1
|
Romano GL, Gozzo L, Maurel OM, Di Martino S, Riolo V, Micale V, Drago F, Bucolo C. Fluoxetine Protects Retinal Ischemic Damage in Mice. Pharmaceutics 2023; 15:pharmaceutics15051370. [PMID: 37242611 DOI: 10.3390/pharmaceutics15051370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND To evaluate the neuroprotective effect of the topical ocular administration of fluoxetine (FLX) in a mouse model of acute retinal damage. METHODS Ocular ischemia/reperfusion (I/R) injury in C57BL/6J mice was used to elicit retinal damage. Mice were divided into three groups: control group, I/R group, and I/R group treated with topical FLX. A pattern electroretinogram (PERG) was used as a sensitive measure of retinal ganglion cell (RGC) function. Finally, we analyzed the retinal mRNA expression of inflammatory markers (IL-6, TNF-α, Iba-1, IL-1β, and S100β) through Digital Droplet PCR. RESULTS PERG amplitude values were significantly (p < 0.05) higher in the I/R-FLX group compared to the I/R group, whereas PERG latency values were significantly (p < 0.05) reduced in I/R-FLX-treated mice compared to the I/R group. Retinal inflammatory markers increased significantly (p < 0.05) after I/R injury. FLX treatment was able to significantly (p < 0.05) attenuate the expression of inflammatory markers after I/R damage. CONCLUSIONS Topical treatment with FLX was effective in counteracting the damage of RGCs and preserving retinal function. Moreover, FLX treatment attenuates the production of pro-inflammatory molecules elicited by retinal I/R damage. Further studies need to be performed to support the use of FLX as neuroprotective agent in retinal degenerative diseases.
Collapse
Affiliation(s)
- Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| | - Lucia Gozzo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Oriana Maria Maurel
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Valentina Riolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| |
Collapse
|
2
|
Alsbirk KE, Seland JH, Assmus J. Diabetic retinopathy and visual impairment in a Norwegian diabetic coast population with a high dietary intake of fish oils. An observational study. Acta Ophthalmol 2022; 100:e532-e538. [PMID: 34472215 DOI: 10.1111/aos.14977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To present retinal and visual findings in a Norwegian west coast diabetic population and to elucidate the effect of dietary intake of marine polyunsaturated fatty acids (PUFAs) on the development of diabetic retinopathy (DR). METHODS In an eye practice in an archipelago of 314 km², serving a population of about 40 000, we recorded the prevalence of visual impairment and DR in a referred diabetic population. 510 consecutive patients were included, 238 females and 272 males. 50 patients had type I and 460 had type II diabetes mellitus (DM). Self-reported medication, diet supplements, HbA1c and fish consumption were registered. RESULTS In the type I group, the median age was 44.5 and median DM duration 11.5 years [1-44]. 48% had photographic evidence of DR, 8 patients (16%) had proliferative retinopathy (PDR), and 6 patients (12%) had diabetic macular oedema (DME). All had best-corrected visual acuity (BCVA) of 0.5 (log MAR 0.3) or better in the best eye. In the type II group, the median DM duration was 8 years [1-53], and median age was 66. 98% had best eye BCVA at or better than 0.5 (log MAR 0.3) in the best eye. CONCLUSION None of the 510 patients had BCVA worse than 0.3 (log MAR 0.48) due to diabetic retinopathy. Compared to similar studies, we found a very low visual impairment rate. A possible protective effect of PUFA on the prevalence and progression of diabetic microangiopathy including retinopathy is discussed.
Collapse
Affiliation(s)
| | | | - Jörg Assmus
- Centre for Clinical Research Haukeland University Hospital Bergen Norway
| |
Collapse
|
3
|
Conti F, Lazzara F, Romano GL, Platania CBM, Drago F, Bucolo C. Caffeine Protects Against Retinal Inflammation. Front Pharmacol 2022; 12:824885. [PMID: 35069225 PMCID: PMC8773454 DOI: 10.3389/fphar.2021.824885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Caffeine, one of the most consumed central nervous system (CNS) stimulants, is an antagonist of A1 and A2A adenosine receptors. In this study, we investigated the potential protective effects of this methylxanthine in the retinal tissue. We tested caffeine by using in vitro and in vivo paradigms of retinal inflammation. Human retinal pigment epithelial cells (ARPE-19) were exposed to lipopolysaccharide (LPS) with or without caffeine. This latter was able to reduce the inflammatory response in ARPE-19 cells exposed to LPS, attenuating the release of IL-1β, IL-6, and TNF-α and the nuclear translocation of p-NFκB. Additionally, caffeine treatment restored the integrity of the ARPE-19 monolayer assessed by transepithelial electrical resistance (TEER) and the sodium fluorescein permeability test. Finally, the ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to induce retinal inflammation and investigate the effects of caffeine treatment. Mouse eyes were treated topically with caffeine, and a pattern electroretinogram (PERG) was used to assess the retinal ganglion cell (RGC) function; furthermore, we evaluated the levels of IL-6 and BDNF in the retina. Retinal BDNF dropped significantly (p < 0.05) in the I/R group compared to the control group (normal mice); on the contrary, caffeine treatment maintained physiological levels of BDNF in the retina of I/R eyes. Caffeine was also able to reduce IL-6 mRNA levels in the retina of I/R eyes. In conclusion, these findings suggest that caffeine is a good candidate to counteract inflammation in retinal diseases.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Agrawal M, Rasiah PK, Bajwa A, Rajasingh J, Gangaraju R. Mesenchymal Stem Cell Induced Foxp3(+) Tregs Suppress Effector T Cells and Protect against Retinal Ischemic Injury. Cells 2021; 10:3006. [PMID: 34831229 PMCID: PMC8616393 DOI: 10.3390/cells10113006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) are well known for immunomodulation; however, the mechanisms involved in their benefits in the ischemic retina are unknown. This study tested the hypothesis that MSC induces upregulation of transcription factor forkhead box protein P3 (Foxp3) in T cells to elicit immune modulation, and thus, protect against retinal damage. Induced MSCs (iMSCs) were generated by differentiating the induced pluripotent stem cells (iPSC) derived from urinary epithelial cells through a noninsertional reprogramming approach. In in-vitro cultures, iMSC transferred mitochondria to immune cells via F-actin nanotubes significantly increased oxygen consumption rate (OCR) for basal respiration and ATP production, suppressed effector T cells, and promoted differentiation of CD4+CD25+ T regulatory cells (Tregs) in coculture with mouse splenocytes. In in-vivo studies, iMSCs transplanted in ischemia-reperfusion (I/R) injured eye significantly increased Foxp3+ Tregs in the retina compared to that of saline-injected I/R eyes. Furthermore, iMSC injected I/R eyes significantly decreased retinal inflammation as evidenced by reduced gene expression of IL1β, VCAM1, LAMA5, and CCL2 and improved b-wave amplitudes compared to that of saline-injected I/R eyes. Our study demonstrates that iMSCs can transfer mitochondria to immune cells to suppress the effector T cell population. Additionally, our current data indicate that iMSC can enhance differentiation of T cells into Foxp3 Tregs in vitro and therapeutically improve the retina's immune function by upregulation of Tregs to decrease inflammation and reduce I/R injury-induced retinal degeneration in vivo.
Collapse
Affiliation(s)
- Mona Agrawal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
| | - Pratheepa Kumari Rasiah
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
| | - Amandeep Bajwa
- James D. Eason Transplant Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Johnson Rajasingh
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.); (P.K.R.)
