1
|
Florquin M, Freson K, Labarque V. Endothelial colony-forming cells to study bleeding or vascular malformation disorders - opportunities and limitations. J Thromb Haemost 2025:S1538-7836(25)00238-7. [PMID: 40239811 DOI: 10.1016/j.jtha.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Hemostasis relies on a balance between procoagulant and anticoagulant factors involving interactions among the vascular endothelium, platelets, and multiple coagulation proteins. Disturbed hemostasis can result in clinical bleeding symptoms. Widely used diagnostic laboratory assays evaluate platelet count, platelet function, and various coagulation factors present in plasma, as typically studied in patients with bleeding, whereas endothelial cell function cannot be studied in this same manner. Measuring vascular endothelium function could indirectly be done using endothelial colony-forming cells (ECFCs), but this is not an assay readily used in diagnostic laboratories. ECFCs are true endothelial progenitor cells that can be isolated from peripheral blood. They exhibit great proliferative potential to form colonies in vitro and actively participate in angiogenesis; therefore, they are an excellent ex vivo model for studying several conditions where the vascular endothelium is involved. In this review, we provide a comprehensive overview of the use of ECFCs as a disease model to study various bleeding and vascular malformation disorders. Additionally, we discuss both advantages and (future) challenges associated with the use of ECFCs.
Collapse
Affiliation(s)
- Mona Florquin
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium; Department of Paediatrics, Paediatric Haemato-Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Veerle Labarque
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium; Department of Paediatrics, Paediatric Haemato-Oncology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Bär I, Barraclough A, Bürgisser PE, van Kwawegen C, Fijnvandraat K, Eikenboom JCJ, Leebeek FWG, Voorberg J, Bierings R. The severe von Willebrand disease variant p.M771V leads to impaired anterograde trafficking of von Willebrand factor in patient-derived and base-edited endothelial colony-forming cells. J Thromb Haemost 2025; 23:466-479. [PMID: 39510415 DOI: 10.1016/j.jtha.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND von Willebrand disease (VWD) is the most common inherited bleeding disorder caused by quantitative or qualitative defects in von Willebrand factor (VWF). The p.M771V VWF variant leads to a severe bleeding phenotype in homozygous patients. However, the exact molecular mechanism remains unclear, which prevents personalized treatment of those VWD patients. OBJECTIVES This study aimed to characterize the underlying molecular mechanisms of the p.M771V variant in multiple representative ex vivo cell models. METHODS Endothelial colony-forming cells (ECFCs) were isolated from venous blood of VWD patients from the Willebrand in the Netherlands cohort carrying homozygous and heterozygous p.M771V VWF variants. The p.M771V variant was also introduced in cord blood-derived ECFCs (CB-ECFCs) through adenine base editing and was overexpressed in HEK293 cells. Biosynthesis, storage, and secretion of VWF was studied using biochemical methods and confocal microscopy. RESULTS Two unrelated homozygous p.M771V patients presented with very low VWF activity and antigen levels in plasma. Patient ECFCs showed impaired uncleaved VWF processing into mature VWF, with secreted VWF being severely reduced when compared to ECFCs of healthy donors. Multimer analysis of p.M771V ECFCs showed a deficiency of high molecular weight VWF multimers. Immunofluorescent staining revealed VWF retention in the endoplasmic reticulum; this was confirmed in various populations of base-edited CB-ECFCs harboring the p.M771V variant. CONCLUSION The severe endothelial phenotype observed in patient-derived p.M771V ECFCs, HEK293 cells, and an original base-edited CB-ECFC modeling system show that endoplasmic reticulum retention of VWF and failure to undergo subsequent proteolytic processing underpins the severe bleeding phenotype of patients with homozygous variants at M771.
