1
|
Kashparov V, Kirieiev S, Yoschenko V, Levchuk S, Holiaka D, Zhurba M, Bogdan L, Vyshnevskyi D, Oughton DH. Assessment of exposures to firefighters from wildfires in heavily contaminated areas of the Chornobyl Exclusion Zone. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 274:107410. [PMID: 38457870 DOI: 10.1016/j.jenvrad.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
The aim of this study was to assess the exposures received by firefighters engaged in extinguishing the large-scale wildfires in the most contaminated areas of the Ukrainian part of the Chornobyl Exclusion Zone in 2016 and 2020. The assessments are based on measurements of radionuclide airborne concentrations in the breathing zones of workers and at the aerosol sampling stations of the automated radiation monitoring system operated by SSE Ecocenter. During the wildfires, the radionuclide airborne concentrations increased by orders of magnitude compared to the background levels, reaching maximum values in the firefighting area of 1.20 ± 0.01 Bq m-3 for 90Sr, 0.18 ± 0.01 Bq m-3 for 137Cs, (1.8 ± 0.3) ∙10-4 Bq m-3 for 238Pu, (4.5 ± 0.7) ∙10-4 Bq m-3 for 239-240Pu, and (8.0 ± 1.3) ∙10-3 Bq m-3 for 241Pu. The internal effective doses to firefighters due to inhaled radionuclides did not exceed 2 μSv h-1 and were 3-5 times lower compared to the external dose of gamma radiation. Thus, the time of firefighting in the ChEZ will be limited by the external dose.
Collapse
Affiliation(s)
- Valery Kashparov
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Chabany, Kyiv region, Ukraine; Center for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Serhii Kirieiev
- Chornobyl Ecocentre, State Agency of Ukraine on Exclusion Zone Management, Chornobyl, Ukraine
| | - Vasyl Yoschenko
- Institute of Environmental Radioactivity at Fukushima University, Fukushima, Japan.
| | - Sviatoslav Levchuk
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Chabany, Kyiv region, Ukraine
| | - Dmytrii Holiaka
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Chabany, Kyiv region, Ukraine
| | - Marina Zhurba
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Chabany, Kyiv region, Ukraine
| | - Leonid Bogdan
- Chornobyl Ecocentre, State Agency of Ukraine on Exclusion Zone Management, Chornobyl, Ukraine
| | - Denys Vyshnevskyi
- Chornobyl Radiation Ecological Biosphere Reserve, Chornobyl, Ukraine
| | - Deborah H Oughton
- Center for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Yoschenko V, Thiry Y, Holiaka D, Levchuk S, Kashparov V, Nanba K. Long-term changes in 90Sr pools of Scots pine biomass in the Chornobyl Red Forest. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 273:107366. [PMID: 38218043 DOI: 10.1016/j.jenvrad.2023.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/15/2024]
Abstract
The trenches of the waste burial site in the Chornobyl Red Forest represent a big reservoir of radionuclides for the artificial plantation of Scots pine established in that area, but the long term dynamics of tree biomass contamination, especially with 90Sr, remains unclear. The present study was conducted between 2005 and 2018 on two groups of trees of the same age. The IN group is represented by trees growing on the trench containing highly radioactive contaminated fertile soil and organic matter, while the OUT group is located outside the trench. Within a little more than one decade, the total aboveground biomass doubled in the trees of the group OUT and increased more than four times in the group IN. In the group OUT, the concentrations of 90Sr have decreased in all biomass compartments compared to 2005, while in the group IN, the concentrations demonstrated a trend to increase. Regression analysis shows that both decrease in the compartment concentrations in the group OUT (slope coefficient 0.55) and increase in the group IN (1.58) were significant. As a result of the changes in the biomass inventories and 90Sr concentrations, in absence of changes in plantation density, the contamination of total aboveground biomass by 90Sr in the group OUT would have increased slightly in 2018 (from approximately 18 GBq ha-1 to 23 GBq ha-1) compared to 2005, while in the group IN it would have increased almost 6-fold, reaching approximately 560 GBq ha-1, or about (19 ± 9) % of the total 90Sr inventory in the trench area. Trenches of the Red Forest were shown to act as long-lasting hot spots of 90Sr bioavailability for forest trees.
Collapse
Affiliation(s)
- Vasyl Yoschenko
- Institute of Environmental Radioactivity at Fukushima University, 1 Kanayagawa, Fukushima Prefecture, Fukushima, 960-1296, Japan.
| | - Yves Thiry
- French National Radioactive Waste Management Agency (Andra) - Scientific and Technical Division, Chatenay-Malabry, 92298, France
| | - Dmytrii Holiaka
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - Sviatoslav Levchuk
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - Valery Kashparov
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine; Center for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Kenji Nanba
- Institute of Environmental Radioactivity at Fukushima University, 1 Kanayagawa, Fukushima Prefecture, Fukushima, 960-1296, Japan
| |
Collapse
|
3
|
Nybakken L, Lee Y, Brede DA, Mageroy MH, Lind OC, Salbu B, Kashparov V, Olsen JE. Long term effects of ionising radiation in the Chernobyl Exclusion zone on DNA integrity and chemical defence systems of Scots pine (Pinus sylvestris). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166844. [PMID: 37689207 DOI: 10.1016/j.scitotenv.2023.166844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The Chernobyl Nuclear Power Plant (ChNPP) accident in 1986 resulted in extremely high levels of acute ionising radiation, that killed or damaged Scots pine (Pinus sylvestris) trees in the surrounding areas. Dead trees were cleared and buried, and new plantations established a few years later. Today, more than three decades later, gamma and beta-radiation near the ChNPP is still elevated compared with ambient levels but have decreased by a factor of 300 and 100, respectively. In the present work, Scots pine-trees growing at High (220 μGy h-1), Medium (11 μGy h-1), and Low (0.2 μGy h-1) total (internal + external) dose rates of chronically elevated ionising radiation in the Chernobyl Exclusion zone were investigated with respect to possible damage to DNA, cells and organelles, as well as potentially increased levels of phenolic and terpenoid antioxidants. Scots pine from the High and Medium radiation sites had elevated levels of DNA damage in shoot tips and needles as shown by the COMET assay, as well as increased numbers of resin ducts and subcellular abnormalities in needles. Needles from the High radiation site showed elevated levels of monoterpenes and condensed tannins compared with those from the other sites. In conclusion, more than three decades after the ChNPP accident substantial DNA damage and (sub)cellular effects, but also mobilisation of stress-protective substances possessing antioxidant activity were observed in Scots pine trees growing at elevated levels of ionising radiation. This demonstrates that the radiation levels in the Red Forest still significantly impact the plant community.
