1
|
Tremblay D, Hasserjian RP, Rampal RK. Myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes: a practical guide to diagnosis and management. Leukemia 2025:10.1038/s41375-025-02620-8. [PMID: 40253543 DOI: 10.1038/s41375-025-02620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) overlap syndromes are a rare group of biologically and clinically connected hematologic malignancies that includes chronic myelomonocytic leukemia (CMML), the most common subtype, as well as atypical chronic myeloid leukemia, MDS/MPN with SF3B1 and thrombocytosis, and MDS/MPN, not otherwise specified. Given their rarity and overlapping clinical features, accurate diagnosis and risk stratification presents a significant challenge. Therapeutic approaches are largely borrowed from either MDS or MPN and the only curative option for appropriate patients is allogeneic stem cell transplantation. Recent advances have started to uncover the pathobiologic basis for these diseases, leading to novel clinical trials for MDS/MPN overlap syndromes, in particular CMML. This review is a practical guide for the diagnosis and management of MDS/MPN overlap syndromes and presents novel therapeutics being specifically designed for these diseases to improve their historically poor outcomes.
Collapse
Affiliation(s)
- Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | | |
Collapse
|
2
|
Chen X, Patkar N, Tembhare P, Papagudi S, Yeung C, Kanagal Shamanna R, Gujral S, Wood B, Naresh KN. Fifth edition WHO classification: myeloid neoplasms. J Clin Pathol 2025; 78:335-345. [PMID: 39947884 DOI: 10.1136/jcp-2024-210022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/30/2025] [Indexed: 04/19/2025]
Abstract
The fifth edition of the WHO classification of haematolymphoid tumours (WHO-HEM5) introduces significant advancements in the understanding and diagnosis of myeloid neoplasms, emphasising molecular and genetic insights. This review highlights key updates from the revised fourth edition (WHO-HEM4R), particularly the integration of genetic criteria for disease classification. Many entities are now defined by specific genetic abnormalities, enhancing diagnostic precision and prognostic assessment. Notably, the elimination of the 20% blast threshold for acute myeloid leukaemia (AML) with specific defining genetic alterations reflects a shift towards genomic-driven diagnostics. Additional updates include the refined subclassification of myelodysplastic neoplasms (MDS) and MDS/myeloproliferative neoplasms, as well as the recognition of novel entities such as clonal haematopoiesis and MDS with biallelic TP53 inactivation, further expanding the spectrum of myeloid neoplasms. WHO-HEM5 illustrates the diagnostic utility of morphology, flow cytometry, immunohistochemistry and next-generation sequencing in resource-rich settings. However, its implementation in low-income and middle-income countries (LMICs) remains challenging due to limited access to advanced diagnostic tools. This review explores strategies to optimise diagnosis in resource-constrained environments, where morphology and immunophenotyping remain fundamental. By integrating molecular diagnostics with traditional methods, WHO-HEM5 aims to refine classification and facilitate risk stratification in the era of personalised medicine, providing haematopathologists and clinicians with an essential framework to navigate the complexities of myeloid neoplasms. The emphasis on advancing haematopathology practices worldwide, including in LMICs, demonstrates the ongoing commitment to improving global outcomes in haematological malignancies.
