1
|
Sharma P, Ma JX, Karamichos D. Effects of hypoxia in the diabetic corneal stroma microenvironment. Exp Eye Res 2024; 240:109790. [PMID: 38224848 DOI: 10.1016/j.exer.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Corneal dysfunctions associated with Diabetes Mellitus (DM), termed diabetic keratopathy (DK), can cause impaired vision and/or blindness. Hypoxia affects both Type 1 (T1DM) and Type 2 (T2DM) surprisingly, the role of hypoxia in DK is unexplored. The aim of this study was to examine the impact of hypoxia in vitro on primary human corneal stromal cells derived from Healthy (HCFs), and diabetic (T1DMs and T2DMs) subjects, by exposing them to normoxic (21% O2) or hypoxic (2% O2) conditions through 2D and 3D in vitro models. Our data revealed that hypoxia affected T2DMs by slowing their wound healing capacity, leading to significant alterations in oxidative stress-related markers, mitochondrial health, cellular homeostasis, and endoplasmic reticulum health (ER) along with fibrotic development. In T1DMs, hypoxia significantly modulated markers related to membrane permeabilization, oxidative stress via apoptotic marker (BAX), and protein degradation. Hypoxic environment induced oxidative stress (NOQ1 mediated reduction of superoxide in T1DMs and Nrf2 mediated oxidative stress in T2DMs), modulation in mitochondrial health (Heat shock protein 27 (HSP27), and dysregulation of cellular homeostasis (HSP90) in both T1DMs and T2DMs. This data underscores the significant impact of hypoxia on the diabetic cornea. Further studies are warranted to delineate the complex interactions.
Collapse
Affiliation(s)
- Purnima Sharma
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
2
|
Zhang S, Ishida Y, Ishigami A, Nosaka M, Kuninaka Y, Yasuda H, Kofuna A, Matsuki J, Osako M, Zhang W, Kimura A, Furukawa F, Kondo T. Forensic application of epidermal expression of HSP27 and HSP70 for the determination of wound vitality in human compressed neck skin. Sci Rep 2023; 13:6692. [PMID: 37095183 PMCID: PMC10126125 DOI: 10.1038/s41598-023-33799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Estimating the age and vitality of human skin wounds is essential in forensic practice, and the use of immunohistochemical parameters in this regard remains a challenge. Heat shock proteins (HSPs) are evolutionarily conserved universal proteins that protect biological systems from various types of stress. However, its importance in forensic pathology for determining wound activation in neck compression skin remains unclear. The expression of HSP27 and HSP70 in neck skin samples was immunohistochemically examined to understand its forensic applicability in determining wound vitality. Skin samples were obtained from 45 cases of neck compression (hanging, 32 cases; strangulation, 10 cases; manual strangulation, 2 cases; other, 1 case) during forensic autopsies; intact skin from the same individual was used as a control. HSP27 expression was detected in 17.4% of keratinocytes in the intact skin samples. In the compressed region, the frequency of HSP27 expression in keratinocytes was 75.8%, which was significantly higher than that in intact skin. Similarly, HSP70 expression was 24.8% in intact skin samples and 81.9% in compressed skin samples, significantly higher in compressed skin than in intact skin samples. This increase in case compression cases may be due to the cell defence role of HSPs. From a forensic pathology perspective, the immunohistochemical examination of HSP27 and HSP70 expression in neck skin could be considered a valuable marker for diagnosing traces of antemortem compression.
Collapse
Affiliation(s)
- Siying Zhang
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| | - Akiko Ishigami
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Haruki Yasuda
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Ayumi Kofuna
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Jumpei Matsuki
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Miyu Osako
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Wei Zhang
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Fukumi Furukawa
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
3
|
Sooraj K, Shukla S, Kaur R, Titiyal JS, Kaur J. The protective role of HSP27 in ocular diseases. Mol Biol Rep 2022; 49:5107-5115. [PMID: 35212927 DOI: 10.1007/s11033-022-07222-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
Heat shock proteins (HSPs) are stress-induced proteins that are important constituents of the cell's defense system. The activity of HSPs enhances when the cell undergoes undesirable environmental conditions like stress. The protective roles of HSPs are due to their molecular chaperone and anti-apoptotic functions. HSPs have a central role in the eye, and their malfunction has been associated with the manifestation of ocular diseases. Heat shock protein 27 (HSP27, HSPB1) is present in various ocular tissues, and it has been found to protect the eye from disease states such as retinoblastoma, uveal melanoma, glaucoma, and cataract. But some recent studies have shown the destructive role of HSP27 on retinal ganglionic cells. Thus, this article summarizes the role of heat shock protein 27 in eye and ocular diseases and will focus on the expression, regulation, and function of HSP27 in ocular complications.