Collapse
Affiliation(s)
- Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway; Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Korea University Graduate School, Department of Plant Biotechnology, 145, Anam-ro, Seongbuk-ku, Seoul, Republic of Korea
| | - Dag A Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Melissa H Mageroy
- Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO-1431 Ås, Norway
| | - Ole Christian Lind
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Brit Salbu
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Valery Kashparov
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway; Ukrainian Institute of Agricultural Radiology (UIAR) of National University of Life and Environment Sciences of Ukraine, Kiev, Ukraine
| | - Jorunn E Olsen
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway; Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
4
|
Holiaka D, Yoschenko V, Cherniaiev OR, Moskaliuk A, Lesnik O, Levchuk S, Holiaka M, Gumenuk V, Kovbasa Y, Borsuk O, Holik V, Nanba K, Kashparov V. Variability of activity concentrations and radial distributions of 137Cs and 90Sr in trunk wood of Scots pine and Silver birch. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 263:107186. [PMID: 37087959 DOI: 10.1016/j.jenvrad.2023.107186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
This study analyzes the variability of 137Cs and 90Sr concentrations in wood and their radial distributions in the trunks of Scots pine and Silver birch trees in the small uniformly contaminated forest stands in the Chornobyl Exclusion Zone. Concentrations of both radionuclides follow a lognormal distribution with a large scatter of values measured in the trees within the stands (GSD ranges from 1.6 to 2.0). No correlation was found between the concentrations of the two radionuclides measured in individual trees, or between their concentrations and tree diameter. The average 137Cs and 90Sr Tag were 8.4 × 10-4 m2 kg-1 and 8.8 × 10-3 m2 kg-1 for pine, respectively, and 9.3 × 10-4 m2 kg-1 and 1.1 × 10-2 m2 kg-1 for birch, indicating a much higher availability of 90Sr for uptake by the studied species. For 137Cs, the Tag values are within the range recommended by the IAEA Handbook (IAEA, 2010), while the values for 90Sr exceed the recommended range for birch and are close to its upper value for pine. The highest concentrations of 137Cs in pine at the height of 1.3 m were measured in the youngest sapwood rings; they were lower in the rest of the sapwood and decreased further in the heartwood, but remained relatively high even in annual rings that were the heartwood at the time of deposition, suggesting sapwood-to-heartwood translocation of the radionuclide by diffusion and/or ray transport. In contrast, 90Sr concentrations increased through the sapwood from the trunk periphery in pine trees up to 80 years old and remained stable through the sapwood in older trees (except for higher concentrations in the young annual rings), but dropped to zero in physiologically inactive heartwood tissues. In most birch trees, regardless of age, 137Cs concentrations demonstrated an increasing trend from the trunk periphery towards the pith, while concentrations of 90Sr were relatively stable in the whole trunk except in the oldest annual rings, where they increased sharply, likely indicating active transport of the radionuclide to senescing tissues.
Collapse
Affiliation(s)
- D Holiaka
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine.
| | - V Yoschenko
- Institute of Environmental Radioactivity at Fukushima University, 1 Kanayagawa, Fukushima Prefecture, 960-1296, Japan
| | - O R Cherniaiev
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - A Moskaliuk
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - O Lesnik
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - S Levchuk
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - M Holiaka
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - V Gumenuk
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - Y Kovbasa
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - O Borsuk
- Chornobyl Radiation and Ecological Biosphere Reserve, Tolochina str. 28, Ivankiv, Kyiv region, 07201, Ukraine
| | - V Holik
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - K Nanba
- Institute of Environmental Radioactivity at Fukushima University, 1 Kanayagawa, Fukushima Prefecture, 960-1296, Japan
| | - V Kashparov
- Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| |
Collapse
|
5
|
Ueno S, Hasegawa Y, Kato S, Mori H, Tsukada H, Ohira H, Kaneko S. Rapid survey of de novo mutations in naturally growing tree species following the March 2011 disaster in Fukushima: The effect of low-dose-rate radiation. ENVIRONMENT INTERNATIONAL 2023; 174:107893. [PMID: 37058973 DOI: 10.1016/j.envint.2023.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/13/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The impact of low-dose-rate radiation on genetics is largely unknown, particularly in natural environments. The Fukushima Dai-ich Nuclear Power Plant disaster resulted in the creation of contaminated natural lands. In this study, de novo mutations (DNMs) in germ line cells were surveyed from double-digest RADseq fragments in Japanese cedar and flowering cherry trees exposed to ambient dose rates ranging from 0.08 to 6.86 μGy h-1. These two species are among the most widely cultivated Japanese gymnosperm and angiosperm trees for forestry and horticultural purpose, respectively. For Japanese flowering cherry, open crossings were performed to produce seedlings, and only two candidate DNMs were detected from uncontaminated area. For Japanese cedar, the haploid megagametophytes were used as next generation samples. The use of megagametophytes from open crossing for next generation mutation screening had many advantages such as reducing exposure to radiation in contaminated areas because artificial crossings are not needed and the ease of data analysis owing to the haploid nature of megagametophytes. A direct comparison of the nucleotide sequences of parents and megagametophytes revealed an average of 1.4 candidate DNMs per megagametophyte sample (range: 0-40) after filtering procedures were optimized based on the validation of DNMs via Sanger sequencing. There was no relationship between the observed mutations and the ambient dose rate in the growing area or the concentration of 137Cs in cedar branches. The present results also suggest that mutation rates differ among lineages and that the growing environment has a relatively large influence on these mutation rates. These results suggested there was no significant increase in the mutation rate of the germplasm of Japanese cedar and flowering cherry trees growing in the contaminated areas.
Collapse
Affiliation(s)
- Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan.
| | - Yoichi Hasegawa
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Shuri Kato
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan; Tama Forest Science Garden, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1833-81 Todori, Hachioji, Tokyo 193-0843, Japan
| | - Hideki Mori
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Hirofumi Tsukada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan
| | - Hajime Ohira
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan
| | - Shingo Kaneko
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan.
| |
Collapse
|
6
|
De Marco A, Sicard P, Feng Z, Agathokleous E, Alonso R, Araminiene V, Augustatis A, Badea O, Beasley JC, Branquinho C, Bruckman VJ, Collalti A, David‐Schwartz R, Domingos M, Du E, Garcia Gomez H, Hashimoto S, Hoshika Y, Jakovljevic T, McNulty S, Oksanen E, Omidi Khaniabadi Y, Prescher A, Saitanis CJ, Sase H, Schmitz A, Voigt G, Watanabe M, Wood MD, Kozlov MV, Paoletti E. Strategic roadmap to assess forest vulnerability under air pollution and climate change. GLOBAL CHANGE BIOLOGY 2022; 28:5062-5085. [PMID: 35642454 PMCID: PMC9541114 DOI: 10.1111/gcb.16278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 05/13/2023]
Abstract
Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.