Collapse
Affiliation(s)
- Isabel Bär
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands. https://twitter.com/IsabelBr12
| | - Alastair Barraclough
- Department of Pediatric Hematology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Petra E Bürgisser
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Calvin van Kwawegen
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Karin Fijnvandraat
- Department of Pediatric Hematology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen C J Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, The Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands. https://twitter.com/FLeebeek
| | - Jan Voorberg
- Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam, The Netherlands. https://twitter.com/VoorbergJ
| | - Ruben Bierings
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
de Boer S, Laan S, Dirven R, Eikenboom J. Approaches to induce the maturation process of human induced pluripotent stem cell derived-endothelial cells to generate a robust model. PLoS One 2024; 19:e0297465. [PMID: 38394102 PMCID: PMC10889888 DOI: 10.1371/journal.pone.0297465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Endothelial cells generated from induced pluripotent stem cells (hiPSC-ECs) show the majority of endothelial cell characteristics and markers, such as cobblestone morphology and the expression of VEGF and VE-cadherin. However, these cells are failing to show a mature endothelial cell phenotype, which is represented by the low expression and production of von Willebrand Factor (VWF) leading to the round morphology of the Weibel Palade Bodies (WPBs). The aim of this study was to improve the maturation process of hiPSC-ECs and to increase the levels of VWF. METHODS hiPSC-ECs were differentiated by a standard differentiation protocol from hiPSCs generated from healthy control donors. To induce maturation, the main focus was to increase the expression and/or production of VWF by the adjustment of potential parameters influencing differentiation and maturation. We also compared alternative differentiation protocols. Cells were analyzed for the expression of endothelial cell markers, WPB structure, and the production and secretion of VWF by flow cytometry, confocal microscopy and ELISA. RESULTS The generated hiPSC-ECs have typical endothelial cell surface expression profiles, with low expression levels of non-endothelial markers as expected. Co-culture with pericytes, varying concentrations and timing of differentiation factors, applying some level of flow, and the addition of HDAC inhibitors did not substantially improve maturation of hiPSC-ECs. Transfection with the transcription factor ETV2 to induce a faster hiPSC-EC differentiation process resulted in a limited increase in VWF production, secretion, and elongation of WPB structure. Alternative differentiation protocols had limited effect. CONCLUSION hiPSCs-ECs have the potential to show a more mature endothelial phenotype with elongated WPBs after >30 days in culture. However, this comes with limitations as there are very few cells detected, and cells are deteriorating after being in culture for extended periods of time.
Collapse
Affiliation(s)
- Suzan de Boer
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Laan
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Richard Dirven
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Eikenboom
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Westwood LJ, Le Couteur DG, Hunt NJ, Cogger VC. Strategies to target and genetically modify the liver sinusoid. SINUSOIDAL CELLS IN LIVER DISEASES 2024:161-189. [DOI: 10.1016/b978-0-323-95262-0.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Li Y, Li H, Ma W, Maegele M, Tang Y, Gu Z. Proteomic profiling of serum exosomes reveals acute phase response and promotion of inflammatory and platelet activation pathways in patients with heat stroke. PeerJ 2023; 11:e16590. [PMID: 38107577 PMCID: PMC10725172 DOI: 10.7717/peerj.16590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Background: The pathological mechanism of heat stroke (HS) involves the acute phase response, unbalanced immunological/inflammatory reactions, and coagulation initiation, especially platelet activation. Although exosomes contain proteins involved in these biological processes, their protein cargo levels and potential roles in HS remain unknown. This study explored the serum exosome protein expression patterns after HS and their potential roles in the pathogenesis of HS. Methods: Blood samples were collected from ten patients diagnosed with HS upon admission to the intensive care unit (six with severe HS and four with mild HS). Samples from six healthy volunteers were included as control. Using ultracentrifugation, exosomes were prudently isolated, and their protein contents were profiled using liquid chromatography-tandem mass spectrometry analysis with isobaric tags for relative and absolute quantification-based proteomics. Results: Compared with healthy volunteers, patients with HS showed significant changes in the levels of 33 exosomal proteins (23 upregulated and 10 downregulated). The most upregulated proteins included serum amyloid A-1 (SAA-1), von Willebrand factor (vWF), S100A8, and histone H3. In addition, SAA-1, vWF, platelet membrane glycoprotein, S100A8, and histone H3 were more enriched in the exosomes from patients with severe HS than from those with mild HS. Gene ontology analysis revealed that the HS-modulated exosomal proteins were mostly related to inflammatory response, including the acute-phase response, platelet activation/degranulation, and innate immune response. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed significant enrichment of proteins in the IL-17 signaling pathway, platelet activation, neutrophil extracellular trap formation, Fc epsilon RI signaling pathway, chemokine signaling pathway, and NOD-like receptor signaling pathway, among others. Several serum exosomal proteins, including SAA-1, vWF, and S100A8, which are related to the acute phase, inflammatory response, and platelet activation, were confirmed to be elevated in patients with HS, and were significantly correlated with disease severity, organ dysfunction, and death. Conclusion: Overall, this study explores the potential role of the serum exosomal proteome in the inflammatory response and platelet activation in HS, suggests the pathological mechanisms underlying HS-induced injuries, and recommends reliable exosomal biomarkers for predicting HS prognosis.