Collapse
Affiliation(s)
- Xueyan Chen
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Nikhil Patkar
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Prashant Tembhare
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Subramanian Papagudi
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Cecelia Yeung
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | | | - Sumeet Gujral
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Brent Wood
- Diagnostic Immunology & Flow Cytometry, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Tessier S, He R, Greipp P, Viswanatha D, Bessonen K, Lasho T, Foran J, Arana-Yi C, Gangat N, Tefferi A, Shah M, Alkhateeb H, Liu S, Pardanani A, Patnaik M, Al-Kali A. Molecular and clinical characterization of ETNK1-mutated myeloid neoplasms: the Mayo Clinic experience. Blood Adv 2024; 8:4807-4811. [PMID: 39042872 PMCID: PMC11415849 DOI: 10.1182/bloodadvances.2024013255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Steven Tessier
- Department of Internal Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, MN
| | - Rong He
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Patricia Greipp
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - David Viswanatha
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Kurt Bessonen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Terra Lasho
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - James Foran
- Division of Hematology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Cecilia Arana-Yi
- Division of Hematology, Department of Medicine, Mayo Clinic, Phoenix, AZ
| | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mithun Shah
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Hassan Alkhateeb
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Shujun Liu
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mrinal Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Aref Al-Kali
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Crespiatico I, Zaghi M, Mastini C, D'Aliberti D, Mauri M, Mercado CM, Fontana D, Spinelli S, Crippa V, Inzoli E, Manghisi B, Civettini I, Ramazzotti D, Sangiorgio V, Gengotti M, Brambilla V, Aroldi A, Banfi F, Barone C, Orsenigo R, Riera L, Riminucci M, Corsi A, Breccia M, Morotti A, Cilloni D, Roccaro A, Sacco A, Stagno F, Serafini M, Mottadelli F, Cazzaniga G, Pagni F, Chiarle R, Azzoni E, Sessa A, Gambacorti-Passerini C, Elli EM, Mologni L, Piazza R. First-hit SETBP1 mutations cause a myeloproliferative disorder with bone marrow fibrosis. Blood 2024; 143:1399-1413. [PMID: 38194688 DOI: 10.1182/blood.2023021349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.
Collapse
Affiliation(s)
- Ilaria Crespiatico
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Mattia Zaghi
- Neuroepigenetics Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Mastini
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Deborah D'Aliberti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Carl Mirko Mercado
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Diletta Fontana
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Silvia Spinelli
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Valentina Crippa
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Elena Inzoli
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Beatrice Manghisi
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Ivan Civettini
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Valentina Sangiorgio
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Michele Gengotti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | | | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Federica Banfi
- Neuroepigenetics Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Cristiana Barone
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Roberto Orsenigo
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute, Vall d'Hebron Hospital Barcelona UAB, Barcelona, Spain
| | - Ludovica Riera
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Massimo Breccia
- Department of Translational and Precision Medicine, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Aldo Roccaro
- Clinical Trial Center, Translational Research and Phase I Unit, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Trial Center, Translational Research and Phase I Unit, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Stagno
- Division of Hematology, Azienda Ospedaliero Universitaria Policlinico G. Rodolico-S. Marco, Catania, Italy
| | - Marta Serafini
- Centro Tettamanti, Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Federica Mottadelli
- Centro Tettamanti, Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Giovanni Cazzaniga
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Centro Tettamanti, Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Fabio Pagni
- Department of Pathology, University of Milan-Bicocca, Monza, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA
- European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico, Division of Haematopathology, Milan, Italy
| | - Emanuele Azzoni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Alessandro Sessa
- Neuroepigenetics Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Elena Maria Elli
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
5
|
Breccia M. Atypical CML: diagnosis and treatment. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:476-482. [PMID: 38066919 PMCID: PMC10727105 DOI: 10.1182/hematology.2023000448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Atypical chronic myeloid leukemia (aCML) is included in the group of myelodysplastic/myeloproliferative neoplasms by the International Consensus Classification and has been renamed as MDS/MPN with neutrophilia by the fifth edition of World Health Organization classification. It is always characterized by morphologic identification of granulocytic dysplasia with >10% circulating immature myeloid cells, 2 distinguished features that differentiate this disease among the others. Somatic mutations may help to diagnose but are not specifically pathognomonic of the disease, with the most detected including ASXL1, SETBP1, NRAS, KRAS, SRSF2, and TET2 and with low-frequency CBL, CSF3R, JAK2, and ETNK1. The genomic landscape of aCML has been recently unravelling, revealing that SETBP1 and ETNK1 are usually not ancestral but secondary events associated with disease progression. Unfortunately, until now, no consensus on risk stratification and treatment has been developed: Mayo Clinic prognostic score identified as adverse events age >67 years, hemoglobin level <10 g/dL, and TET2 mutations. Although some possible genetic markers have been identified, allogeneic transplant remains the only curative strategy.
