. Michael Dunne
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Richard S. Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Craig M. Coopersmith
- The Emory Center for Critical Care and Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
47
|
Carter SR, Zahs A, Palmer JL, Wang L, Ramirez L, Gamelli RL, Kovacs EJ. Intestinal barrier disruption as a cause of mortality in combined radiation and burn injury. Shock 2013; 40:281-9. [PMID: 24045418 PMCID: PMC3780610 DOI: 10.1097/shk.0b013e3182a2c5b5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nuclear disaster associated with combined radiation injury (CRI) and trauma or burns results in higher mortality than component injuries. Early death is caused by sequelae of gastrointestinal (GI) leakiness such as bacterial translocation and shock. We developed a murine model to characterize GI injury after CRI and determine the extent of barrier disruption. Animals received radiation (5.5 Gy) alone or with 15% total body surface area (TBSA) scald burn and were euthanized at 24, 48, and 72 h. Mesenteric lymph node homogenate was plated on tryptic soy agar to assess for bacterial translocation. Tight junction protein, occludin, was characterized by Western blot and immunofluorescence. Intestinal histology was evaluated, and apoptosis was quantified using histone-associated DNA fragmentation enzyme-linked immunosorbent assay and Western blot for caspase-3 and caspase-8. At 72 h, a 100-fold increase in bacterial growth after CRI was observed. Occludin colocalization was reduced by radiation exposure, with largest differences in CRI at 24 and 48 h. Histopathology exhibited increased apoptosis in radiation alone and CRI animals at 24 and 48 h (P < 0.05). Further evidence of apoptotic activity in CRI was seen at 48 h, with 3-fold increases in enzyme-linked immunosorbent assay detection relative to all groups and caspase-8 activity relative to radiation alone and sham (P < 0.05). Prolonged epithelial apoptosis and disruption of tight junctions likely contribute to gut leakiness after CRI. Subsequent bacterial translocation to mesenteric lymph node potentially leads to sepsis and death and could serve as a target for mitigating agents to improve survival from CRI.
Collapse
Affiliation(s)
- Stewart R Carter
- *Burn and Shock Trauma Research Institute, and †Departments of Surgery, ‡Pathology, and §Microbiology and Immunology, Loyola University Chicago Health Sciences Division, Maywood, Illinois
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The continued development of nuclear weapons and the potential for thermonuclear injury necessitates the further understanding of the immune consequences after radiation combined with injury (RCI). We hypothesized that sublethal ionization radiation exposure combined with a full-thickness thermal injury would result in the production of immature myeloid cells. Mice underwent either a full-thickness contact burn of 20% total body surface area or sham procedure followed by a single whole-body dose of 5-Gy radiation. Serum, spleen, and peripheral lymph nodes were harvested at 3 and 14 days after injury. Flow cytometry was performed to identify and characterize adaptive and innate cell compartments. Elevated proinflammatory and anti-inflammatory serum cytokines and profound leukopenia were observed after RCI. A population of cells with dual expression of the cell surface markers Gr-1 and CD11b were identified in all experimental groups, but were significantly elevated after burn alone and RCI at 14 days after injury. In contrast to the T-cell-suppressive nature of myeloid-derived suppressor cells found after trauma and sepsis, myeloid cells after RCI augmented T-cell proliferation and were associated with a weak but significant increase in interferon γ and a decrease in interleukin 10. This is consistent with previous work in burn injury indicating that a myeloid-derived suppressor cell-like population increases innate immunity. Radiation combined injury results in the increase in distinct populations of Gr-1CD11b cells within the secondary lymphoid organs, and we propose these immature inflammatory myeloid cells provide innate immunity to the severely injured and immunocompromised host.
Collapse
|
49
|
Laiakis EC, Hyduke DR, Fornace AJ. Comparison of mouse urinary metabolic profiles after exposure to the inflammatory stressors γ radiation and lipopolysaccharide. Radiat Res 2011; 177:187-99. [PMID: 22128784 DOI: 10.1667/rr2771.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Metabolomics on easily accessible biofluids has the potential to provide rapid identification and distinction between stressors and inflammatory states. In the event of a radiological event, individuals with underlying medical conditions could present with similar symptoms to radiation poisoning, prominently nausea, diarrhea, vomiting and fever. Metabolomics of radiation exposure in mice has provided valuable biomarkers, and in this study we aimed to identify biomarkers of lipopolysaccharide (LPS) exposure to compare and contrast with ionizing radiation. LPS treatment leads to a severe inflammatory response and a cytokine storm, events similar to radiation exposure, and LPS exposure can recapitulate many of the responses seen in sepsis. Urine from control mice, LPS-treated mice, and mice irradiated with 3, 8 and 15 Gy of γ rays was analyzed by LCMS, and markers were extracted using SIMCA-P(+) and Random Forests. Markers were validated through tandem mass spectrometry against pure chemicals. Five metabolites, cytosine, cortisol, adenine, O-propanoylcarnitine and isethionic acid, showed increased excretion at 24 h after LPS treatment (P < 0.0001, 0.0393, 0.0393, <0.0001 and 0.0004, respectively). Of these, cytosine, adenine and O-propanoylcarnitine showed specificity to LPS treatment when compared to radiation. On the other hand, increased excretion of cortisol after LPS and radiation treatments indicated a rapid systemic response to inflammatory agents. Isethionic acid excretion, however, showed elevated levels not only after LPS treatment but also after a very high dose of radiation (15 Gy), while additional metabolites showed responsiveness to radiation but not LPS. Metabolomics therefore has the potential to distinguish between different inflammatory responses based on differential ion signatures. It can also provide quick and reliable assessment of medical conditions in a mass casualty radiological scenario and aid in effective triaging.
Collapse
Affiliation(s)
- Evagelia C Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|
50
|
Shi C, Lu S. Radiation Injuries. INT J LOW EXTR WOUND 2011; 10:120-1. [DOI: 10.1177/1534734611418155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Chunmeng Shi
- Third Military Medical University, Chongqing, China
| | - Shuliang Lu
- Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|