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Conti F, Romano GL, Eandi CM, Toro MD, Rejdak R, Di Benedetto G, Lazzara F, Bernardini R, Drago F, Cantarella G, Bucolo C. Brimonidine is Neuroprotective in Animal Paradigm of Retinal Ganglion Cell Damage. Front Pharmacol 2021; 12:705405. [PMID: 34366858 PMCID: PMC8333612 DOI: 10.3389/fphar.2021.705405] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
To investigate the neuroprotective effect of brimonidine after retinal ischemia damage on mouse eye. Glaucoma is an optic neuropathy characterized by retinal ganglion cells (RGCs) death, irreversible peripheral and central visual field loss, and high intraocular pressure. Ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mouse eyes were treated topically with brimonidine and pattern electroretinogram were used to assess the retinal ganglion cells (RGCs) function. A wide range of inflammatory markers, as well as anti-inflammatory and neurotrophic molecules, were investigated to figure out the potential protective effects of brimonidine in mouse retina. In particular, brain-derived neurotrophic factor (BDNF), IL-6, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptor DR-5, TNF-α, GFAP, Iba-1, NOS, IL-1β and IL-10 were assessed in mouse retina that underwent to I/R insult with or without brimonidine treatment. Brimonidine provided remarkable RGCs protection in our paradigm. PERG amplitude values were significantly (p < 0.05) higher in brimonidine-treated eyes in comparison to I/R retinas. Retinal BDNF mRNA levels in the I/R group dropped significantly (p < 0.05) compared to the control group (normal mice); brimonidine treatment counteracted the downregulation of retinal BDNF mRNA in I/R eyes. Retinal inflammatory markers increased significantly (p < 0.05) in the I/R group and brimonidine treatment was able to revert that. The anti-inflammatory IL-10 decreased significantly (p < 0.05) after retinal I/R insult and increased significantly (p < 0.05) in the group treated with brimonidine. In conclusion, brimonidine was effective in preventing loss of function of RGCs and in regulating inflammatory biomarkers elicited by retinal I/R injury.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Maria Eandi
- Department of Ophthalmology, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Mario Damiano Toro
- Department of Ophthalmology, University of Zurich, Zurich, Switzerland.,Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Patrick AT, He W, Madu J, Sripathi SR, Choi S, Lee K, Samson FP, Powell FL, Bartoli M, Jee D, Gutsaeva DR, Jahng WJ. Mechanistic dissection of diabetic retinopathy using the protein-metabolite interactome. J Diabetes Metab Disord 2021; 19:829-848. [PMID: 33520806 DOI: 10.1007/s40200-020-00570-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Purpose The current study aims to determine the molecular mechanisms of diabetic retinopathy (DR) using the protein-protein interactome and metabolome map. We examined the protein network of novel biomarkers of DR for direct (physical) and indirect (functional) interactions using clinical target proteins in different models. Methods We used proteomic tools including 2-dimensional gel electrophoresis, mass spectrometry analysis, and database search for biomarker identification using in vivo murine and human model of diabetic retinopathy and in vitro model of oxidative stress. For the protein interactome and metabolome mapping, various bioinformatic tools that include STRING and OmicsNet were used. Results We uncovered new diabetic biomarkers including prohibitin (PHB), dynamin 1, microtubule-actin crosslinking factor 1, Toll-like receptor (TLR 7), complement activation, as well as hypothetical proteins that include a disintegrin and metalloproteinase (ADAM18), vimentin III, and calcium-binding C2 domain-containing phospholipid-binding switch (CAC2PBS) using a proteomic approach. Proteome networks of protein interactions with diabetic biomarkers were established using known DR-related proteome data. DR metabolites were interconnected to establish the metabolome map. Our results showed that mitochondrial protein interactions were changed during hyperglycemic conditions in the streptozotocin-treated murine model and diabetic human tissue. Conclusions Our interactome mapping suggests that mitochondrial dysfunction could be tightly linked to various phases of DR pathogenesis including altered visual cycle, cytoskeletal remodeling, altered lipid concentration, inflammation, PHB depletion, tubulin phosphorylation, and altered energy metabolism. The protein-metabolite interactions in the current network demonstrate the etiology of retinal degeneration and suggest the potential therapeutic approach to treat DR.
Collapse
Affiliation(s)
- Ambrose Teru Patrick
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI USA
| | - Joshua Madu
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Srinivas R Sripathi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Seulggie Choi
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Kook Lee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Faith Pwaniyibo Samson
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA USA
| | - Manuela Bartoli
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Donghyun Jee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Diana R Gutsaeva
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Wan Jin Jahng
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
7
|
Ai X, Yu P, Hou Y, Song X, Luo J, Li N, Lai X, Wang X, Meng X. A review of traditional Chinese medicine on treatment of diabetic retinopathy and involved mechanisms. Biomed Pharmacother 2020; 132:110852. [DOI: 10.1016/j.biopha.2020.110852] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
|
8
|
Ren C, Wu H, Li D, Yang Y, Gao Y, Jizhang Y, Liu D, Ji X, Zhang X. Remote Ischemic Conditioning Protects Diabetic Retinopathy in Streptozotocin-induced Diabetic Rats via Anti-Inflammation and Antioxidation. Aging Dis 2018; 9:1122-1133. [PMID: 30574423 PMCID: PMC6284762 DOI: 10.14336/ad.2018.0711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
Ischemic conditioning inhibits oxidative stress and inflammatory response in diabetes. However, whether limb remote ischemic conditioning (LRIC) has beneficial effects on diabetic retinopathy (DR) remains unknown. This study aims to investigate the protective effects of LRIC in retinal ganglion cell in streptozotocin (STZ) induced Type 1 diabetic rats. A total of 48 healthy male Sprague-Dawley (200-220g) rats were randomly assigned to the normal group, normal+LRIC group, diabetes mellitus (DM) group and DM+LRIC group. Streptozotocin (STZ, 60 mg/kg) was intraperitoneally injected into the rats to establish the diabetic model. LRIC was conducted by tightening a tourniquet around the upper thigh and releasing for three cycles daily (10 mins x 3 cycles). Retinas were harvested after 12 weeks of LRIC treatment for histopathologic, Western blot and ELISA analysis. Plasma were collected at the same time for ELISA analysis. LRIC alleviated diabetic retinopathy symptoms as evidenced by the increased number of retinal ganglion cells (P<0.01) and decreased glial fibrillary acidic protein (GFAP) expression level (P<0.01) in the rat retina. LRIC in DM rats exhibited anti-inflammatory and antioxidative effects as confirmed by the down-regulation of pro-inflammatory cytokine: interleukin-6 (IL-6), and the up-regulation of antioxidants: superoxide dismutase (SOD), and glutathione (GSH)/oxidized glutathione (GSSG). Furthermore, LRIC significantly downregulated VEGF protein expression in the retina (P<0.01). These results suggest that the antioxidative and anti-inflammatory activities of LRIC may be important mechanisms involved in the protective effect of LRIC in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Changhong Ren
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,5Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Hang Wu
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,2Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongjie Li
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,2Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yong Yang
- 3Department of Herbal Formula Science Medicine, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Gao
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,2Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunneng Jizhang
- 4Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Dachuan Liu
- 2Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,5Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Xuxiang Zhang
- 1Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,2Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
'Statins in retinal disease'. Eye (Lond) 2018; 32:981-991. [PMID: 29556012 DOI: 10.1038/s41433-018-0066-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/05/2018] [Accepted: 02/12/2018] [Indexed: 01/14/2023] Open
Abstract
Statins are known for their blood cholesterol-lowering effect and are widely used in patients with cardiovascular and metabolic diseases. Research over the past three decades shows that statins have diverse effects on different pathophysiological pathways involved in angiogenesis, inflammation, apoptosis, and anti-oxidation, leading to new therapeutic options. Recently, statins have attracted considerable attention for their immunomodulatory effect. Since immune reactivity has been implicated in a number of retinal diseases, such as uveitis, age-related macular degeneration (AMD) and diabetic retinopathy, there is now a growing body of evidence supporting the beneficial effects of statins in these retinopathies. This review evaluates the relationship between statins and the pathophysiological basis of these diseases, focusing on their potential role in treatment. A PubMed database search and literature review was conducted. Among AMD patients, there is inconsistent evidence regarding protection against development of early AMD or delaying disease progression; though they have been found to reduce the risk of developing choroidal neovascular membranes (CNV). In patients with retinal vein occlusion, there was no evidence to support a therapeutic benefit or a protective role with statins. In patients with diabetic retinopathy, statins demonstrate a reduction in disease progression and improved resolution of diabetic macular oedema (DMO). Among patients with uveitis, statins have a protective effect by reducing the likelihood of uveitis development.