Collapse
Affiliation(s)
| | | | - Zhaozhong Feng
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Evgenios Agathokleous
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Rocio Alonso
- Ecotoxicology of Air Pollution, CIEMATMadridSpain
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Algirdas Augustatis
- Faculty of Forest Sciences and EcologyVytautas Magnus UniversityKaunasLithuania
| | - Ovidiu Badea
- “Marin Drăcea” National Institute for Research and Development in ForestryVoluntariRomania
- Faculty of Silviculture and Forest Engineering“Transilvania” UniversityBraşovRomania
| | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| | - Viktor J. Bruckman
- Commission for Interdisciplinary Ecological StudiesAustrian Academy of SciencesViennaAustria
| | | | | | - Marisa Domingos
- Instituto de BotanicaNucleo de Pesquisa em EcologiaSao PauloBrazil
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | | | - Shoji Hashimoto
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| | | | | | | | - Elina Oksanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Yusef Omidi Khaniabadi
- Department of Environmental Health EngineeringIndustrial Medial and Health, Petroleum Industry Health Organization (PIHO)AhvazIran
| | | | - Costas J. Saitanis
- Lab of Ecology and Environmental ScienceAgricultural University of AthensAthensGreece
| | - Hiroyuki Sase
- Ecological Impact Research DepartmentAsia Center for Air Pollution Research (ACAP)NiigataJapan
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine‐WestphaliaRecklinghausenGermany
| | | | - Makoto Watanabe
- Institute of AgricultureTokyo University of Agriculture and Technology (TUAT)FuchuJapan
| | - Michael D. Wood
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| | | | - Elena Paoletti
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| |
Collapse
|
7
|
Holiaka D, Kato H, Yoschenko V, Onda Y, Igarashi Y, Nanba K, Diachuk P, Holiaka M, Zadorozhniuk R, Kashparov V, Chyzhevskyi I. Scots pine stands biomass assessment using 3D data from unmanned aerial vehicle imagery in the Chernobyl Exclusion Zone. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113319. [PMID: 34348433 DOI: 10.1016/j.jenvman.2021.113319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Thirty-five years after the accident, large forest areas in the Chernobyl Exclusion Zone still contain huge amounts of radionuclides released from the Chernobyl Nuclear Power Plant Unit 4 in April 1986. An assessment of the radiological and radioecological consequences of persistent radioactive contamination and development of remediation strategies for Chernobyl forests imply acquiring comprehensive data on their contamination levels and dynamics of biomass inventories. The most accurate forest inventory data can be obtained in ground timber cruises. However, such cruises in radioactive contaminated forest ecosystems in the Chernobyl Exclusion Zone result in radiation exposures of the personnel involved, which means the need for development of the remote sensing methods. The purpose of this study is to analyze the applicability and limitations of the photogrammetric method for the remote large-scale monitoring of aboveground biomass inventories. Based on field measurements, we estimated the biomass inventories in 31 Scots pine stands including both artificial plantations and natural populations. The stands differed significantly in age (from a few years in natural populations to 115 years in the oldest plantation), productivity (from 0.4 to 19.8 kg m-2), mean height (from 4.1 to 36 m), and other parameters. Photogrammetric data were obtained from the same stands using unmanned aerial vehicle (UAV). These data were then processed using two approaches to derive the canopy height model (CHM) parameters which were tested for correlation with the aboveground biomass inventories. In the first approach, we found that the inventories correlated well with the mean value of CHM of the site (R2 = 0.79). In the second approach, the total aboveground biomass was approximated by a function of the average height of trees detected at the site and the total crown projection area (R2 = 0.78). Among other local parameters, the total crown projection area was identified as the major factor impacting the accuracy of the aboveground biomass inventory estimates from the UAV survey data in both approaches. In the dense stands with the high total crown projections areas (more than 0.90), the average relative deviations of the UAV-based aboveground biomass estimates from the results of the field measurements were close to 0, which means the adequate accuracy of the UAV surveys data for radioecological monitoring purposes. The relative deviations of the UAV-based estimates in both approaches increased in the stands consisting of separated groups of trees, which indicates potential limitation of the approaches and need for their further development.
Collapse
Affiliation(s)
- Dmytrii Holiaka
- Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv Str. 7, Chabany, Kyiv Region, 08162, Ukraine
| | - Hiroaki Kato
- Center for Research in Isotopes and Environmental Dynamics at University of Tsukuba, 1 Tennodai, Tsukuba, 305-8577, Japan
| | - Vasyl Yoschenko
- Institute of Environmental Radioactivity at Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| | - Yuichi Onda
- Center for Research in Isotopes and Environmental Dynamics at University of Tsukuba, 1 Tennodai, Tsukuba, 305-8577, Japan
| | - Yasunori Igarashi
- Institute of Environmental Radioactivity at Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Kenji Nanba
- Institute of Environmental Radioactivity at Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Petro Diachuk
- Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv Str. 7, Chabany, Kyiv Region, 08162, Ukraine
| | - Maryna Holiaka
- Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv Str. 7, Chabany, Kyiv Region, 08162, Ukraine
| | - Roman Zadorozhniuk
- Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv Str. 7, Chabany, Kyiv Region, 08162, Ukraine
| | - Valery Kashparov
- Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv Str. 7, Chabany, Kyiv Region, 08162, Ukraine
| | - Ihor Chyzhevskyi
- State Specialized Enterprise Ecocentre, State Agency of Ukraine on Exclusion Zone Management, Shkil'na Str. 4, Chernobyl, Kyiv Region, 07270, Ukraine
| |
Collapse
|
8
|
The Return of Nature to the Chernobyl Exclusion Zone: Increases in Forest Cover of 1.5 Times Since the 1986 Disaster. FORESTS 2021. [DOI: 10.3390/f12081024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For 34 years since the 1986 nuclear disaster, the Chernobyl Exclusion Zone (ChEZ) landscapes have been protected with very limited human interventions. Natural afforestation has largely occurred throughout the abandoned farmlands, while natural disturbance regimes, which dominantly include wildfires, have become more frequent and severe in the last years. Here, we utilize the dense time series of Landsat satellite imagery (1986–2020) processed by using the temporal segmentation algorithm LandTrendr in order to derive a robust land cover and forest mask product for the ChEZ. Additionally, we carried out an analysis of land cover transitions on the former farmlands. The Random Forest classification model developed here has achieved overall accuracies of 80% (using training data for 2017) and 89% on a binary “forest/non-forest” validation (using data from 1988). The total forest cover area within the ChEZ has increased from 41% (in 1986) to 59% (in 2020). This forest gain can be explained by the afforestation that has occurred in abandoned farmlands, which compensates for forest cover losses due to large fire events in 1992, 2015–2016, and 2020. Most transitions from open landscapes to dense forest cover occurred after the year 2000 and are possibly linked to past forest management practices. We conclude that a consistent forest strategy, with the aid of remote monitoring, is required to efficiently manage new forests in the ChEZ in order to retain their ecosystem functions and to ensure sustainable habitats.