Collapse
MESH Headings
- Humans
- Aged
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Myelodysplastic-Myeloproliferative Diseases/diagnosis
- Mutation
- Prognosis
- Disease Progression
Collapse
Affiliation(s)
- Massimo Breccia
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
6
|
Kohyanagi N, Ohama T. The impact of SETBP1 mutations in neurological diseases and cancer. Genes Cells 2023; 28:629-641. [PMID: 37489294 PMCID: PMC11447826 DOI: 10.1111/gtc.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
SE translocation (SET) is a cancer-promoting factor whose expression is upregulated in many cancers. High SET expression positively correlates with a poor cancer prognosis. SETBP1 (SET-binding protein 1/SEB/MRD29), identified as SET-binding protein, is the causative gene of Schinzel-Giedion syndrome, which is characterized by severe intellectual disability and a distorted facial appearance. Mutations in these genetic regions are also observed in some blood cancers, such as myelodysplastic syndromes, and are associated with a poor prognosis. However, the physiological role of SETBP1 and the molecular mechanisms by which the mutations lead to disease progression have not yet been fully elucidated. In this review, we will describe the current epidemiological data on SETBP1 mutations and shed light on the current knowledge about the SET-dependent and -independent functions of SETBP1.
Collapse
Affiliation(s)
- Naoki Kohyanagi
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| |
Collapse
|
7
|
Fontana D, Elli EM, Pagni F, Piazza R. Myelodysplastic Syndromes/Myeloproliferative Overlap Neoplasms and Differential Diagnosis in the WHO and ICC 2022 Era: A Focused Review. Cancers (Basel) 2023; 15:3175. [PMID: 37370785 DOI: 10.3390/cancers15123175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) category comprises a varied group of myeloid neoplastic diseases characterized by clinical and pathologic overlapping features of both myelodysplastic and myeloproliferative neoplasms. For these reasons, these tumors are challenging in terms of diagnosis. The recent World Health Organization (WHO) 2022 classification and the International Consensus Classification (ICC) made changes in the classification of MDS/MPN compared to the previous 2016 WHO classification and improved the diagnostic criteria of these entities. The aim of this review is to describe the main entities reported in the more recent classifications, focusing on chronic myelomonocytic leukemia (CMML), MDS/MPN with neutrophilia (or atypical CML [aCML]), and MDS/MPN with SF3B1 mutation and thrombocytosis/MDS/MPN with ring sideroblasts and thrombocytosis. A particular emphasis is given to the differential diagnosis and analysis of subtle divergences and semantic differences between the WHO classification and the ICC for these entities.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elena M Elli
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
8
|
Carreño-Tarragona G, Álvarez-Larrán A, Harrison C, Martínez-Ávila JC, Hernández-Boluda JC, Ferrer-Marín F, Radia DH, Mora E, Francis S, González-Martínez T, Goddard K, Pérez-Encinas M, Narayanan S, Raya JM, Singh V, Gutiérrez X, Toth P, Amat-Martínez P, Mcilwaine L, Alobaidi M, Mayani K, McGregor A, Stuckey R, Psaila B, Segura A, Alvares C, Davidson K, Osorio S, Cutting R, Sweeney CP, Rufián L, Moreno L, Cuenca I, Smith J, Morales ML, Gil-Manso R, Koutsavlis I, Wang L, Mead AJ, Rozman M, Martínez-López J, Ayala R, Cross NCP. CNL and aCML should be considered as a single entity based on molecular profiles and outcomes. Blood Adv 2023; 7:1672-1681. [PMID: 36375042 PMCID: PMC10182308 DOI: 10.1182/bloodadvances.2022008204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) are rare myeloid disorders that are challenging with regard to diagnosis and clinical management. To study the similarities and differences between these disorders, we undertook a multicenter international study of one of the largest case series (CNL, n = 24; aCML, n = 37 cases, respectively), focusing on the clinical and mutational profiles (n = 53 with molecular data) of these diseases. We found no differences in clinical presentations or outcomes of both entities. As previously described, both CNL and aCML share a complex mutational profile with mutations in genes involved in epigenetic regulation, splicing, and signaling pathways. Apart from CSF3R, only EZH2 and TET2 were differentially mutated between them. The molecular profiles support the notion of CNL and aCML being a continuum of the same disease that may fit best within the myelodysplastic/myeloproliferative neoplasms. We identified 4 high-risk mutated genes, specifically CEBPA (β = 2.26, hazard ratio [HR] = 9.54, P = .003), EZH2 (β = 1.12, HR = 3.062, P = .009), NRAS (β = 1.29, HR = 3.63, P = .048), and U2AF1 (β = 1.75, HR = 5.74, P = .013) using multivariate analysis. Our findings underscore the relevance of molecular-risk classification in CNL/aCML as well as the importance of CSF3R mutations in these diseases.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Neutrophilic, Chronic/diagnosis