Collapse
Affiliation(s)
- Yue Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, China
- Department of Treatment, Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
- Department of Emergency Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huan Li
- Department of ICU, Sun Yat-sen University Cancer Center, Guangzhou, China
- Sate Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenjuan Ma
- Department of ICU, Sun Yat-sen University Cancer Center, Guangzhou, China
- Sate Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Marc Maegele
- University Witten/Herdecke (UW/H), Köln, German
- Department for Trauma and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr, Köln, Germany
| | - Youqing Tang
- Department of Emergency Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhengtao Gu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, China
- Department of Treatment, Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Stritt S, Nurden P, Nurden AT, Schved JF, Bordet JC, Roux M, Alessi MC, Trégouët DA, Mäkinen T, Giansily-Blaizot M. APOLD1 loss causes endothelial dysfunction involving cell junctions, cytoskeletal architecture, and Weibel-Palade bodies, while disrupting hemostasis. Haematologica 2023; 108:772-784. [PMID: 35638551 PMCID: PMC9973481 DOI: 10.3324/haematol.2022.280816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Vascular homeostasis is impaired in various diseases thereby contributing to the progression of their underlying pathologies. The endothelial immediate early gene Apolipoprotein L domain-containing 1 (APOLD1) helps to regulate endothelial function. However, its precise role in endothelial cell biology remains unclear. We have localized APOLD1 to endothelial cell contacts and to Weibel-Palade bodies (WPB) where it associates with von Willebrand factor (VWF) tubules. Silencing of APOLD1 in primary human endothelial cells disrupted the cell junction-cytoskeletal interface, thereby altering endothelial permeability accompanied by spontaneous release of WPB contents. This resulted in an increased presence of WPB cargoes, notably VWF and angiopoietin-2 in the extracellular medium. Autophagy flux, previously recognized as an essential mechanism for the regulated release of WPB, was impaired in the absence of APOLD1. In addition, we report APOLD1 as a candidate gene for a novel inherited bleeding disorder across three generations of a large family in which an atypical bleeding diathesis was associated with episodic impaired microcirculation. A dominant heterozygous nonsense APOLD1:p.R49* variant segregated to affected family members. Compromised vascular integrity resulting from an excess of plasma angiopoietin-2, and locally impaired availability of VWF may explain the unusual clinical profile of APOLD1:p.R49* patients. In summary, our findings identify APOLD1 as an important regulator of vascular homeostasis and raise the need to consider testing of endothelial cell function in patients with inherited bleeding disorders without apparent platelet or coagulation defects.
Collapse
Affiliation(s)
- Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Paquita Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Pessac, France.
