1
|
Abstract
Purpose The structure of tears has been theoretically considered three tiers with lipids at the air interface, aqueous and proteins in the subphase, and anchored mucins on the corneal epithelial surface. While many lipid and protein species have been identified in tears by mass spectrometry, the localization of the major components within the tear film structure remains speculative. The most controversial components are phospholipids. Although surface active, phospholipids have been presumed to be bound entirely to protein in the aqueous portion of tears or reside at the aqueous-lipid interface. Herein, the possibility that phospholipids are adsorbed at the air-surface interface of tears is interrogated. Methods Polarization-modulated Fourier transform infrared reflective absorption spectroscopy (PM-IRRAS) was used to study the presence of phosphate signals at the tear surface. In order to constrain the depth of signal detection to the surface, an extreme grazing angle of incident radiation was employed. Nulling ellipsometry was used to confirm the presence of monolayers and surface thicknesses when surface active reagents were added to solutions. Results Surface selection of PM-IRRAS was demonstrated by suppression of water and phosphate signals in buffers with monolayers of oleic acid. Phosphate signals were shown to reflect relative concentrations. Absorption peaks attributable to phospholipids were detected by PM-IRRAS on the human tear film surface and were augmented by the addition of phospholipid. Conclusions The data provide strong evidence that phospholipids are present at the surface of tears.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Pathology and Ophthalmology, UCLA School of Medicine, Jules Stein Eye Institute, Los Angeles, California, United States
| |
Collapse
|
2
|
Affiliation(s)
- Ben J Glasgow
- David Geffen School of Medicine at UCLA, Jules Stein Eye Institute, Los Angeles, California, United States. E-mail:
| |
Collapse
|
3
|
Panthi S, Nichols JJ. An imaging-based analysis of lipid deposits on contact lens surfaces. Cont Lens Anterior Eye 2018; 41:342-350. [DOI: 10.1016/j.clae.2017.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
|
4
|
Glasgow BJ, Abduragimov AR. Interaction of ceramides and tear lipocalin. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:399-408. [PMID: 29331331 PMCID: PMC5835416 DOI: 10.1016/j.bbalip.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/19/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
The distribution of lipids in tears is critical to their function. Lipids in human tears may retard evaporation by forming a surface barrier at the air interface. Lipids complexed with the major lipid binding protein in tears, tear lipocalin, reside in the bulk (aqueous) and may have functions unrelated to the surface. Many new lipids species have been revealed through recent mass spectrometric studies. Their association with lipid binding proteins has not been studied. Squalene, (O-acyl) omega-hydroxy fatty acids (OAHFA) and ceramides are examples. Even well-known lipids such as wax and cholesteryl esters are only presumed to be unbound because extracts of protein fractions of tears were devoid of these lipids. Our purpose was to determine by direct binding assays if the aforementioned lipids can bind tear lipocalin. Lipids were screened for ability to displace DAUDA from tear lipocalin in a fluorescence displacement assay. Di- and tri-glycerides, squalene, OAHFA, wax and cholesterol esters did not displace DAUDA from tear lipocalin. However, ceramides displaced DAUDA. Apparent dissociation constants for ceramide-tear lipocalin complexes using fluorescent analogs were measured consistently in the submicromolar range with 3 methods, linear spectral summation, high speed centrifugal precipitation and standard fluorescence assays. At the relatively small concentrations in tears, all ceramides were complexed to tear lipocalin. The lack of binding of di- and tri-glycerides, squalene, OAHFA, as well as wax and cholesterol esters to tear lipocalin is consonant with residence of these lipids near the air interface.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
5
|
Pham TL, He J, Kakazu AH, Jun B, Bazan NG, Bazan HEP. Defining a mechanistic link between pigment epithelium-derived factor, docosahexaenoic acid, and corneal nerve regeneration. J Biol Chem 2017; 292:18486-18499. [PMID: 28972155 PMCID: PMC5682960 DOI: 10.1074/jbc.m117.801472] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Indexed: 12/22/2022] Open
Abstract
The cornea is densely innervated to sustain the integrity of the ocular surface. Corneal nerve damage produced by aging, diabetes, refractive surgeries, and viral or bacterial infections impairs tear production, the blinking reflex, and epithelial wound healing, resulting in loss of transparency and vision. A combination of the known neuroprotective molecule, pigment epithelium–derived factor (PEDF) plus docosahexaenoic acid (DHA), has been shown to stimulate corneal nerve regeneration, but the mechanisms involved are unclear. Here, we sought to define the molecular events of this effect in an in vivo mouse injury model. We first confirmed that PEDF + DHA increased nerve regeneration in the mouse cornea. Treatment with PEDF activates the phospholipase A2 activity of the PEDF-receptor (PEDF-R) leading to the release of DHA; this free DHA led to enhanced docosanoid synthesis and induction of bdnf, ngf, and the axon growth promoter semaphorin 7a (sema7a), and as a consequence, their products appeared in the mouse tears. Surprisingly, corneal injury and treatment with PEDF + DHA induced transcription of neuropeptide y (npy), small proline-rich protein 1a (sprr1a), and vasoactive intestinal peptide (vip) in the trigeminal ganglia (TG). The PEDF-R inhibitor, atglistatin, blocked all of these changes in the cornea and TG. In conclusion, we uncovered here an active cornea–TG axis, driven by PEDF-R activation, that fosters axon outgrowth in the cornea.