- Leukemia, Neutrophilic, Chronic/genetics
- Epigenesis, Genetic
- Myelodysplastic-Myeloproliferative Diseases/genetics
- Mutation
Collapse
Affiliation(s)
- Gonzalo Carreño-Tarragona
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | | | - Claire Harrison
- Hematology Department, Guy’s and St. Thomas NHS Foundation Trust, London, United Kingdom
| | - José Carlos Martínez-Ávila
- Agricultural Economics, Statistics and Business Management Department, Escuela Técnica Superior de Ingeniería Agrónomica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Francisca Ferrer-Marín
- Hematology Department, Hospital Morales Meseguer, Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Deepti H. Radia
- Hematology Department, Guy’s and St. Thomas NHS Foundation Trust, London, United Kingdom
| | - Elvira Mora
- Hematology Department, Hospital Universitario La Fe, Valencia, Spain
| | - Sebastian Francis
- Hematology Department, Sheffield Hospital, Sheffield, United Kingdom
| | | | - Kathryn Goddard
- Hematology Department, Rotherham Hospital, Rotherham, United Kingdom
| | - Manuel Pérez-Encinas
- Hematology Department, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Srinivasan Narayanan
- Hematology Department, University Hospital Southampton, Southampton, United Kingdom
| | - José María Raya
- Hematology Department, Hospital Universitario de Canarias, Tenerife, Spain
| | - Vikram Singh
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Xabier Gutiérrez
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Peter Toth
- Hematology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Louisa Mcilwaine
- Hematology Department, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Magda Alobaidi
- Department of Haematology, Chelsea and Westminster NHS Trust West Middlesex Hospital, London, United Kingdom
| | - Karan Mayani
- Hematology Department, Hospital General de La Palma, Santa Cruz de Tenerife, Spain
| | - Andrew McGregor
- Department of Haematology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Bethan Psaila
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Adrián Segura
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Caroline Alvares
- Hematology Department, University Hospital of Wales, Cardiff, United Kingdom
| | - Kerri Davidson
- Hematology Department, Kirkcaldy Hospital, Fife, Scotland
| | - Santiago Osorio
- Hematology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Robert Cutting
- Hematology Department, Doncaster Hospital, Doncaster, Yorkshire, England
| | - Caroline P. Sweeney
- Hematology Department, Vale of Leven Hospital, Alexandria, West Dunbartonshire, Scotland
| | - Laura Rufián
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Laura Moreno
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Isabel Cuenca
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Jeffery Smith
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - María Luz Morales
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Rodrigo Gil-Manso
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Ioannis Koutsavlis
- Hematology Department, Western General Hospital, Edinburgh, United Kingdom
| | - Lihui Wang
- Haemato-Oncology Diagnostic Service, Liverpool Clinical Laboratories, Liverpool University Hospital, Liverpool, United Kingdom
| | - Adam J. Mead
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - María Rozman
- Hemopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Nicholas C. P. Cross
- Wessex Regional Genetics Laboratory, Salisbury, United Kingdom
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
9
|