Collapse
|
9
|
Nguyen Phuong T, Kaneko S, Koya S, Ohira H, Tsukada H. Radiation dose rate to Japanese cedar and plants collected from Okuma, Fukushima Prefecture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146350. [PMID: 33744576 DOI: 10.1016/j.scitotenv.2021.146350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
After the 2011 Fukushima Dai-ichi Nuclear Power Station (FDNPS) accident, wild populations of animals and plants living in the evacuation zone received additional ionizing radiation of both internal and external radiation doses. Morphological abnormalities of pine and fir trees near the FDNPS were reported. In order to evaluate dose-effect relationships, it is necessary to quantify the radiation doses to trees and plants. In this study, the internal and external dose rates to Japanese cedar and plants collected at three sites in Okuma, approximately 4 km southwest of FDNPS were estimated applying the ERICA Assessment Tool. The activity concentrations of 134Cs and 137Cs in soils, cedar trunks, and plants were determined. The total dose rates to cedar ranged from 2.2 ± 1.2 to 6.1 ± 2.2 μGy h-1. These rates were within the derived consideration reference levels (DCRLs) reported by ICRP 108 as 4-40 μGy h-1 for pine trees. The highest estimate for plants was 7.1 ± 2.7 μGy h-1, much smaller than the DCRLs reported for grasses and herbs (40-400 μGy h-1). On average, the internal radiation dose rates to cedars at the two sites accounted for 5% and 29% of the external dose rates, respectively, while the value in another site was only 0.4% for cedar. This was attributed to differences in the crown area between the three sites. The trunk diameter of cedars shows a positive correlation with the ratio of internal to external radiation dose rates. It indicates that the total dose rate to cedars is easily estimated with the soil radiocaesium inventory and trunk diameter. The internal radiation dose rate to the plant varied depending on the plant species. This variation was considerably large in plants due to the presence of two species, including Solidago altissima and Artemisia indica var. maximowiczii.
Collapse
Affiliation(s)
- Thoa Nguyen Phuong
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan; Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan
| | - Shingo Kaneko
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan; Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan
| | - Shishido Koya
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan
| | - Hajime Ohira
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan
| | - Hirofumi Tsukada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan.
| |
Collapse
|
10
|
Geras'kin S, Yoschenko V, Bitarishvili S, Makarenko E, Vasiliev D, Prazyan A, Lychenkova M, Nanba K. Multifaceted effects of chronic radiation exposure in Japanese red pines from Fukushima prefecture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142946. [PMID: 33498123 DOI: 10.1016/j.scitotenv.2020.142946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
Despite many studies carried out to date, the long-term effects of chronic exposure on plants and animals inhabiting the territories affected by the Fukushima Dai-Ichi NPP accident remain the subject of scientific discussions. Our investigations were performed on Japanese red pine, the native tree species that is widely spread in the radioactive contaminated areas. Earlier observations revealed the radiation-induced cancellation of the apical dominance in young trees of this species. To understand the mechanism of such transformation, we evaluated the morphometric parameters of needles, the frequency of cytogenetic abnormalities, and the concentrations of the major classes of phytohormones in several natural populations of young red pine trees growing under different exposure conditions in Fukushima prefecture. No significant relationships between the morphometric parameters of needles and dose rates at the experimental sites were revealed. The frequencies of aberrant cells in the needle's intercalary meristem and the frequencies of cancellation of the apical dominance in the young pine populations in the radioactive contaminated areas were significantly higher than in the reference population. However, only cytogenetic abnormalities increased with the dose rate. We have not found the relation between the frequency of cytogenetic abnormalities in needles and cancellation of the apical dominance in the individual trees. In this paper, for the first time, it is shown that chronic radiation exposure changes the concentration ratio of the major classes of phytohormones in the needles of Japanese red pine. Given the complete lack of information about the most important regulatory system of plants in chronically irradiated populations, this study fills a substantial gap in our knowledge. Finally, our findings indicated that the most probable causes of the cancellation of apical dominance observed in chronically exposed Japanese red pines are radiation damage to the apical meristems of the trees and changes in their phytohormonal balance.
Collapse
Affiliation(s)
- Stanislav Geras'kin
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia.
| | - Vasyl Yoschenko
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | - Sofia Bitarishvili
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia
| | - Ekaterina Makarenko
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia
| | - Denis Vasiliev
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia
| | - Alexandr Prazyan
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia
| | - Maria Lychenkova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia
| | - Kenji Nanba
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
11
|
Kashparov V, Salbu B, Simonucci C, Levchuk S, Reinoso-Maset E, Lind OC, Maloshtan I, Protsak V, Courbet C, Nguyen H. Validation of a fuel particle dissolution model with samples from the Red Forest within the Chernobyl exclusion zone. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 223-224:106387. [PMID: 32868094 DOI: 10.1016/j.jenvrad.2020.106387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
The contamination in the near exclusion zone of the Chernobyl nuclear power plant (ChNPP) with 90Sr, 238-240Pu and 241Am is associated with irradiated nuclear fuel particles. Fit for purpose models enabling long term prediction of mobility and bioavailability of particle-associated radionuclides are crucial for radiation protection of humans and the environment, as well as for planning of remediation measures and future land use. In the present work, a dynamic fuel particle dissolution model developed in 1999-2002 is described and validated using data based on sampling in 2015. The model is based on the characterization of the radionuclide source term of the waste in a shallow sub-surface radioactive waste storage, trench #22, in the Chernobyl Pilot Site (CPS) located in the Red Forest, 2.5 km west of the ChNPP, as well as the description of physical and chemical properties of the fuel particles and subsequent radionuclide leaching into the soil solution. Transformation rate constants of the fuel particle dissolution model related to topsoil, radioactive waste trench and submerged materials, and drained cooling pond sediments, should largely control the mobility and bioavailability of radionuclides (e.g., solubility in the soil, migration to groundwater and transfer to plants). The predicting power of the Chernobyl fuel particle dissolution model with respect to radionuclide leaching dynamics was validated using samples from the same experimental site, showing that predicted particle leaching and subsequent mobility and bioavailability were within 46 ± 3% of the observed data. Therefore, linking source- and release-scenario dependent characteristics of radioactive particles to their potential weathering can provide information that can be implemented in impact assessments models for existing contaminated areas as well as for future events.