Collapse
Affiliation(s)
- Thang Luong Pham
- From the Department of Ophthalmology and Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana 70112-2223
| | - Jiucheng He
- From the Department of Ophthalmology and Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana 70112-2223
| | - Azucena H Kakazu
- From the Department of Ophthalmology and Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana 70112-2223
| | - Bokkyoo Jun
- From the Department of Ophthalmology and Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana 70112-2223
| | - Nicolas G Bazan
- From the Department of Ophthalmology and Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana 70112-2223
| | - Haydee E P Bazan
- From the Department of Ophthalmology and Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, Louisiana 70112-2223
| |
Collapse
|
6
|
Boost M, Cho P, Wang Z. Disturbing the balance: effect of contact lens use on the ocular proteome and microbiome. Clin Exp Optom 2017; 100:459-472. [PMID: 28771841 DOI: 10.1111/cxo.12582] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/17/2022] Open
Abstract
Contact lens wear is a popular, convenient and effective method for vision correction. In recent years, contact lens practice has expanded to include new paradigms, including orthokeratology; however, their use is not entirely without risk, as the incidence of infection has consistently been reported to be higher in contact lens wearers. The explanations for this increased susceptibility have largely focused on physical damage, especially to the cornea, due to a combination of hypoxia, mechanical trauma, deposits and solution cytotoxicity, as well as poor compliance with care routines leading to introduction of pathogens into the ocular environment. However, in recent years, with the increasing availability and reduced cost of molecular techniques, the ocular environment has received greater attention with in-depth studies of proteins and other components. Numerous proteins were found to be present in the tears and their functions and interactions indicate that the tears are far more complex than formerly presumed. In addition, the concept of a sterile or limited microbial population on the ocular surface has been challenged by analysis of the microbiome. Ocular microbiome was not considered as one of the key sites for the Human Microbiome Project, as it was thought to be limited compared to other body sites. This was proven to be fallacious, as a wide variety of micro-organisms were identified in the analyses of human tears. Thus, the ocular environment is now recognised to be more complicated and interference with this ecological balance may lead to adverse effects. The use of contact lenses clearly changes the situation at the ocular surface, which may result in consequences which disturb the balance in the healthy eye.
Collapse
Affiliation(s)
- Maureen Boost
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong.,Squina International Centre for Infection Control, Hong Kong
| | - Pauline Cho
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong.,Squina International Centre for Infection Control, Hong Kong
| | - Zhaoran Wang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
7
|
Meibomian glands, meibum, and meibogenesis. Exp Eye Res 2017; 163:2-16. [PMID: 28669846 DOI: 10.1016/j.exer.2017.06.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/14/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022]
Abstract
Meibum is a lipid-rich secretion that is produced by fully differentiated meibocytes in the holocrine Meibomian glands (MG) of humans and most mammals. The secretion is a part of a defense mechanism that protects the ocular surface from hazardous environmental factors, and from desiccation. Meibomian lipids that have been identified in meibum are very diverse and unique in nature. The lipid composition of meibum is different from virtually any other lipid pool found in the human body. In fact, meibum is quite different from sebum, which is the closest secretion that is produced by anatomically, physiologically, and biochemically related sebaceous glands. However, meibum of mice have been shown to closely resemble that of humans, implying similar biosynthetic mechanisms in MG of both species. By analyzing available genomic, immunohistochemical, and lipidomic data, we have envisioned a unifying network of enzymatic reactions that are responsible for biosynthesis of meibum, which we call meibogenesis. Our current theory is based on an assumption that most of the biosynthetic reactions of meibogenesis are catalyzed by known enzymes. However, the main features that make meibum unique - the ratio of identified classes of lipids, the extreme length of its components, extensive ω-hydroxylation of fatty acids and alcohols, iso- and anteiso-branching of meibomian lipids (e.g. waxes), and the presence of rather unique complex lipids with several ester bonds - make it possible that either the activity of known enzymes is altered in MG, or some unknown enzymes contribute to the processes of meibogenesis, or both. Studies are in progress to elucidate meibogenesis on molecular level.