Shuai W, Zuo Z, Li N, Garces S, Jelloul FZ, Ok CY, Li S, Xu J, You MJ, Wang W, Rehder C, Jabbour EJ, Patel KP, Medeiros LJ, Yin CC. ETNK1 mutation occurs in a wide spectrum of myeloid neoplasms and is not specific for atypical chronic myeloid leukemia. Cancer 2023; 129:878-889. [PMID: 36583229 DOI: 10.1002/cncr.34616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND ETNK1 mutation has been suggested as a useful tool to support the diagnosis of atypical chronic myeloid leukemia. ETNK1 mutations, however, occur in other myeloid neoplasms. METHODS The authors assessed the clinicopathologic and molecular genetic features of 80 ETNK1-mutated myeloid neoplasms. RESULTS Thirty-seven neoplasms (46%) were classified as myelodysplastic syndrome, 17 (21%) were classified as myelodysplastic/myeloproliferative neoplasm, 14 (18%) were classified as acute myeloid leukemia, and 12 (15%) were classified as myeloproliferative neoplasm. ETNK1 mutations were detected at the first test in 96% of patients, suggesting that ETNK1 mutation is an early event in pathogenesis. ETNK1 mutations represented the dominant clone in 63% of patients and was persistently dominant in 93%. The variant allele frequencies were usually higher in acute myeloid leukemia and increased upon leukemic transformation. ETNK1 mutation was accompanied by coexisting mutations in all patients, with ASXL1 (50%), TET2 (25%), EZH2 (24%), RUNX1 (24%), and SRSF2 (24%) mutations being the most common. Neoplasms with ETNK1 mutations were associated with morphologic dysplasia, increased blasts, myelofibrosis, and noncomplex karyotypes. With a median follow-up of 16.5 months, 30 patients died, 44 had persistent disease, and four achieved complete remission after stem cell transplantation. CONCLUSIONS ETNK1 mutation is present in various myeloid neoplasms, often as an early event and a dominant clone and always with concurrent mutations. It may play an important role in the pathogenesis and progression of myeloid neoplasms by causing DNA damage and inducing other mutations and genomic instability, and it may serve as a potential therapeutic target. ETNK1 mutation is not disease-specific and should be interpreted with caution to classify myeloid neoplasms.
Collapse
Affiliation(s)
- Wen Shuai
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nianyi Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fatima Zahra Jelloul
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Catherine Rehder
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword. Cancers (Basel) 2021; 13:cancers13246385. [PMID: 34945003 PMCID: PMC8699275 DOI: 10.3390/cancers13246385] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Poly(ADP-ribose) polymerase (PARP) inhibitors, which are medications approved to treat various solid tumors, including breast, prostate, ovarian, and prostate cancers, are being examined in hematological malignancies. This review summarizes the potential role of PARP inhibitors in the treatment of myeloid diseases, particularly acute myeloid leukemia (AML). We review ongoing clinical studies investigating the safety and efficacy of PARP inhibitors in the treatment of AML, focusing on specific molecular and genetic AML subgroups that could be particularly sensitive to PARP inhibitor treatment. We also discuss reports describing an increased risk of treatment-related myeloid neoplasms in patients receiving PARP inhibitors for solid tumors. Abstract Despite recent discoveries and therapeutic advances in aggressive myeloid neoplasms, there remains a pressing need for improved therapies. For instance, in acute myeloid leukemia (AML), while most patients achieve a complete remission with conventional chemotherapy or the combination of a hypomethylating agent and venetoclax, de novo or acquired drug resistance often presents an insurmountable challenge, especially in older patients. Poly(ADP-ribose) polymerase (PARP) enzymes, PARP1 and PARP2, are involved in detecting DNA damage and repairing it through multiple pathways, including base excision repair, single-strand break repair, and double-strand break repair. In the context of AML, PARP inhibitors (PARPi) could potentially exploit the frequently dysfunctional DNA repair pathways that, similar to deficiencies in homologous recombination in BRCA-mutant disease, set the stage for cell killing. PARPi appear to be especially effective in AML with certain gene rearrangements and molecular characteristics (RUNX1-RUNX1T1 and PML-RARA fusions, FLT3- and IDH1-mutated). In addition, PARPi can enhance the efficacy of other agents, particularly alkylating agents, TOP1 poisons, and hypomethylating agents, that induce lesions ordinarily repaired via PARP1-dependent mechanisms. Conversely, emerging reports suggest that long-term treatment with PARPi for solid tumors is associated with an increased incidence of myelodysplastic syndrome (MDS) and AML. Here, we (i) review the pre-clinical and clinical data on the role of PARPi, specifically olaparib, talazoparib, and veliparib, in aggressive myeloid neoplasms and (ii) discuss the reported risk of MDS/AML with PARPi, especially as the indications for PARPi use expand to include patients with potentially curable cancer.