Collapse
Affiliation(s)
- V Kashparov
- National University of Life and Environment Sciences (NUBiP of Ukraine), Ukraine; Centre for Environmental Radioactivity (CERAD CoE), Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | - B Salbu
- National University of Life and Environment Sciences (NUBiP of Ukraine), Ukraine; Centre for Environmental Radioactivity (CERAD CoE), Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - C Simonucci
- IRSN, PSE-ENV/SIRSE/LER-NORD, POB 17, F-92262, Fontenay-aux-Roses Cedex, France
| | - S Levchuk
- National University of Life and Environment Sciences (NUBiP of Ukraine), Ukraine
| | - E Reinoso-Maset
- Centre for Environmental Radioactivity (CERAD CoE), Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - O C Lind
- Centre for Environmental Radioactivity (CERAD CoE), Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - I Maloshtan
- National University of Life and Environment Sciences (NUBiP of Ukraine), Ukraine
| | - V Protsak
- National University of Life and Environment Sciences (NUBiP of Ukraine), Ukraine
| | - C Courbet
- INTERA, 1 Rue des Vergers, Bât. 3, F-69760, Limonest, France
| | - H Nguyen
- BURGEAP, 143 avenue de Verdun, F-92442, Issy-les-Moulineaux Cedex, France
| |
Collapse
|
12
|
Holiaka D, Fesenko S, Kashparov V, Protsak V, Levchuk S, Holiaka M. Effects of radiation on radial growth of Scots pine in areas highly affected by the Chernobyl accident. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 222:106320. [PMID: 32892896 DOI: 10.1016/j.jenvrad.2020.106320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The effects of radiation on radial growth of Scots pine (Pinus sylvestris L.) affected by the Chernobyl accident were studied at five sites with different deposition levels. The study sites were chosen along a high gradient of depositions at the distance of a few hundred meters in the forests with similar forest characteristics. Air dose rates varied at the sites from the background values up to 30 μGy h-1 as of December 1, 2016. Scots pine trees exposed to sub-lethal doses of 8.6-13.2 Gy at the "Red Forest" site did not demonstrate deviations in formation of annual rings 30 years after the Chernobyl accident compared to trees with lower doses and control trees. Variation with time in annual rings thickness did reveal that the effect of radiation in trees growing at the sites with different contamination not detectable in 1986 and 1987. Conversely, the effects were clear observed in a later period in 1989-1991, i.e. 3-5 years after the accident. Until 2000, there were statistically significant differences in the annual rings growth rates of Scots pine trees exposed to external absorbed dose rates of 4.4-6.7 mGy h-1 as estimated for June 1, 1986 (or 19.5-30.0 μGy h-1 as of December 1, 2016) compared with the trees of the other sites studied. The results comply with the conclusions from research with acute pine exposure conducted in the Kyshtym area in 1975-1984.
Collapse
Affiliation(s)
- D Holiaka
- Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine.
| | - S Fesenko
- Russian Institute of Radiology and Agroecology, Obninsk, Russian Federation
| | - V Kashparov
- Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine; CERAD CoE Environmental Radioactivity Department of Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas, Norway
| | - V Protsak
- Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - S Levchuk
- Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - M Holiaka
- Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
13
|
Kashparova E, Levchuk S, Morozova V, Kashparov V. A dose rate causes no fluctuating asymmetry indexes changes in silver birch (Betula pendula (L.) Roth.) leaves and Scots pine (Pinus sylvestris L.) needles in the Chernobyl Exclusion Zone. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105731. [PMID: 29880300 DOI: 10.1016/j.jenvrad.2018.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 01/18/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The assessment of the fluctuating asymmetry based on measurement of the parameters of left and right parts of silver birch (Betula pendula (L.) Roth.) leaves and relative sizes of pairs of Scots pine (Pinus sylvestris L.) needles from the Chernobyl Exclusion Zone (ChEZ) was carried out. Twelve samples of both birch leaves and pairs of needles were collected from 10 trees at 5 sites in the Chernobyl Exclusion Zone and also at one control site located outside the ChEZ. Values of gamma dose rate in the air varied between the sites from 0.1 to 40 μGy h-1. Activity concentrations of 90Sr and 137Cs in the birch leaves varied over the range of 0.9÷2460 kBq kg-1 and 0.1÷339 kBq·kg-1 (DW), respectively. In addition to the above, in the Scots pine needles, these ranges were 0.7 ÷1970 kBq kg-1f for 90Sr and 0.1÷78 kBq kg-1 (DW) for 137Cs. From the values of the radionuclides activity concentrations in the plants, the internal dose rate is estimated to be in the range of 0.1 ÷ 274 μGy h-1. The main sources of the internal dose rate were radiation of 90Sr and 90Y. Indices of fluctuating asymmetry of silver birch leaves and Scots pine needles varied over the range of 0.048 ± 0.007 ÷ 0.060 ± 0.009 and 0.014 ± 0.002 ÷ 0.018 ± 0.002, respectively, and did not statistically differ for all experimental sites. The indices also did not depend on the external or internal dose rate of ionizing radiation for plants. The above findings seem to be consistent with other research effort in terms of understanding the response of organisms to chronic pollutant exposure and the long-term effects of large scale nuclear accidents.
Collapse
Affiliation(s)
- Elena Kashparova
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - Sviatoslav Levchuk
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - Valeriia Morozova
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine.
| | - Valery Kashparov
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| |
Collapse
|
14
|
Morozova V, Kashparova E, Levchuk S, Bishchuk Y, Kashparov V. The progeny of Chernobyl Arabidopsis thaliana plants does not exhibit changes in morphometric parameters and cellular antioxidant defence system of shoots. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106076. [PMID: 31630854 DOI: 10.1016/j.jenvrad.2019.106076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/14/2018] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Morphometric parameters and functional state of the cellular antioxidant defence system of shoots were studied in the progeny of Arabidopsis thaliana (L.) Heynh. (A. thaliana) plants, previously and chronically exposed in the Chernobyl Exclusion Zone (ChEZ). Changes in cellular antioxidant enzyme activities in the progeny of exposed plants were assumed because antioxidant status of cell may be altered by inherited epigenetic changes, resulting in changes in antioxidant-response genes expression. These changes can be inferred as induced expression of CAT and SOD genes was found previously for A. thaliana plants by another group of scientists. It is well-known that ionizing radiation may induce changes in hormonal-signalling net-work, shifting balance in growth factors that may cause changes in morphometric parameters of plants. Seeds from A. thaliana plants were collected in the ChEZ at different levels of the external dose rate from 0.28 ± 0.01 to 12.93 ± 0.08 μGy/h. Internal dose rate for parent plants was calculated on the basis of the activity concentration of 90Sr and 137Cs in the plants, using dose conversion coefficients for wild grass. Total dose rate, absorbed by parent plants, was calculated as the sum of the external and internal dose rate and was in a range between 2.8 ± 0.2 and 99 ± 8 μGy/h. Seeds were then grown in the standard laboratory conditions (nutrient-agar, light-dark cycle and appropriate temperature) to analyse morphometric parameters of seedlings and final germination percentage. No significant changes in the morphometric parameters (root length and rosette diameter of shoots) of the seedlings were observed. Changes in the final germination percentage of the studied seeds were found, but low correlation was observed between found changes and the dose rate, absorbed by parent plants. In contrast to the results obtained in A. thaliana plants directly sampled in the field, no effect on the functional state of the cellular antioxidant defence system of shoots in the progeny of Chernobyl A. thaliana plants was observed.