Collapse
|
8
|
Controversies Regarding the Role of Polar Lipids in Human and Animal Tear Film Lipid Layer. Ocul Surf 2015; 13:176-8. [DOI: 10.1016/j.jtos.2015.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 11/20/2022]
|
9
|
Abstract
PURPOSE To determine whether tear collection by flushing the ocular surface with saline (flush tears) or collection by stimulation (reflex tears) can be used as an alternative to basal tear collection for the identification and quantification of lipids in the tear film. METHODS Tear samples were collected from 10 participants with no history of ocular surface disease or contact lens wear. Up to 10 μl of basal, reflex, and flush tear samples were collected from each eye using a microcapillary tube on three occasions with the order of methods randomized and allowing at least 24 hours between each collection method. Lipids were quantified from each tear sample using nano-electrospray ionization tandem mass spectrometry. RESULTS Total lipids significantly differed in their concentration (pmol/μl) and mole % with each collection technique. Cholesterol esters [mean % (SE)] formed the major component of the total lipidome in basal [54.8% (3.1)], reflex [35.7% (6.4)], and flush [33.0% (3.1)] tear samples. However, the mole % of each lipid class substantially varied with each tear collection method. Nonpolar lipids, including cholesterol, wax esters, and triacylglycerols, dominated the tear lipidome in basal [92.8% (1.9)], reflex [71.8% (7.9)], and flush [83.6% (3.8)] tear samples. However, the mole % of phospholipids in reflex [27.5% (8.1)] and flush [15.8% (3.8)] tear samples was higher (p = 0.005) than that in basal tears [5.4% (2.0)]. CONCLUSIONS Flush or reflex tears did not have similar lipid profiles in either concentration or in mole % to basal tears. It is recommended that basal tears are used for tear lipid analysis as the reflex or flush tears contain very low levels of most lipid components.
Collapse
|
10
|
Pucker AD, Haworth KM. The Presence and Significance of Polar Meibum and Tear Lipids. Ocul Surf 2015; 13:26-42. [DOI: 10.1016/j.jtos.2014.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/27/2014] [Accepted: 06/01/2014] [Indexed: 01/13/2023]
|
11
|
Mann A, Tighe B. Contact lens interactions with the tear film. Exp Eye Res 2013; 117:88-98. [DOI: 10.1016/j.exer.2013.07.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 12/28/2022]
|
12
|
Schuett BS, Millar TJ. An investigation of the likely role of (O-acyl) ω-hydroxy fatty acids in meibomian lipid films using (O-oleyl) ω-hydroxy palmitic acid as a model. Exp Eye Res 2013; 115:57-64. [PMID: 23792170 DOI: 10.1016/j.exer.2013.06.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/23/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
(O-acyl) ω-hydroxy fatty acids (OAHFAs) are a recently found group of polar lipids in meibum. Since these lipids can potentially serve as a surfactant in the tear film lipid layer, the surface properties of a molecule of this lipid class was investigated and compared with a structurally related wax ester and a fatty acid. (O-oleyl) ω-hydroxy palmitic acid was synthesized and used as the model OAHFA. It was spread either alone or mixed with human meibum on an artificial tear buffer in a Langmuir trough, and pressure-area isocycle profiles were recorded at different temperatures and compared with those of palmityl oleate and oleic acid. These measurements were accompanied by fluorescence microscopy of meibum mixed films during pressure-area isocycles. The pressure area curves indicated that pure films of the model OAHFA are as surface active as oleic acid films, cover a much larger surface area than either palmityl oleate or oleic acid and show a distinct biphasic pressure-area isocycle profile. The OAHFAs appeared to remain on the aqueous surface and show only a minor re-arrangement into multi-layered structures during repetitive pressure area isocycles. All these properties can be explained by OAHFAs binding weakly to the aqueous surface via an ester group and strongly via a carboxyl group. By contrast, the pressure area profiles of palmityl oleate films indicate that they form multi-layers and oleic acid presumably forms micelles and desorbs into the subphase. When mixed with meibum, similar features as for pure films were observed. In addition, meibum-OAHFA films appeared very homogeneous; a feature not seen with other mixtures. In conclusion these data support the notion that the tested OAHFA is a very potent surfactant which is important in spreading and stabilising meibomian lipid films.