Collapse
|
10
|
Schultz R, Krug M, Precht M, Wohl SG, Witte OW, Schmeer C. Frataxin overexpression in Müller cells protects retinal ganglion cells in a mouse model of ischemia/reperfusion injury in vivo. Sci Rep 2018; 8:4846. [PMID: 29555919 PMCID: PMC5859167 DOI: 10.1038/s41598-018-22887-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/02/2018] [Indexed: 01/28/2023] Open
Abstract
Müller cells are critical for retinal function and neuronal survival but can become detrimental in response to retinal ischemia and increased oxidative stress. Elevated oxidative stress increases expression of the mitochondrial enzyme frataxin in the retina, and its overexpression is neuroprotective after ischemia. Whether frataxin expression in Müller cells might improve their function and protect neurons after ischemia is unknown. The aim of this study was to evaluate the effect of frataxin overexpression in Müller cells on neuronal survival after retinal ischemia/reperfusion in the mouse in vivo. Retinal ischemia/reperfusion was induced in mice overexpressing frataxin in Müller cells by transient elevation of intraocular pressure. Retinal ganglion cells survival was determined 14 days after lesion. Expression of frataxin, antioxidant enzymes, growth factors and inflammation markers was determined with qRT-PCR, Western blotting and immunohistochemistry 24 hours after lesion. Following lesion, there was a 65% increase in the number of surviving RGCs in frataxin overexpressing mice. Improved survival was associated with increased expression of the antioxidant enzymes Gpx1 and Sod1 as well as the growth factors Cntf and Lif. Additionally, microglial activation was decreased in these mice. Therefore, support of Müller cell function constitutes a feasible approach to reduce neuronal degeneration after ischemia.
Collapse
Affiliation(s)
- Rowena Schultz
- Department of Ophthalmology, Jena University Hospital, Jena, Germany
| | - Melanie Krug
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michel Precht
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Stefanie G Wohl
- Department of Biological Structure, University of Washington Seattle, Seattle, United States
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
11
|
Gao X, Li Y, Wang H, Li C, Ding J. Inhibition of HIF-1α decreases expression of pro-inflammatory IL-6 and TNF-α in diabetic retinopathy. Acta Ophthalmol 2017; 95:e746-e750. [PMID: 27288252 DOI: 10.1111/aos.13096] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/17/2016] [Indexed: 01/04/2023]
Abstract
PURPOSE Recent studies demonstrate that pro-inflammatory cytokines (PICs, i.e. IL-1β, IL-6 and TNF-α) in retinal tissues are likely involved in the development of diabetic retinopathy (DR). In this report, we particularly examined contributions of hypoxia inducible factor subtype 1α (HIF-1α) to the expression of PICs and their receptors in diabetic retina. METHODS Streptozotocin (STZ) was systemically injected to induce hyperglycaemia in rats. ELISA and Western blot analysis were employed to determine the levels of HIF-1α and PICs as well as PIC receptors in retinal tissues of control rats and STZ rats. RESULTS The levels of retinal HIF-1α were significantly increased in STZ rats 4-10 weeks after induction of hyperglycaemia as compared with control animals. With increasing HIF-1α retinal PICs including IL-1β, IL-6 and TNF-α, their respective receptors, namely IL-1R, IL-6R and TNFR1, were also elevated in STZ rats. Moreover, inhibition of HIF-1α by injection of 2-methoxyestradiol (2-MET) significantly decreased the amplified expression IL-6, TNF-α, IL-6R and TNFR1 in diabetic retina, but did not modify IL-1β pathway. In addition, we examined protein expression of Caspase-3 indicating cell apoptosis in the retina of STZ rats after infusing 2-MET, demonstrating that 2-MET attenuated an increase in Caspase-3 evoked by STZ. CONCLUSION Hypoxia inducible factor subtype 1α (HIF-1α) activated in diabetic retina is likely to play a role in regulating pathophysiological process via IL-6 and TNF-α mechanism. This has pharmacological implications to target specific HIF-1α, IL-6 and TNF-α signalling pathway for dysfunction and vulnerability related to DR.
Collapse
Affiliation(s)
- Xiuhua Gao
- Department of Ophthalmology; Jining Medical University Affiliated Hospital; Jining City Shandong Province China
| | - Yonghua Li
- Department of Ophthalmology; Jining Medical University Affiliated Hospital; Jining City Shandong Province China
| | - Hongxia Wang
- Department of Ophthalmology; Jining Medical University Affiliated Hospital; Jining City Shandong Province China
| | - Chuanbao Li
- Department of Ophthalmology; Jining Medical University Affiliated Hospital; Jining City Shandong Province China
| | - Jianguang Ding
- Department of Ophthalmology; Jining Medical University Affiliated Hospital; Jining City Shandong Province China
| |
Collapse
|
12
|
Mathew B, Poston JN, Dreixler JC, Torres L, Lopez J, Zelkha R, Balyasnikova I, Lesniak MS, Roth S. Bone-marrow mesenchymal stem-cell administration significantly improves outcome after retinal ischemia in rats. Graefes Arch Clin Exp Ophthalmol 2017; 255:1581-1592. [PMID: 28523456 DOI: 10.1007/s00417-017-3690-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Ischemia-associated retinal degeneration is one of the leading causes of vision loss, and to date, there are no effective treatment options. We hypothesized that delayed injection of bone-marrow stem cells (BMSCs) 24 h after the onset of ischemia could effectively rescue ischemic retina from its consequences, including apoptosis, inflammation, and increased vascular permeability, thereby preventing retinal cell loss. METHODS Retinal ischemia was induced in adult Wistar rats by increasing intraocular pressure (IOP) to 130-135 mmHg for 55 min. BMSCs harvested from rat femur were injected into the vitreous 24 h post-ischemia. Functional recovery was assessed 7 days later using electroretinography (ERG) measurements of the a-wave, b-wave, P2, scotopic threshold response (STR), and oscillatory potentials (OP). The retinal injury and anti-ischemic effects of BMSCs were quantitated by measuring apoptosis, autophagy, inflammatory markers, and retinal-blood barrier permeability. The distribution and fate of BMSC were qualitatively examined using real-time fundus imaging, and retinal flat mounts. RESULTS Intravitreal delivery of BMSCs significantly improved recovery of the ERG a- and b-waves, OP, negative STR, and P2, and attenuated apoptosis as evidenced by decreased TUNEL and caspase-3 protein levels. BMSCs significantly increased autophagy, decreased inflammatory mediators (TNF-α, IL-1β, IL-6), and diminished retinal vascular permeability. BMSCs persisted in the vitreous and were also found within ischemic retina. CONCLUSIONS Taken together, our results indicate that intravitreal injection of BMSCs rescued the retina from ischemic damage in a rat model. The mechanisms include suppression of apoptosis, attenuation of inflammation and vascular permeability, and preservation of autophagy.