Collapse
|
11
|
Kuendgen A, Kasprzak A, Germing U. Hybrid or Mixed Myelodysplastic/Myeloproliferative Disorders - Epidemiological Features and Overview. Front Oncol 2021; 11:778741. [PMID: 34869027 PMCID: PMC8635204 DOI: 10.3389/fonc.2021.778741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
The WHO-category Myelodysplastic/Myeloproliferative neoplasms (MDS/MPNs) recognizes a unique group of clonal myeloid malignancies exhibiting overlapping features of myelodysplastic as well as myeloproliferative neoplasms. The group consists of chronic myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia, BCR-ABL1-negative (aCML), juvenile myelomonocytic leukemia (JMML), myelodysplastic/myeloproliferative neoplasm with ringed sideroblasts and thrombocytosis (MDS/MPN-RS-T), and myelodysplastic/myeloproliferative neoplasms, unclassifiable (MDS/MPN-U). The most frequent entity in this category is CMML, while all other diseases are extremely rare. Thus, only very limited data on the epidemiology of these subgroups exists. An appropriate diagnosis and classification can be challenging since the diagnosis is still largely based on morphologic criteria and myelodysplastic as well as myeloproliferative features can be found in various occurrences. The diseases in this category share several features that are common in this specific WHO-category, but also exhibit specific traits for each disease. This review summarizes published data on epidemiological features and offers a brief overview of the main diagnostic criteria and clinical characteristics of the five MDS/MPN subgroups.
Collapse
Affiliation(s)
- Andrea Kuendgen
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| | - Annika Kasprzak
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
12
|
Fontana D, Gambacorti-Passerini C, Piazza R. Molecular Pathogenesis of BCR-ABL-Negative Atypical Chronic Myeloid Leukemia. Front Oncol 2021; 11:756348. [PMID: 34858828 PMCID: PMC8631780 DOI: 10.3389/fonc.2021.756348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Atypical chronic myeloid leukemia is a rare disease whose pathogenesis has long been debated. It currently belongs to the group of myelodysplastic/myeloproliferative disorders. In this review, an overview on the current knowledge about diagnosis, prognosis, and genetics is presented, with a major focus on the recent molecular findings. We describe here the molecular pathogenesis of the disease, focusing on the mechanisms of action of the main mutations as well as on gene expression profiling. We also present the treatment options focusing on emerging targeted therapies.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
13
|
Diamantopoulos PT, Viniou NA. Atypical Chronic Myelogenous Leukemia, BCR-ABL1 Negative: Diagnostic Criteria and Treatment Approaches. Front Oncol 2021; 11:722507. [PMID: 34868917 PMCID: PMC8635713 DOI: 10.3389/fonc.2021.722507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Atypical chronic myelogenous leukemia (aCML), BCR/ABL1 negative is a rare myelodysplastic/myeloproliferative neoplasm, usually manifested with hyperleukocytosis without monocytosis or basophilia, organomegaly, and marked dysgranulopoiesis. In this review, we will discuss the classification and diagnostic criteria of aCML, as these have been formulated during the past 30 years, with a focus on the recent advances in the molecular characterization of the disease. Although this entity does not have a definitive molecular profile, its molecular characterization has contributed to a better understanding and more accurate classification and diagnosis of aCML. At the same time, it has facilitated the identification of adverse prognostic factors and the stratification of patients according to their risk for leukemic transformation. What is more, the molecular characterization of the disease has expanded our therapeutic choices, thoroughly presented and analyzed in this review article.