Collapse
Affiliation(s)
- Valeriia Morozova
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine.
| | - Elena Kashparova
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine
| | - Sviatoslav Levchuk
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine
| | - Yeugeniia Bishchuk
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine
| | - Valery Kashparov
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine.
| |
Collapse
|
15
|
Montgomery DA, Martinez NE. Dosimetric modeling of Tc-99, Cs-137, Np-237, and U-238 in the grass species Andropogon Virginicus: Development and comparison of stylized, voxel, and hybrid phantom geometry. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106075. [PMID: 31627053 DOI: 10.1016/j.jenvrad.2019.106075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
This paper discusses the development, comparison, and application of three anatomically representative computational phantoms for the grass species Andropogon virginicus, an indigenous grass species in the Southeastern United States. Specifically, the phantoms developed in this work are: (1) a stylized phantom where plant organs (roots or shoots) are represented by simple geometric shapes, (2) a voxel phantom developed from micro-CT imagery of a plant specimen, and (3) a hybrid phantom resulting from the refinement of (2) by use of non-uniform rational basis spline (NURBS) surfaces. For each computational phantom, Monte Carlo dosimetric modeling was utilized to determine whole-organism and organ specific dose coefficients (DC) associated with external and internal exposure to 99Tc, 137Cs, 237Np, and 238U for A. virginicus. Model DCs were compared to each other and to current values for the ICRP reference wild grass in order to determine if noteworthy differences resulted from the utilization of more anatomically realistic phantom geometry. Modeled internal DCs were comparable with ICRP values. However, modeled external DCs were more variable with respect to ICRP values; this is proposed to be primarily due to differences in organism and source geometry definitions. Overall, the three anatomical phantoms were reasonably consistent. Some noticeable differences in internal DCs were observed between the stylized model and the voxel or hybrid models for external DCs for shoots and for cases of crossfire between plant organs. Additionally, uptake data from previous hydroponic (HP) experiments was applied in conjunction with hybrid model DCs to determine dose rates to the plant from individual radionuclides as an example of practical application. Although the models within are applied to a small-scale, hypothetical scenario as proof-of-principle, the potential, real-world utility of such complex dosimetric models for non-human biota is discussed, and a fit-for purpose approach for application of these models is proposed.
Collapse
Affiliation(s)
- Dawn A Montgomery
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC, USA.
| | - Nicole E Martinez
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC, USA
| |
Collapse
|
16
|
Geras'kin S, Volkova P, Vasiliyev D, Dikareva N, Oudalova A, Kazakova E, Makarenko E, Duarte G, Kuzmenkov A. Scots pine as a promising indicator organism for biomonitoring of the polluted environment: A case study on chronically irradiated populations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:3-13. [PMID: 31255224 DOI: 10.1016/j.mrgentox.2018.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/13/2023]
Abstract
In this paper the main results of long-term (2003-2016) observations on Scots pine populations inhabiting sites affected by the Chernobyl accident are presented. Populations growing for many years under chronic radiation exposure are characterized by the enhanced mutation rates, increased genetic diversity, changes in the gene expression and in the level of genome-wide methylation, alterations in the temporal dynamics of cytogenetic abnormalities and genetic structure of populations. However, significant changes at the genetic level had no effects on enzymatic activity, morphological abnormalities, and reproductive ability of pine trees. The results presented increase our understanding of the long-term effects of chronic radiation exposure on plant populations in the wild nature and provide important information for the management and monitoring of radioactively contaminated territories.
Collapse
Affiliation(s)
| | - Polina Volkova
- Russian Institute of Radiology and Agroecology, Obninsk, Russia
| | - Denis Vasiliyev
- Russian Institute of Radiology and Agroecology, Obninsk, Russia
| | - Nina Dikareva
- Russian Institute of Radiology and Agroecology, Obninsk, Russia
| | - Alla Oudalova
- Russian Institute of Radiology and Agroecology, Obninsk, Russia; Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Obninsk, Russia
| | | | | | - Gustavo Duarte
- Russian Institute of Radiology and Agroecology, Obninsk, Russia; Institute Jean-Pierre Bourgin, Versailles, France
| | | |
Collapse
|
17
|
Schlichting PE, Love CN, Webster SC, Beasley JC. Efficiency and composition of vertebrate scavengers at the land-water interface in the Chernobyl Exclusion Zone. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2018.e00107] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Caplin N, Willey N. Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. FRONTIERS IN PLANT SCIENCE 2018; 9:847. [PMID: 29997637 PMCID: PMC6028737 DOI: 10.3389/fpls.2018.00847] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 05/09/2023]
Abstract
Understanding the effects of ionizing radiation (IR) on plants is important for environmental protection, for agriculture and horticulture, and for space science but plants have significant biological differences to the animals from which much relevant knowledge is derived. The effects of IR on plants are understood best at acute high doses because there have been; (a) controlled experiments in the field using point sources, (b) field studies in the immediate aftermath of nuclear accidents, and (c) controlled laboratory experiments. A compilation of studies of the effects of IR on plants reveals that although there are numerous field studies of the effects of chronic low doses on plants, there are few controlled experiments that used chronic low doses. Using the Bradford-Hill criteria widely used in epidemiological studies we suggest that a new phase of chronic low-level radiation research on plants is desirable if its effects are to be properly elucidated. We emphasize the plant biological contexts that should direct such research. We review previously reported effects from the molecular to community level and, using a plant stress biology context, discuss a variety of acute high- and chronic low-dose data against Derived Consideration Reference Levels (DCRLs) used for environmental protection. We suggest that chronic low-level IR can sometimes have effects at the molecular and cytogenetic level at DCRL dose rates (and perhaps below) but that there are unlikely to be environmentally significant effects at higher levels of biological organization. We conclude that, although current data meets only some of the Bradford-Hill criteria, current DCRLs for plants are very likely to be appropriate at biological scales relevant to environmental protection (and for which they were intended) but that research designed with an appropriate biological context and with more of the Bradford-Hill criteria in mind would strengthen this assertion. We note that the effects of IR have been investigated on only a small proportion of plant species and that research with a wider range of species might improve not only the understanding of the biological effects of radiation but also that of the response of plants to environmental stress.