Collapse
Affiliation(s)
- Biji Mathew
- Department of Anesthesiology, University of Illinois Medical Center, 1740 West Taylor Street, MC 515, Chicago, IL, 60612, USA
| | - Jacqueline N Poston
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - John C Dreixler
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Leianne Torres
- Department of Anesthesiology, University of Illinois Medical Center, 1740 West Taylor Street, MC 515, Chicago, IL, 60612, USA
| | - Jasmine Lopez
- Department of Anesthesiology, University of Illinois Medical Center, 1740 West Taylor Street, MC 515, Chicago, IL, 60612, USA
| | - Ruth Zelkha
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Maciej S Lesniak
- Department of Neurosurgery, Northwestern University, Chicago, IL, USA
| | - Steven Roth
- Department of Anesthesiology, University of Illinois Medical Center, 1740 West Taylor Street, MC 515, Chicago, IL, 60612, USA. .,Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Wang X, Su J, Ding J, Han S, Ma W, Luo H, Hughes G, Meng Z, Yin Y, Wang Y, Li J. α-Aminoadipic acid protects against retinal disruption through attenuating Müller cell gliosis in a rat model of acute ocular hypertension. Drug Des Devel Ther 2016; 10:3449-3457. [PMID: 27799744 PMCID: PMC5076852 DOI: 10.2147/dddt.s105362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Ocular hypertension is an important risk factor for glaucoma. The purpose of this study was to investigate the gliotoxic effects of α-aminoadipic acid (AAA) in a rat model of AOH and its underlying mechanisms. MATERIALS AND METHODS In the rat model of acute ocular hypertension (AOH), intraocular pressure was increased to 110 mmHg for 60 minutes. Animals were divided into four groups: sham operation (Ctrl), AOH, AOH + phosphate-buffered saline (PBS), and AOH + AAA. Cell apoptosis in the ganglion cell layer was detected with the terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling (TUNEL) assay, and retinal ganglion cells (RGCs) immunostained with Thy-1 were counted. Müller cell activation was detected using immunostaining with glutamine synthetase and glial fibrillary acidic protein. Tumor necrosis factor-α (TNF-α) was examined using Western blot. RESULTS In the rat model of AOH, cell apoptosis was induced in the ganglion cell layer and the number of RGCs was decreased. Müller cell gliosis in the retinas of rats was induced, and retinal protein levels of TNF-α were increased. Intravitreal treatment of AAA versus PBS control attenuated these retinal abnormalities to show protective effects in the rat model of AOH. CONCLUSION In the retinas of the rat model of AOH, AAA treatment attenuated retinal apoptosis in the ganglion cell layer and preserved the number of RGCs, likely through the attenuation of Müller cell gliosis and suppression of TNF-α induction. Our observations suggest that AAA might be a potential therapeutic target in glaucoma.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Ophthalmology, Beijing Friendship Hospital
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| | - Jier Su
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
- Ningbo College of Health Sciences, Ningbo
| | - Jingwen Ding
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing
| | - Song Han
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| | - Wei Ma
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hong Luo
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| | - Guy Hughes
- University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Zhaoyang Meng
- Department of Ophthalmology, Beijing Friendship Hospital
| | - Yi Yin
- Department of Ophthalmology, Beijing Friendship Hospital
| | - Yanling Wang
- Department of Ophthalmology, Beijing Friendship Hospital
| | - Junfa Li
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| |
Collapse
|
14
|
Kumar B, Kowluru A, Kowluru RA. Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 2015; 56:2985-92. [PMID: 26024084 DOI: 10.1167/iovs.15-16466] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Although hyperglycemia is the main instigator in the development of diabetic retinopathy, dyslipidemia is also considered to play an important role. In the pathogenesis of diabetic retinopathy, cytosolic NADPH oxidase 2 (Nox2) is activated before retinal mitochondria are damaged. Our aim was to investigate the effect of lipids in the development of diabetic retinopathy. METHODS Reactive oxygen species (ROS, by 2',7'-dichlorofluorescein diacetate) and activities of Nox2 (by a lucigenin-based method) and Rac1 (by G-LISA) were quantified in retinal endothelial cells incubated with 50 μM palmitate in 5 mM glucose (lipotoxicity) or 20 mM glucose (glucolipotoxicity) for 6 to 96 hours. Mitochondrial DNA (mtDNA) damage was evaluated by extended-length PCR and its transcription by quantifying cytochrome b transcripts. RESULTS Within 6 hours of exposure of endothelial cells to lipotoxicity, or glucotoxicity (20 mM glucose, without palmitate), significant increase in ROS, Nox2, and Rac1 was observed, which was exacerbated by glucolipotoxic insult. At 48 hours, neither lipotoxicity nor glucotoxicity had any effect on mtDNA and its transcription, but glucolipotoxicity significantly damaged mtDNA and decreased cytochrome b transcripts, and at 96 hours, glucotoxicity and glucolipotoxicity produced similar detrimental effects on mitochondrial damage. CONCLUSIONS Although during initial exposure, lipotoxic or glucotoxic insult produces similar increase in ROS, addition of lipotoxicity in a glucotoxic environment further exacerbates ROS production, and also accelerates their damaging effects on mitochondrial homeostasis. Thus, modulation of Nox2 by pharmacological agents in prediabetic patients with dyslipidemia could retard the development of retinopathy before their hyperglycemia is observable.
Collapse
Affiliation(s)
- Binit Kumar
- Kresge Eye Institute Wayne State University, Detroit, Michigan, United States
| | - Anjan Kowluru
- Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, United States 3ß-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, Michigan, United States
| | - Renu A Kowluru
- Kresge Eye Institute Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
15
|
Bian Y, Ren L, Wang L, Xu S, Tao J, Zhang X, Huang Y, Qian Y, Zhang X, Song Z, Wu W, Wang Y, Liang G. A novel imidazopyridine derivative, X22, prevents the retinal ischemia-reperfusion injury via inhibition of MAPKs. Exp Eye Res 2015; 135:26-36. [DOI: 10.1016/j.exer.2015.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
|
16
|
Semeraro F, Cancarini A, dell'Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J Diabetes Res 2015; 2015:582060. [PMID: 26137497 PMCID: PMC4475523 DOI: 10.1155/2015/582060] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/03/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in the working-age population of the Western world. The pathogenesis of DR is complex and several vascular, inflammatory, and neuronal mechanisms are involved. Inflammation mediates structural and molecular alterations associated with DR. However, the molecular mechanisms underlying the inflammatory pathways associated with DR are not completely characterized. Previous studies indicate that tissue hypoxia and dysregulation of immune responses associated with diabetes mellitus can induce increased expression of numerous vitreous mediators responsible for DR development. Thus, analysis of vitreous humor obtained from diabetic patients has made it possible to identify some of the mediators (cytokines, chemokines, and other factors) responsible for DR pathogenesis. Further studies are needed to better understand the relationship between inflammation and DR. Herein the main vitreous-related factors triggering the occurrence of retinal complication in diabetes are highlighted.