Collapse
Affiliation(s)
- Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
14
|
Fontana D, Gambacorti-Passerini C, Piazza R. Impact of ETNK1 somatic mutations on phosphoethanolamine synthesis, ROS production and DNA damage. Mol Cell Oncol 2021; 8:1877598. [PMID: 33860081 DOI: 10.1080/23723556.2021.1877598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recently we showed that Ethanolamine Kinase 1 (ETNK1) mutations cause a decreased synthesis of phosphoethanolamine, and that phosphoethanolamine is able to modulate mitochondrial activity through competition with succinate for complex II. The decreased phosphoethanolamine concentration leads to increased mitochondria activity and reactive oxygen species production, which causes the accumulation of new mutations.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
15
|
Jones JD, Orozco T, Bowers D, Hu W, Jabarkheel Z, Chiu S, Ramirez-Zamora A, Foote K, Okun MS, Wagle Shukla A. Cognitive Outcomes for Essential Tremor Patients Selected for Thalamic Deep Brain Stimulation Surgery Through Interdisciplinary Evaluations. Front Hum Neurosci 2020; 14:578348. [PMID: 33362489 PMCID: PMC7759538 DOI: 10.3389/fnhum.2020.578348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/10/2020] [Indexed: 11/20/2022] Open
Abstract
Objective: Deep brain stimulation (DBS) targeted to the ventral intermediate (VIM) nucleus of the thalamus is effective for motor symptoms in essential tremor (ET), but there is limited data on cognitive outcomes. We examined cognitive outcomes in a large cohort of ET DBS patients (pre-DBS and 1+ year after DBS). Methods: In a retrospective analysis, we used repeated-measures ANOVA testing to examine whether the age of tremor onset, age at DBS surgery, hemisphere side implanted with lead, unilateral vs. bilateral implantations, and presence of surgical complications influenced the cognitive outcomes. Neuropsychological outcomes of interest were verbal memory, executive functioning, working memory, language functioning, visuospatial functioning, and general cognitive function. Results: We identified 50 ET DBS patients; 29 (58%) males; the mean age of tremor onset was 35.84 (±21.50) years with a median age of 38 years. The mean age at DBS was 68.18 (±10.07) years. There were 37 unilateral 30 left, seven right, and 13 bilateral brain implantations. In the subgroup analysis, there was a significant interaction between assessment (pre vs. post) and age of tremor onset (<38 vs. >38 years); F(1,30) = 4.47; p = 0.043 for working memory. The post hoc testing found improvements for younger onset ET. Similarly, there was a significant interaction between assessment (pre vs. post) and complications vs. no complications subgroups; F(1,45) = 4.34; p = 0.043 for verbal memory with worsening scores seen for ET patients with complications. The remaining tests were not significant. Conclusion: In this large cohort of ET patients with (>30% improvements), DBS was not accompanied by a significant decline in many cognitive domains. These outcomes were possibly related to the selection of patients with normal cognitive functioning before surgery, unilateral DBS implantations for the majority, and selection of patients with optimal response to DBS.
Collapse
Affiliation(s)
- Jacob D Jones
- Department of Psychology, California State University, San Bernardino, CA, United States
| | - Tatiana Orozco
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Dawn Bowers
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Wei Hu
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Zakia Jabarkheel
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Shannon Chiu
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kelly Foote
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|