Collapse
Affiliation(s)
| | - Neil Willey
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom
| |
Collapse
|
19
|
Volkova PY, Geras'kin SA, Horemans N, Makarenko ES, Saenen E, Duarte GT, Nauts R, Bondarenko VS, Jacobs G, Voorspoels S, Kudin M. Chronic radiation exposure as an ecological factor: Hypermethylation and genetic differentiation in irradiated Scots pine populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:105-112. [PMID: 28931465 DOI: 10.1016/j.envpol.2017.08.123] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 05/18/2023]
Abstract
Genetic and epigenetic changes were investigated in chronically irradiated Scots pine (Pinus sylvestris L.) populations from territories that were heavily contaminated by radionuclides as result of the Chernobyl Nuclear Power Plant accident. In comparison to the reference site, the genetic diversity revealed by electrophoretic mobility of AFLPs was found to be significantly higher at the radioactively contaminated areas. In addition, the genome of pine trees was significantly hypermethylated at 4 of the 7 affected sites.
Collapse
Affiliation(s)
- P Yu Volkova
- Institute of Radiology and Agroecology, 249030, Obninsk, Russian Federation.
| | - S A Geras'kin
- Institute of Radiology and Agroecology, 249030, Obninsk, Russian Federation
| | - N Horemans
- Belgian Nuclear Research Centre SCK•CEN, Biosphere Impact Studies, Boeretang 200, 2400, Mol, Belgium
| | - E S Makarenko
- Institute of Radiology and Agroecology, 249030, Obninsk, Russian Federation
| | - E Saenen
- Belgian Nuclear Research Centre SCK•CEN, Biosphere Impact Studies, Boeretang 200, 2400, Mol, Belgium
| | - G T Duarte
- Institute of Radiology and Agroecology, 249030, Obninsk, Russian Federation
| | - R Nauts
- Belgian Nuclear Research Centre SCK•CEN, Biosphere Impact Studies, Boeretang 200, 2400, Mol, Belgium
| | - V S Bondarenko
- Institute of Radiology and Agroecology, 249030, Obninsk, Russian Federation
| | - G Jacobs
- Flemish Institute for Technological Research (VITO NV), Boeretang 200, 2400 Mol, Belgium
| | - S Voorspoels
- Flemish Institute for Technological Research (VITO NV), Boeretang 200, 2400 Mol, Belgium
| | - M Kudin
- Polessye State Radiation Ecological Reserve, 247618, Belarus
| |
Collapse
|
20
|
Stark K, Goméz-Ros JM, Vives I Batlle J, Lindbo Hansen E, Beaugelin-Seiller K, Kapustka LA, Wood MD, Bradshaw C, Real A, McGuire C, Hinton TG. Dose assessment in environmental radiological protection: State of the art and perspectives. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 175-176:105-114. [PMID: 28505478 DOI: 10.1016/j.jenvrad.2017.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 04/09/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state. Additionally, the results of several papers published over the last decade have been criticized because of poor dosimetry. Therefore, a workshop on environmental dosimetry was organized by the STAR (Strategy for Allied Radioecology) Network of Excellence to review the state of the art in environmental dosimetry and prioritize areas of methodological and guidance development. Herein, we report the key findings from that international workshop, summarise parameters that affect the dose animals and plants receive when exposed to radiation, and identify further research needs. Current dosimetry practices for determining environmental protection are based on simple screening dose assessments using knowledge of fundamental radiation physics, source-target geometry relationships, the influence of organism shape and size, and knowledge of how radionuclide distributions in the body and in the soil profile alter dose. In screening model calculations that estimate whole-body dose to biota the shapes of organisms are simply represented as ellipsoids, while recently developed complex voxel phantom models allow organ-specific dose estimates. We identified several research and guidance development priorities for dosimetry. For external exposures, the uncertainty in dose estimates due to spatially heterogeneous distributions of radionuclide contamination is currently being evaluated. Guidance is needed on the level of dosimetry that is required when screening benchmarks are exceeded and how to report exposure in dose-effect studies, including quantification of uncertainties. Further research is needed to establish whether and how dosimetry should account for differences in tissue physiology, organism life stages, seasonal variability (in ecology, physiology and radiation field), species life span, and the proportion of a population that is actually exposed. We contend that, although major advances have recently been made in environmental radiation protection, substantive improvements are required to reduce uncertainties and increase the reliability of environmental dosimetry.
Collapse
Affiliation(s)
- Karolina Stark
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden.
| | - José M Goméz-Ros
- Spanish Research Centre in Energy, Environment and Technology, CIEMAT, Avenida Complutense 40, 28040 Madrid, Spain
| | - Jordi Vives I Batlle
- Biosphere Impact Studies Unit, Belgian Nuclear Research Centre SCK•CEN, Boeretang 200, 2400 Mol, Belgium
| | - Elisabeth Lindbo Hansen
- Norwegian Radiation Protection Authority, Department of Research, P.O. Box 55, NO-1332 Østerås, Norway; CERAD Centre of Excellence in Environmental Radioactivity, P.O. Box 5003, No-1432 Ås, Norway
| | - Karine Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PRP-ENV, SERIS, LRTE, Cadarache, 13115 Saint Paul Lez Durance Cedex, France
| | | | - Michael D Wood
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK
| | - Clare Bradshaw
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Almudena Real
- Spanish Research Centre in Energy, Environment and Technology, CIEMAT, Avenida Complutense 40, 28040 Madrid, Spain
| | - Corynne McGuire
- Scottish Environment Protection Agency, Strathallan House, Castle Business Park, Stirling FK9 4TZ, UK
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
21
|
Geras'kin S, Vasiliyev D, Makarenko E, Volkova P, Kuzmenkov A. Influence of long-term chronic exposure and weather conditions on Scots pine populations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11240-11253. [PMID: 28299565 DOI: 10.1007/s11356-017-8692-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
Over a period of 8 years (2007-2014), we were evaluating seed quality and morphological abnormalities in Scots pine trees affected as a result of the Chernobyl accident. The calculated dose rates for the trees at the study sites varied from background values at the reference sites to 40 mGy/year at the most contaminated site. We investigated whether radioactive contamination and/or weather factors could decrease the reproductive capacity or increase the frequency of morphological abnormalities of needles in pine trees. Scots pine seeds are characterized by high interannual variability of viability, which is largely determined by weather conditions. No consistent differences in reproductive capacity were detected between the impacted and reference populations. Brachyblasts with three needles were found only in the affected populations; however, their frequency was very low and only at the very border of significance at the p < 0.10 level.