Collapse
Affiliation(s)
- F. Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - A. Cancarini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - R. dell'Omo
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - S. Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - M. R. Romano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples, Italy
| | - C. Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
- ICRRS Neuromed, Pozzilli, Isernia, Italy
- *C. Costagliola:
| |
Collapse
|
17
|
Fang IM, Yang CM, Yang CH. Chitosan oligosaccharides prevented retinal ischemia and reperfusion injury via reduced oxidative stress and inflammation in rats. Exp Eye Res 2014; 130:38-50. [PMID: 25479043 DOI: 10.1016/j.exer.2014.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
The purpose of the present study was to investigate the protective effect and mechanism of chitosan oligonucleotides (COS) on retinal ischemia and reperfusion (I/R) injury. Rats pretreated with PBS, low-dose COS (5 mg/kg), or high-dose COS (10 mg/kg) were subjected to retinal ischemia by increasing their intraocular pressure to 130 mm Hg for 60 min. The protective effect of COS was evaluated by determining the electroretinograms (ERGs), morphology of the retina, and survival of retinal ganglion cells (RGCs). The oxidative damage was determined by imuunohistochemistry and ELISA, respectively. The expressions of inflammatory mediators (TNF-α, IL-1β, MCP-1, iNOS, ICAM-1) and apoptotic-related proteins (p53, Bax, Bcl-2) were quantified by PCR and Western blots. The detection of NF-κB p65 in the retina was performed by immunofluorescence. The protein levels of IκB and phosphorylated mitogen-activated protein kinases [MAPK; viz. extracellular signal-regulated protein kinases (ERK), c-Jun N-terminal kinases (JNK) and p38] and the NF-κB/DNA binding ability were assessed by Western blot analysis and EMSA. We found that pretreatment with COS, especially a high dosage, effectively ameliorated the I/R-induced reduction of the b-wave ratio in ERGs and the retinal thickness and the survival of RGCs at 24 h. COS decreased the expression of inflammatory mediators, p53 and Bax, increasing Bcl-2 expression and thereby reducing retinal oxidative damage and the number of apoptotic cells. More importantly, COS attenuated IκB degradation and p65 presence in the retina, thus decreasing NF-κB/DNA binding activity after I/R. In addition, COS decreased the phosphorylation levels of JNK and ERK but increased the phosphorylation level of p38. Pretreatment with p38 inhibitor (SB203580) abolished the protective effect of COS on retinal oxidative damage, as indicated by increased retinal 8-OHdG stains, and significantly increased the expression of inflammatory mediators (TNF-α, MCP-1, iNOS, ICAM-1) in I/R-injured rats. In conclusion, COS prevented retinal I/R injury through its inhibition of oxidative stress and inflammation. These effects were achieved by blocking the activation of NF-κB, JNK, and ERK but promoting the activation of p38 activation.
Collapse
Affiliation(s)
- I-Mo Fang
- Department of Ophthalmology, Taipei City Hospital Zhongxiao Branch, Taipei, Taiwan; Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
18
|
Liu X, Ye F, Xiong H, Hu D, Limb GA, Xie T, Peng L, Yang W, Sun Y, Zhou M, Song E, Zhang DY. IL-1β Upregulates IL-8 Production in Human Müller Cells Through Activation of the p38 MAPK and ERK1/2 Signaling Pathways. Inflammation 2014; 37:1486-95. [PMID: 24706000 DOI: 10.1007/s10753-014-9874-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Diabetic retinopathy shares some similarity with chronic inflammation and Müller cells dysfunction may play an important role in its initiation and progression since these cells are thought to be a major source of inflammatory factors. The goal of this study was to examine the effect of cytokines on human retinal Müller cells and to understand the underlying signal transduction pathways regulating interleukin-8 (IL-8) expression. In this study, human MIO-M1 cells were treated with interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-8, vascular endothelial growth factor (VEGF), interferon-gamma (IFN-γ), glucose, or mannitol, followed by examination of their IL-8 protein and mRNA levels by Western blotting and PCR, respectively. After treatment with IL-1β, the levels of phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3) were measured. IL-8 was also measured by Western blotting and ELISA following Müller cell culture with IL-1β and specific inhibitors of the p38 MAPK, ERK1/2, JNK, or JAK2 pathways. The results showed that IL-1β was a potent inducer of IL-8 expression in MIO-M1 cells, although a relatively small increase was induced by TNF-α. IL-6, IL-8, VEGF, and IFN-γ did not modify IL-8 expression. Increase of IL-8 expression was accompanied by a significant increased phosphorylation of p38 MAPK, ERK, and JNK, but not of JAK2 and STAT3. Furthermore, inhibitors of p38 MAPK and MEK1/2, but not for JNK and JAK2, significantly inhibited IL-8 expression. In conclusion, IL-1β potently stimulates IL-8 expression in Müller cells mainly through the p38 MAPK and ERK1/2 pathways.
Collapse
Affiliation(s)
- Xiufen Liu
- Department of Ophthalmology, The First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
El-Azab MF, Mysona BA, El-Remessy AB. Statins for prevention of diabetic-related blindness: a new treatment option? EXPERT REVIEW OF OPHTHALMOLOGY 2014; 6:269-272. [PMID: 21938261 DOI: 10.1586/eop.11.36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mona F El-Azab
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA and Vision Discovery Institute, Georgia Health Science University, Augusta, GA, USA and Faculty of Pharmacy, Suez Canal University, Egypt
| | | | | |
Collapse
|
20
|
Abcouwer SF, Lin CM, Shanmugam S, Muthusamy A, Barber AJ, Antonetti DA. Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury. J Neuroinflammation 2013; 10:149. [PMID: 24325836 PMCID: PMC3866619 DOI: 10.1186/1742-2094-10-149] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/24/2013] [Indexed: 12/21/2022] Open
Abstract
Background Many retinal diseases are associated with vascular dysfunction accompanied by neuroinflammation. We examined the ability of minocycline (Mino), a tetracycline derivative with anti-inflammatory and neuroprotective properties, to prevent vascular permeability and inflammation following retinal ischemia-reperfusion (IR) injury, a model of retinal neurodegeneration with breakdown of the blood-retinal barrier (BRB). Methods Male Sprague–Dawley rats were subjected to 45 min of pressure-induced retinal ischemia, with the contralateral eye serving as control. Rats were treated with Mino prior to and following IR. At 48 h after reperfusion, retinal gene expression, cellular inflammation, Evan’s blue dye leakage, tight junction protein organization, caspase-3 activation, and DNA fragmentation were measured. Cellular inflammation was quantified by flow-cytometric evaluation of retinal tissue using the myeloid marker CD11b and leukocyte common antigen CD45 to differentiate and quantify CD11b+/CD45low microglia, CD11b+/CD45hi myeloid leukocytes and CD11bneg/CD45hi lymphocytes. Major histocompatibility complex class II (MHCII) immunoreactivity was used to determine the inflammatory state of these cells. Results Mino treatment significantly inhibited IR-induced retinal vascular permeability and disruption of tight junction organization. Retinal IR injury significantly altered mRNA expression for 21 of 25 inflammation- and gliosis-related genes examined. Of these, Mino treatment effectively attenuated IR-induced expression of lipocalin 2 (LCN2), serpin peptidase inhibitor clade A member 3 N (SERPINA3N), TNF receptor superfamily member 12A (TNFRSF12A), monocyte chemoattractant-1 (MCP-1, CCL2) and intercellular adhesion molecule-1 (ICAM-1). A marked increase in leukostasis of both myeloid leukocytes and lymphocytes was observed following IR. Mino treatment significantly reduced retinal leukocyte numbers following IR and was particularly effective in decreasing the appearance of MHCII+ inflammatory leukocytes. Surprisingly, Mino did not significantly inhibit retinal cell death in this model. Conclusions IR induces a retinal neuroinflammation within hours of reperfusion characterized by inflammatory gene expression, leukocyte adhesion and invasion, and vascular permeability. Despite Mino significantly inhibiting these responses, it failed to block neurodegeneration.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Toni M, Hermida J, Goñi MJ, Fernández P, Parks WC, Toledo E, Montes R, Díez N. Matrix metalloproteinase-10 plays an active role in microvascular complications in type 1 diabetic patients. Diabetologia 2013; 56:2743-52. [PMID: 24078057 DOI: 10.1007/s00125-013-3052-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/28/2013] [Indexed: 01/29/2023]
Abstract
AIMS/HYPOTHESIS The role of metalloproteinase-10 (MMP-10) in type 1 diabetes is not known. We hypothesise that it plays a role in the onset and progression of diabetic nephropathy and retinopathy. METHODS Serum MMP-10 levels from 269 patients with type 1 diabetes were measured, and their association with microvascular complications was analysed. We also studied whether knocking out the Mmp10 gene influenced the extent of renal injury and retinal damage in a streptozotocin-induced diabetic mouse model. RESULTS The risk of nephropathy and proliferative retinopathy associated with the highest vs the lowest MMP-10 tertile was increased three to four times independently of the classical risk factors. Accordingly, renal function and morphology were better preserved in diabetic Mmp10 −⁄− mice than in their Mmp10 +/+ counterparts. There were more kidney-infiltrating macrophages in diabetic Mmp10+/+ mice, suggesting that MMP-10 contributes to the inflammatory response leading to microvascular complications. The loss of neuronal cells in the retinas of diabetic Mmp10 +/+ mice was higher than in Mmp10 −⁄− mice. Retinal inflammation was decreased in Mmp10 −⁄− mice, as indicated by their reduced retinal caspase-1 levels. CONCLUSIONS/INTERPRETATION MMP-10 is involved in the development of microvascular complications in type 1 diabetes and emerges as a potential therapeutic target for slowing down the evolution of diabetic nephropathy and retinopathy.