| | - Alan T Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Pessac, France
| | - Jean-François Schved
- Department of Biological Hematology, CHU Montpellier, Université de Montpellier, Montpellier
| | - Jean-Claude Bordet
- Hematology, Hospices civils de Lyon, Bron biology center and Hemostasis- Thrombosis, Lyon-1 University, Lyon
| | | | | | - David-Alexandre Trégouët
- Laboratory of Excellence GENMED (Medical Genomics), Paris; University of Bordeaux, INSERM, Bordeaux Population Health Research Center, U1219, Bordeaux
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Muriel Giansily-Blaizot
- Department of Biological Hematology, CHU Montpellier, Université de Montpellier, Montpellier
| |
Collapse
|
7
|
Lee DF, Thompson CL, Baynes RE, Enomoto H, Smith GW, Chambers MA. Development and evaluation of a bovine lung-on-chip (bLOC) to study bovine respiratory diseases. IN VITRO MODELS 2022; 1:333-346. [PMID: 36660607 PMCID: PMC9383688 DOI: 10.1007/s44164-022-00030-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/22/2023]
Abstract
Purpose Current air-liquid interface (ALI) models of bovine proximal airways have their limitations. They do not simulate blood flow necessary to mimic systemic drug administration, and repeated sampling requires multiple, independent cultures. A bovine lung-on-chip (bLOC) would overcome these limitations, providing a convenient and cost-effective model for pharmacokinetic or pathogenicity studies. Methods Bovine pulmonary arterial endothelial cells seeded into the endothelial channel of an Emulate Lung-Chip were interfaced with bovine bronchial epithelial cells in the epithelial channel. Cells were cultured at ALI for up to 21 days. Differentiation was assessed by mucin quantification, phase-contrast light microscopy and immunofluorescence of cell-specific markers in fixed cultures. Barrier integrity was determined by FITC-labelled dextran 3-5 kDa permeability. To evaluate the model, endothelial-epithelial transport of the antibiotic drug, danofloxacin, was followed using liquid chromatography-mass spectrometry, with the aim of replicating data previously determined in vivo. Results bLOC cultures secreted quantifiable mucins, whilst cilia formation was evident in the epithelial channel. Barrier integrity of the model was demonstrated by resistance to FITC-Dextran 3-5 kDa permeation. Bronchial epithelial and endothelial cell-specific markers were observed. Close to plasma, representative PK data for danofloxacin was observed in the endothelial channel; however, danofloxacin in the epithelial channel was mostly below the limit of quantification. Conclusion A co-culture model of the bovine proximal airway was successfully generated, with potential to replace in vivo experimentation. With further optimisation and characterisation, the bLOC may be suitable to perform drug pharmacokinetic studies for bovine respiratory disease (BRD), and other applications.
Collapse
Affiliation(s)
- Diane F. Lee
- School of Veterinary Medicine, University of Surrey, Guildford, UK
- Now at Sussex Drug Discovery Centre, University of Sussex, Falmer, UK
| | - Clare L. Thompson
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Ronald E. Baynes
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Hiroko Enomoto
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | | | - Mark A. Chambers
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
8
|
Yadegari H, Jamil MA, Marquardt N, Oldenburg J. A Homozygous Deep Intronic Variant Causes Von Willebrand Factor Deficiency and Lack of Endothelial-Specific Secretory Organelles, Weibel-Palade Bodies. Int J Mol Sci 2022; 23:ijms23063095. [PMID: 35328514 PMCID: PMC8950443 DOI: 10.3390/ijms23063095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
A type 3 von Willebrand disease (VWD) index patient (IP) remains mutation-negative after completion of the conventional diagnostic analysis, including multiplex ligation-dependent probe amplification and sequencing of the promoter, exons, and flanking intronic regions of the VWF gene (VWF). In this study, we intended to elucidate causative mutation through next-generation sequencing (NGS) of the whole VWF (including complete intronic region), mRNA analysis, and study of the patient-derived endothelial colony-forming cells (ECFCs). The NGS revealed a variant in the intronic region of VWF (997 + 118 T > G in intron 8), for the first time. The bioinformatics assessments (e.g., SpliceAl) predicted this variant creates a new donor splice site (ss), which could outcompete the consensus 5′ donor ss at exon/intron 8. This would lead to an aberrant mRNA that contains a premature stop codon, targeting it to nonsense-mediated mRNA decay. The subsequent quantitative real-time PCR confirmed the virtual absence of VWF mRNA in IP ECFCs. Additionally, the IP ECFCs demonstrated a considerable reduction in VWF secretion (~6% of healthy donors), and they were devoid of endothelial-specific secretory organelles, Weibel−Palade bodies. Our findings underline the potential of NGS in conjunction with RNA analysis and patient-derived cell studies for genetic diagnosis of mutation-negative type 3 VWD patients.
Collapse
Affiliation(s)
- Hamideh Yadegari
- Correspondence: (H.Y.); (J.O.); Tel.: +49-228-287-10532 (H.Y.); +49-228-287-15175 (J.O.)
| | | | | | - Johannes Oldenburg
- Correspondence: (H.Y.); (J.O.); Tel.: +49-228-287-10532 (H.Y.); +49-228-287-15175 (J.O.)
| |
Collapse
|
9
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|