Collapse
Affiliation(s)
- Burkhardt S Schuett
- School of Science and Health, University of Western Sydney, Penrith, NSW 2751, Australia
| | | |
Collapse
|
13
|
Abstract
Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author's laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology and the Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA.
| |
Collapse
|
14
|
Posa A, Bräuer L, Schicht M, Garreis F, Beileke S, Paulsen F. Schirmer strip vs. capillary tube method: non-invasive methods of obtaining proteins from tear fluid. Ann Anat 2012; 195:137-42. [PMID: 23357333 DOI: 10.1016/j.aanat.2012.10.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
Human tear fluid is a complex mixture containing over 500 solute proteins, lipids, electrolytes, mucins, metabolites, hormones and desquamated epithelial cells as well as foreign substances from the ambient air. Little is known to date about the function of most tear components. The efficient and gentle collection of tear fluid facilitates closer investigation of these matters. The objective of the present paper was to compare two commonly used methods of obtaining tear fluid, the capillary tube and Schirmer strip methods, in terms of usefulness in molecular biological investigation of tear film. The comparative protein identification methods Bradford and Western Blot were used in the analyses to this end. The surfactant proteins (SP) A-D recently described as present on the eye surface were selected as the model proteins. Both methods feature sufficient uptake efficiency for proteins in or extraction from the sampling means used (capillary tube/Schirmer strip). The total protein concentration can be determined and the proteins in the tears can be detected - besides the hydrophilic SP-A and D also the non-water-soluble proteins of smaller size such as SP-B and C. Thus both methods afford a suitable basis for comparative analysis of the physiological processes in the tear fluid of healthy and diseased subjects. On the whole, the Schirmer strip has several advantages over the capillary tube.
Collapse
Affiliation(s)
- Andreas Posa
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Function of lipids – their fate in contact lens wear: An interpretive review. Cont Lens Anterior Eye 2012; 35:100-11. [DOI: 10.1016/j.clae.2012.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/05/2012] [Accepted: 01/12/2012] [Indexed: 11/19/2022]
|
16
|
Dean AW, Glasgow BJ. Mass spectrometric identification of phospholipids in human tears and tear lipocalin. Invest Ophthalmol Vis Sci 2012; 53:1773-82. [PMID: 22395887 DOI: 10.1167/iovs.11-9419] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The purpose of this article was to identify by mass spectrometry phosphocholine lipids in stimulated human tears and determine the molecules bound to tear lipocalin or other proteins. METHODS Tear proteins were separated isocratically from pooled stimulated human tears by gel filtration fast performance liquid chromatography. Separation of tear lipocalin was confirmed by SDS tricine gradient PAGE. Protein fractions were extracted with chloroform/methanol and analyzed with electrospray ionization MS/MS triple quadrupole mass spectrometry in precursor ion scan mode for select leaving groups. For quantification, integrated ion counts were derived from standard curves of authentic compounds of phosphatidylcholine (PC) and phosphatidylserine. RESULTS Linear approximation was possible from integration of the mass spectrometrically obtained ion peaks at 760 Da for the PC standard. Tears contained 194 ng/mL of the major intact PC (34:2), m/z 758.6. Ten other monoisotopic phosphocholines were found in tears. A peak at 703.3 Da was assigned as a sphingomyelin. Four lysophosphatidylcholines (m/z 490-540) accounted for about 80% of the total integrated ion count. The [M+H](+) compound, m/z 496.3, accounted for 60% of the signal intensity. Only the tear lipocalin-bearing fractions showed phosphocholines (104 ng/mL). Although the intact phospholipids bound to tear lipocalin corresponded precisely in mass and relative signal intensity to that found in tears, we did not identify phosphocholines between m/z 490 and 540 in any of the gel-filtration fractions. CONCLUSIONS Phospholipids, predominantly lysophospholipids, are present in tears. The higher mass intact PCs in tears are native ligands of tear lipocalin.
Collapse
Affiliation(s)
- Austin W Dean
- Departments of Ophthalmology, Pathology, and Laboratory Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Jules Stein Eye Institute, Los Angeles, CA 90095, USA
| | | |
Collapse
|