Collapse
|
22
|
Chen FT, Yang CM, Yang CH. The protective effects of the proteasome inhibitor bortezomib (velcade) on ischemia-reperfusion injury in the rat retina. PLoS One 2013; 8:e64262. [PMID: 23691186 PMCID: PMC3653862 DOI: 10.1371/journal.pone.0064262] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
Purpose To evaluate the protective effects of bortezomib (Velcade) on ischemia-reperfusion (IR) injury in the rat retina. Methods The rats were randomized to receive treatment with saline, low-dose bortezomib (0.05 mg/kg), or high-dose bortezomib (0.2 mg/kg) before the induction of IR injury. Electroretinography (ERG) was used to assess functional changes in the retina. The expression of inflammatory mediators (iNOS, ICAM-1, MCP-1, TNF-α), anti-oxidant proteins (heme oxygenase, thioredoxin, peroxiredoxin), and pro-apoptotic proteins (p53, bax) were quantified by PCR and western blot analysis. An immunofluorescence study was performed to detect the expression of iNOS, oxidative markers (nitrotyrosine, 8-OHdG, acrolein), NF-κB p65, and CD 68. Apoptosis of retinal cells was labeled with in situ TUNEL staining. Neu-N staining was performed in the flat-mounted retina to evaluate the density of retinal ganglion cells. Results ERG showed a decreased b-wave after IR injury, and pretreatment with bortezomib, especially the high dosage, reduced the functional impairment. Bortezomib successfully reduced the elevation of inflammatory mediators, anti-oxidant proteins, pro-apoptotic proteins and oxidative markers after IR insult in a dose-dependent manner. In a similar fashion, NF-κB p65- and CD 68-positive cells were decreased by bortezomib treatment. Retinal cell apoptosis in each layer was attenuated by bortezomib. The retinal ganglion cell density was markedly decreased in the saline and low-dose bortezomib groups but was not significantly changed in the high-dose bortezomib group. Conclusions Bortezomib had a neuro-protective effect in retinal IR injury, possibly by inhibiting the activation of NF-κB related to IR insult and reducing the inflammatory signals and oxidative stress in the retina.
Collapse
Affiliation(s)
- Fang-Ting Chen
- Department of Ophthalmology, Far Eastern Memorial Hospital, Ban-Chiao, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Szabo A, Danyadi B, Bognar E, Szabadfi K, Fabian E, Kiss P, Mester L, Manavalan S, Atlasz T, Gabriel R, Toth G, Tamas A, Reglodi D, Kovacs K. Effect of PACAP on MAP kinases, Akt and cytokine expressions in rat retinal hypoperfusion. Neurosci Lett 2012; 523:93-8. [DOI: 10.1016/j.neulet.2012.06.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 10/28/2022]
|
24
|
Arjamaa O, Pöllönen M, Kinnunen K, Ryhänen T, Kaarniranta K. Increased IL-6 levels are not related to NF-κB or HIF-1α transcription factors activity in the vitreous of proliferative diabetic retinopathy. J Diabetes Complications 2011; 25:393-7. [PMID: 21813290 DOI: 10.1016/j.jdiacomp.2011.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 04/13/2011] [Accepted: 06/20/2011] [Indexed: 11/27/2022]
Abstract
PURPOSE The purpose was to assess the activity of nuclear factor (NF)-κB and hypoxia inducible factor (HIF)-1α transcription factors and the expression levels of inflammation markers [interleukin (IL)-6 and IL-8] in the vitreous of patients suffering from proliferative diabetic retinopathy (PDR) scheduled for elective vitreous surgery in a single academic-based retina practice in a prospective clinical study. METHODS Twenty-seven patients with PDR were enrolled in the study. The severity of retinopathy was classified (0, 1, 2, 3, 4) and the activity of neovascularization was graded (0, 1, 2, 3, 4) by the surgeon intraoperatively. Samples of the vitreous were collected during surgery, and the activity of NF-κB and HIF-1α transcription factors and the expression levels of IL-6 and IL-8 were measured. RESULTS The majority of samples fell into the retinopathy class 3 (n = 12) or 4 (n = 13). The level of IL-6 increased from 68.9 ± 46.8 pg/ml to 102.7 ± 94.1 pg/ml, and IL-8 increased from 165.1 ± 136.0 pg/ml to 521.0 ± 870.9 pg/ml (mean ± S.D., nonsignificant change: normality test followed with Mann-Whitney Rank Sum Test). According to the neovascularization activity, the samples fell into grade 1 (n = 7), 2 (n = 12) or 3 (n = 7). In IL-6, there was a statistically significant increase (P < .05) from grade 2 to 3: 58.6 ± 40.3 pg/ml and 158.4 ± 102.5 pg/ml, respectively (Kruskal-Wallis One-Way Analysis of Variance on Ranks followed with Dunn's Method). The level of IL-8 was as follows: in grade 1: 118.0 ± 62.4 pg/ml, in grade 2: 192.3 ± 127.1 pg/ml and in grade 3: 884.3 ± 1161.0 pg/ml (statistically nonsignificant change). There was a statistically significant linear regression between IL-6 and IL-8 (P < .001): IL-6 = 51.88 pg/ml + (0.092*IL-8), r = 0.772. Increased activity of the NF-κB and HIF-1α transcription factors was not observed. CONCLUSION Interleukin-6 is a candidate to indicate activity of neovascularization process in PDR. It might be a new molecular therapeutic target to regulate innate immunity response in vitreous.