Collapse
Affiliation(s)
- Stanislav Geras'kin
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249020, Obninsk, Russia.
| | - Denis Vasiliyev
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249020, Obninsk, Russia
| | - Ekaterina Makarenko
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249020, Obninsk, Russia
| | - Polina Volkova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249020, Obninsk, Russia
| | - Alexey Kuzmenkov
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249020, Obninsk, Russia
| |
Collapse
|
22
|
Castillo H, Smith GB. Below-Background Ionizing Radiation as an Environmental Cue for Bacteria. Front Microbiol 2017. [DOI: 10.3389/fmicb.2017.00177] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
23
|
Yoschenko V, Nanba K, Yoshida S, Watanabe Y, Takase T, Sato N, Keitoku K. Morphological abnormalities in Japanese red pine (Pinus densiflora) at the territories contaminated as a result of the accident at Fukushima Dai-Ichi Nuclear Power Plant. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 165:60-67. [PMID: 27637076 DOI: 10.1016/j.jenvrad.2016.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/25/2016] [Accepted: 09/04/2016] [Indexed: 05/06/2023]
Abstract
Our research, carried out in 2014-2016 at eight sites in the radioactive contaminated territories of Fukushima Prefecture, showed that the young trees of Japanese red pine (Pinus densiflora) are sensitive to radiation. Irradiation induced cancellation of the apical dominance in this species. The effect is similar to that observed in young trees of Scots pine growing in the Chernobyl zone. At the same time, we did not observed any morphological abnormalities in mature trees of Japanese red pine. The probability of cancelling the apical dominance in Japanese red pine increased to 0.11 and 0.14 in the two less irradiated populations, and to 0.5 and 0.9 at sites were the absorbed dose rates were approximately 14 and 25 μGy h-1, respectively. Most of the observed abnormalities appeared in the second whorl after the beginning of exposure. No new abnormalities were observed in the fifth whorl. This temporal pattern is similar to those reported for Scots pine in Chernobyl and for Japanese fir in Fukushima. Additional detailed studies are necessary for interpretation of the observed temporal pattern and, in general, for explanation of the mechanism of formation of the morphological abnormalities.
Collapse
Affiliation(s)
- Vasyl Yoschenko
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| | - Kenji Nanba
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Satoshi Yoshida
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| | - Yoshito Watanabe
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| | - Tsugiko Takase
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Natsumi Sato
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Koji Keitoku
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| |
Collapse
|
24
|
Lourenço J, Mendo S, Pereira R. Radioactively contaminated areas: Bioindicator species and biomarkers of effect in an early warning scheme for a preliminary risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:503-542. [PMID: 27343869 DOI: 10.1016/j.jhazmat.2016.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/26/2016] [Accepted: 06/08/2016] [Indexed: 05/24/2023]
Abstract
Concerns about the impacts on public health and on the natural environment have been raised regarding the full range of operational activities related to uranium mining and the rest of the nuclear fuel cycle (including nuclear accidents), nuclear tests and depleted uranium from military ammunitions. However, the environmental impacts of such activities, as well as their ecotoxicological/toxicological profile, are still poorly studied. Herein, it is discussed if organisms can be used as bioindicators of human health effects, posed by lifetime exposure to radioactively contaminated areas. To do so, information was gathered from several studies performed on vertebrates, invertebrate species and humans, living in these contaminated areas. The retrieved information was compared, to determine which are the most used bioindicators and biomarkers and also the similarities between human and non-human biota responses. The data evaluated are used to support the proposal for an early warning scheme, based on bioindicator species and on the most sensitive and commonly shared biomarkers, to perform a screening evaluation of radioactively contaminated sites. This scheme could be used to support decision-making for a deeper evaluation of risks to human health, making it possible to screen a large number of areas, without disturbing and alarming local populations.
Collapse
Affiliation(s)
- Joana Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | - Sónia Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Ruth Pereira
- Department of Biology, Faculty of Sciences of the University of Porto & CIIMAR - Interdisciplinary Centre of Marine and Environmental Research & GreenUP/CITAB-UP, Porto, Portugal
| |
Collapse
|
25
|
Martinez NE, Johnson TE, Pinder JE. Application of computational models to estimate organ radiation dose in rainbow trout from uptake of molybdenum-99 with comparison to iodine-131. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 151 Pt 2:468-479. [PMID: 26048012 DOI: 10.1016/j.jenvrad.2015.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 06/04/2023]
Abstract
This study compares three anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ radiation dose and dose rates from molybdenum-99 ((99)Mo) uptake in the liver and GI tract. Model comparison and refinement is important to the process of determining accurate doses and dose rates to the whole body and the various organs. Accurate and consistent dosimetry is crucial to the determination of appropriate dose-effect relationships for use in environmental risk assessment. The computational phantoms considered are (1) a geometrically defined model employing anatomically relevant organ size and location, (2) voxel reconstruction of internal anatomy obtained from CT imaging, and (3) a new model utilizing NURBS surfaces to refine the model in (2). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling and combined with empirical models for predicting activity concentration to estimate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of (99)Mo. The computational models provided similar results, especially for organs that were both the source and target of radiation (less than 30% difference between all models). Values in the empirical model as well as the 14 day cumulative organ doses determined from (99)Mo uptake are compared to similar models developed previously for (131)I. Finally, consideration is given to treating the GI tract as a solid organ compared to partitioning it into gut contents and GI wall, which resulted in an order of magnitude difference in estimated dose for most organs.
Collapse
Affiliation(s)
- N E Martinez
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, USA.
| | - T E Johnson
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523, USA
| | - J E Pinder
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO, 80523, USA
| |
Collapse
|
26
|
Morphological defects in native Japanese fir trees around the Fukushima Daiichi Nuclear Power Plant. Sci Rep 2015; 5:13232. [PMID: 26314382 PMCID: PMC4551955 DOI: 10.1038/srep13232] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
After the accident at the Fukushima Daiichi Nuclear Power Plant (F1NPP) in March 2011, much attention has been paid to the biological consequences of the released radionuclides into the surrounding area. We investigated the morphological changes in Japanese fir, a Japanese endemic native conifer, at locations near the F1NPP. Japanese fir populations near the F1NPP showed a significantly increased number of morphological defects, involving deletions of leader shoots of the main axis, compared to a control population far from the F1NPP. The frequency of the defects corresponded to the radioactive contamination levels of the observation sites. A significant increase in deletions of the leader shoots became apparent in those that elongated after the spring of 2012, a year after the accident. These results suggest possibility that the contamination by radionuclides contributed to the morphological defects in Japanese fir trees in the area near the F1NPP.
Collapse
|
27
|
Evangeliou N, Balkanski Y, Cozic A, Hao WM, Mouillot F, Thonicke K, Paugam R, Zibtsev S, Mousseau TA, Wang R, Poulter B, Petkov A, Yue C, Cadule P, Koffi B, Kaiser JW, Møller AP. Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment. ECOL MONOGR 2015. [DOI: 10.1890/14-1227.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Bird WA, Little JB. A tale of two forests: addressing postnuclear radiation at Chernobyl and Fukushima. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:A78-85. [PMID: 23454631 PMCID: PMC3621180 DOI: 10.1289/ehp.121-a78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
29
|
Cigna AA. The radiobiogical effects on scots pine trees (pinus sylvestris) in the chernobyl exclusion zone. HEALTH PHYSICS 2012; 102:704-705. [PMID: 22549324 DOI: 10.1097/hp.0b013e31824b6985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|