Collapse
Affiliation(s)
- Olli Arjamaa
- Department of Biology, University of Turku, Finland
| | | | | | | | | |
Collapse
|
25
|
Apoptotic death ligands and interleukins in the vitreous of diabetic patients. SPEKTRUM DER AUGENHEILKUNDE 2010. [DOI: 10.1007/s00717-010-0446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Gustavsson C, Agardh CD, Zetterqvist AV, Nilsson J, Agardh E, Gomez MF. Vascular cellular adhesion molecule-1 (VCAM-1) expression in mice retinal vessels is affected by both hyperglycemia and hyperlipidemia. PLoS One 2010; 5:e12699. [PMID: 20856927 PMCID: PMC2938334 DOI: 10.1371/journal.pone.0012699] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 08/04/2010] [Indexed: 11/19/2022] Open
Abstract
Background Inflammation has been proposed to be important in the pathogenesis of diabetic retinopathy. An early feature of inflammation is the release of cytokines leading to increased expression of endothelial activation markers such as vascular cellular adhesion molecule-1 (VCAM-1). Here we investigated the impact of diabetes and dyslipidemia on VCAM-1 expression in mouse retinal vessels, as well as the potential role of tumor necrosis factor-α (TNFα). Methodology/Principal Findings Expression of VCAM-1 was examined by confocal immunofluorescence microscopy in vessels of wild type (wt), hyperlipidemic (ApoE−/−) and TNFα deficient (TNFα−/−, ApoE−/−/TNFα−/−) mice. Eight weeks of streptozotocin-induced diabetes resulted in increased VCAM-1 in wt mice, predominantly in small vessels (<10 µm). Diabetic wt mice had higher total retinal TNFα, IL-6 and IL-1β mRNA than controls; as well as higher soluble VCAM-1 (sVCAM-1) in plasma. Lack of TNFα increased higher basal VCAM-1 protein and sVCAM-1, but failed to up-regulate IL-6 and IL-1β mRNA and VCAM-1 protein in response to diabetes. Basal VCAM-1 expression was higher in ApoE−/− than in wt mice and both VCAM-1 mRNA and protein levels were further increased by high fat diet. These changes correlated to plasma cholesterol, LDL- and HDL-cholesterol, but not to triglycerides levels. Diabetes, despite further increasing plasma cholesterol in ApoE−/− mice, had no effects on VCAM-1 protein expression or on sVCAM-1. However, it increased ICAM-1 mRNA expression in retinal vessels, which correlated to plasma triglycerides. Conclusions/Significance Hyperglycemia triggers an inflammatory response in the retina of normolipidemic mice and up-regulation of VCAM-1 in retinal vessels. Hypercholesterolemia effectively promotes VCAM-1 expression without evident stimulation of inflammation. Diabetes-induced endothelial activation in ApoE−/− mice seems driven by elevated plasma triglycerides but not by cholesterol. Results also suggest a complex role for TNFα in the regulation of VCAM-1 expression, being protective under basal conditions but pro-inflammatory in response to diabetes.
Collapse
Affiliation(s)
| | | | | | - Jan Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Elisabet Agardh
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Maria F. Gomez
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
27
|
Obrosova IG, Maksimchyk Y, Pacher P, Agardh E, Smith ML, El-Remessy AB, Agardh CD. Evaluation of the aldose reductase inhibitor fidarestat on ischemia-reperfusion injury in rat retina. Int J Mol Med 2010; 26:135-142. [PMID: 20514433 PMCID: PMC3044435 DOI: 10.3892/ijmm_00000445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study evaluated the effects of retinal ischemia-reperfusion (IR) injury and pre-treatment with the potent and specific aldose reductase inhibitor fidarestat on apoptosis, aldose reductase and sorbitol dehydrogenase expression, sorbitol pathway intermediate concentrations, and oxidative-nitrosative stress. Female Wistar rats were pre-treated with either vehicle (N-methyl-D-glucamine) or fidarestat, 32 mg kg(-1) d(-1) for both, in the right jugular vein, for 3 consecutive days. A group of vehicle- and fidarestat-treated rats were subjected to 45-min retinal ischemia followed by 24-h reperfusion. Ischemia was induced 30 min after the last vehicle or fidarestat administration. Retinal IR resulted in a remarkable increase in retinal cell death. The number of TUNEL-positive nuclei increased 48-fold in the IR group compared with non-ischemic controls (p<0.01), and this increase was partially prevented by fidarestat. AR expression (Western blot analysis) increased by 19% in the IR group (p<0.05), and this increase was prevented by fidarestat. Sorbitol dehydrogenase and nitrated protein expressions were similar among all experimental groups. Retinal sorbitol concentrations tended to increase in the IR group but the difference with non-ischemic controls did not achieve statistical significance (p=0.08). Retinal fructose concentrations were 2.2-fold greater in the IR group than in the non-ischemic controls (p<0.05). Fidarestat pre-treatment of rats subjected to IR reduced retinal sorbitol concentration to the levels in non-ischemic controls. Retinal fructose concentrations were reduced by 41% in fidarestat-pre-treated IR group vs. untreated ischemic controls (p=0.0517), but remained 30% higher than in the non-ischemic control group. In conclusion, IR injury to rat retina is associated with a dramatic increase in cell death, elevated AR expression and sorbitol pathway intermediate accumulation. These changes were prevented or alleviated by the AR inhibitor fidarestat. The results identify AR as an important therapeutic target for diseases involving IR injury, and provide the rationale for development of fidarestat and other AR inhibitors.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
IL-2 and IFN-gamma in the retina of diabetic rats. Graefes Arch Clin Exp Ophthalmol 2010; 248:985-90. [PMID: 20213480 DOI: 10.1007/s00417-009-1289-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 11/30/2009] [Accepted: 12/20/2009] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The pathophysiology of the early events leading to diabetic retinopathy is not fully understood. It has been suggested that Inflammatory processes are involved in the development of the disease; however, the concentrations of tissue retinal inflammatory mediators and their possible alteration in diabetic retinopathy have not been described. The aim of this work was to study T-helper cell cytokine and chemokine profiles, and tyrosine nitration in retinal tissue of diabetic rats. METHODS Cytokines (interleukin IL-1a, IL-1b, IL-2, IL-4, IL-6, IL-10, TNFa, GM-CSF, IFN-g), chemokines (MIP-1a, MIP-2, MIP-3a, MCP-1, GRO/KC, RANTES, Fractalkine), and tyrosine nitration were measured in retinal homogenate obtained from Long-Evans rats after 5 months of experimental diabetes. RESULTS The T-helper type 1 cytokines IL-2 and INF-gamma, in addition to NO production (measured as nitrotyrosine), were found to be significantly elevated in diabetic rat retina homogenates. None of the other cytokines and chemokines studied were affected by the diabetic condition. CONCLUSIONS Immunoregulatory cytokines belonging to the Th-1 group (IL-2 and IFN-gamma) were increased in the retina of experimental diabetic rats. Moreover, the nitrotyrosine formation (as an expression of increased NO production) was significantly elevated in the diabetic retina, supporting the concept of an inflammatory element in the development of diabetic retinopathy.
Collapse
|
29
|
Abstract
Diabetes and its complications are a major public health burden in the developed world. The major cause of diabetic complications is abnormal growth of new blood vessels. This dysfunctional neovascularization results in significant morbidity and mortality in patients with diabetes and, as such, is a major focus of basic and clinical investigation. It has become clear that hyperglycemia disrupts tissue-level signaling in response to hypoxia and ischemia, impairs the vasculogenic potential of circulating stem cells and fundamentally alters the structure and function of key neovascularization proteins, including hypoxia-inducible factor-1. These mechanistic and pathophysiologic studies have revealed new therapeutic targets to restore normal neovascularization and to ameliorate and prevent diabetic vascular complications.
Collapse
Affiliation(s)
- Jason P Glotzbach
- a Postdoctoral Research Fellow, Stanford University School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA, 94305-5148, USA.
| | - Victor W Wong
- b Postdoctoral Research Fellow, Stanford University School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA, 94305-5148, USA.
| | - Geoffrey C Gurtner
- c Professor of Surgery, Stanford University School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA, 94305-5148, USA.
| |
Collapse
|
30
|
Tikhonenko M, Lydic TA, Wang Y, Chen W, Opreanu M, Sochacki A, McSorley KM, Renis RL, Kern T, Jump DB, Reid GE, Busik JV. Remodeling of retinal Fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes 2010; 59:219-27. [PMID: 19875612 PMCID: PMC2797925 DOI: 10.2337/db09-0728] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The results of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort study revealed a strong association between dyslipidemia and the development of diabetic retinopathy. However, there are no experimental data on retinal fatty acid metabolism in diabetes. This study determined retinal-specific fatty acid metabolism in control and diabetic animals. RESEARCH DESIGN AND METHODS Tissue gene and protein expression profiles were determined by quantitative RT-PCR and Western blot in control and streptozotocin-induced diabetic rats at 3-6 weeks of diabetes. Fatty acid profiles were assessed by reverse-phase high-performance liquid chromatography, and phospholipid analysis was performed by nano-electrospray ionization tandem mass spectrometry. RESULTS We found a dramatic difference between retinal and liver elongase and desaturase profiles with high elongase and low desaturase gene expression in the retina compared with liver. Elovl4, an elongase expressed in the retina but not in the liver, showed the greatest expression level among retinal elongases, followed by Elovl2, Elovl1, and Elovl6. Importantly, early-stage diabetes induced a marked decrease in retinal expression levels of Elovl4, Elovl2, and Elovl6. Diabetes-induced downregulation of retinal elongases translated into a significant decrease in total retinal docosahexaenoic acid, as well as decreased incorporation of very-long-chain polyunsaturated fatty acids (PUFAs), particularly 32:6n3, into retinal phosphatidylcholine. This decrease in n3 PUFAs was coupled with inflammatory status in diabetic retina, reflected by an increase in gene expression of proinflammatory markers interleukin-6, vascular endothelial growth factor, and intercellular adhesion molecule-1. CONCLUSIONS This is the first comprehensive study demonstrating diabetes-induced changes in retinal fatty acid metabolism. Normalization of retinal fatty acid levels by dietary means or/and modulating expression of elongases could represent a potential therapeutic target for diabetes-induced retinal inflammation.
Collapse
Affiliation(s)
- Maria Tikhonenko
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | | | - Weiqin Chen
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Madalina Opreanu
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Andrew Sochacki
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Kelly M. McSorley
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Rebecca L. Renis
- Department of Chemistry, Michigan State University, East Lansing, Michigan
| | - Timothy Kern
- Department of Medicine, Division of Endocrinology, Case Western Reserve University, Cleveland, Ohio
| | - Donald B. Jump
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Gavin E. Reid
- Department of Chemistry, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Corresponding author: Julia V. Busik,
| |
Collapse
|
31
|
Rojas M, Zhang W, Lee DL, Romero MJ, Nguyen DT, Al-Shabrawey M, Tsai NT, Liou GI, Brands MW, Caldwell RW, Caldwell RB. Role of IL-6 in angiotensin II-induced retinal vascular inflammation. Invest Ophthalmol Vis Sci 2009; 51:1709-18. [PMID: 19834028 DOI: 10.1167/iovs.09-3375] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The production of proinflammatory cytokines has been shown to play a critical role in a variety of retinal vascular diseases. Angiotensin II and VEGF have been implicated in the initiation of vascular inflammation and retinal vascular disease. However, detailed mechanisms of this process and interactions between inflammatory agonists and angiotensin II in promoting retinopathy are poorly understood. The present study was an investigation of the role of interleukin (IL)-6 in angiotensin II-induced retinopathy. METHODS Rats and IL-6-deficient and wild-type mice were treated with angiotensin II or IL-6, and their retinas were analyzed for leukocyte adhesion or for the expression and localization of VEGF or IL-6. Leukocyte adhesion was assayed by concanavalin A labeling. Vascular density was determined by morphometric analysis. NADPH oxidase activity was assayed by dihydroethidium imaging of superoxide. RESULTS Intravitreal injection of angiotensin II caused increases in IL-6 mRNA and protein and in leukocyte adhesion to the retinal vessels. IL-6 protein was localized to CD11b-positive microglia and macrophage-like cells. Angiotensin II treatment stimulated increases in retinal levels of VEGF expression and NADPH oxidase activity, which were associated with increased surface area and remodeling of the retinal vessels. These effects were blocked by knocking out IL-6. Intravitreal IL-6 directly induced leukocyte adhesion in both wild-type and IL-6-deficient mice. CONCLUSIONS The results indicate that IL-6 expression is essential for angiotensin II-induced increases in retinal VEGF expression, leukostasis, and vascular remodeling. The data suggest a critical role for IL-6 in mediating angiotensin II-induced retinal vascular inflammation and remodeling.
Collapse
|
32
|
Shelton MD, Distler AM, Kern TS, Mieyal JJ. Glutaredoxin regulates autocrine and paracrine proinflammatory responses in retinal glial (muller) cells. J Biol Chem 2008; 284:4760-6. [PMID: 19074435 DOI: 10.1074/jbc.m805464200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Protein S-glutathionylation is a reversible redox-dependent post-translational modification. Many cellular functions and signal transduction pathways involve proteins whose cysteine-dependent activities are modulated by glutathionylation. Glutaredoxin (Grx1) plays a key role in such regulation because it is a specific and efficient catalyst of deglutathionylation. We recently reported an increase in Grx1 in retinae of diabetic rats and in rat retinal Müller glial cells (rMC-1) cultured in high glucose. This up-regulation of Grx1 was concomitant with NFkappaB activation and induction of intercellular adhesion molecule-1 (ICAM-1). This proinflammatory response was replicated by adenoviral-directed up-regulation of Grx1 in cells in normal glucose. The site of regulation of NFkappaB was localized to the cytoplasm, where IkappaB kinase (IKK) is a master regulator of NFkappaB activation. In the current study, inhibition of IKK activity abrogated the increase in ICAM-1 induced by high glucose or by adenoviral-directed up-regulation of Grx1. Conditioned medium from the Müller cells overexpressing Grx1 was added to fresh cultures of Müller or endothelial cells and elicited increases in the Grx1 and ICAM-1 proteins in these cells. These effects correlate with a novel finding that secretion of interleukin-6 was elevated in the cultures of Grx overexpressing cells. Also, pure interleukin-6 increased Grx1 and ICAM-1 in the rMC-1 cells. Thus, Grx1 appears to play an important role in both autocrine and paracrine proinflammatory responses. Furthermore, IKKbeta isolated from Müller cells in normal glucose medium was found to be glutathionylated on Cys-179. Hence Grx-mediated activation of IKK via deglutathionylation may play a central role in diabetic complications in vivo where Grx1 is increased.
Collapse
Affiliation(s)
- Melissa D Shelton
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4965, USA
| | | | | | | |
Collapse
|