Collapse
Affiliation(s)
- K Sooraj
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Swati Shukla
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ranjeet Kaur
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Jeewan Singh Titiyal
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Jasbir Kaur
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| |
Collapse
|
4
|
Wang M, Hu J, Qu J, Huang H, Zhang J, Zhang J, Li H, Cui X, Zhang F, Hu MY, Li J, Hu Y. The Therapeutic Roles of Recombinant Hsp90α on Cornea Epithelial Injury. Invest Ophthalmol Vis Sci 2022; 63:30. [PMID: 35201262 PMCID: PMC8883155 DOI: 10.1167/iovs.63.2.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose The purpose of this study was to explore the therapeutic role of heat shock protein 90 (Hsp90) in wound healing of injury cornea epithelium. Methods The right eye of C57BL/6N male mice were performed the debridement wounds in the center of the cornea using an algerbrush II blade. The injured area was determined by staining the cornea with fluorescein sodium and measured with image-J. Immunoblotting, ELISA and immunochemistry were used for determining protein expression. The quantitation PCR was performed to measure mRNA expression. Results Hsp90α is upregulated at both the mRNA and protein levels, and is secreted extracellularly into the corneal stroma and tear film during the healing process after corneal injury in mice. This upregulation is associated with activation of HSF1. Administration of recombinant exogenous Hsp90α (eHsp90α) speeds up wound healing of injured corneal epithelium. The eHsp90α binds to low-density lipoprotein (LDL)-related protein-1 (LRP-1) on the corneal epithelial cells and increases phosphorylation of AKT at S473, which is associated with proliferation and migration corneal epithelial cells in vitro or vivo. Inhibition of AKT by its inhibitor LY294002 abolishes eHsp90α-induced migration and proliferation of corneal epithelial cells. Conclusions Hsp90α is upregulated and secreted after corneal injury and acts to promote the healing process. Recombinant Hsp90α may be a promising therapeutic drug candidate for corneal injury.
Collapse
Affiliation(s)
- Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, China.,State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China.,Kaifeng Key Laboratory for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Jialin Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Junwei Qu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Huili Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Fengyan Zhang
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Yue Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, China.,State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China.,Kaifeng Key Laboratory for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China.,Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Subbannayya Y, Pinto SM, Mohanty V, Dagamajalu S, Prasad TSK, Murthy KR. What Makes Cornea Immunologically Unique and Privileged? Mechanistic Clues from a High-Resolution Proteomic Landscape of the Human Cornea. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:129-139. [PMID: 32125911 DOI: 10.1089/omi.2019.0190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Success rates of corneal transplantation are particularly high owing to its unique, innate immune privilege derived from a phenomenon known as Anterior Chamber-Associated Immune Deviation (ACAID). Of note, cornea is a transparent, avascular structure that acts as a barrier along with sclera to protect the eye and contributes to optical power. Molecular and systems biology mechanisms underlying ACAID and the immunologically unique and privileged status of cornea are not well known. We report here a global unbiased proteomic profiling of the human cornea and the identification of 4824 proteins, the largest catalog of human corneal proteins identified to date. Moreover, signaling pathway analysis revealed enrichment of spliceosome, phagosome, lysosome, and focal adhesion pathways, thereby demonstrating the protective functions of corneal proteins. We observed an enrichment of neutrophil-mediated immune response processes in the cornea as well as proteins belonging to the complement and ER-Phagosome pathways that are suggestive of active immune and inflammatory surveillance response. This study provides a key expression map of the corneal proteome repertoire that should enable future translational medicine studies on the pathological conditions of the cornea and the mechanisms by which cornea immunology are governed. Molecular mechanisms of corneal immune privilege have broad relevance to understand and anticipate graft rejection in the field of organ transplantation.
Collapse
Affiliation(s)
- Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Krishna R Murthy
- Vittala International Institute of Ophthalmology, Bangalore, India.,Prabha Eye Clinic and Research Centre, Bangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Zou S, Liao M, Yang J, Huang T, Green M, Wu J, Qu L. Heat shock protein 27 plays a protective role in thoracic aortic dissection by promoting cell proliferation and inhibiting apoptosis. Cell Mol Biol Lett 2017; 22:24. [PMID: 29209372 PMCID: PMC5704392 DOI: 10.1186/s11658-017-0056-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/14/2017] [Indexed: 11/10/2022] Open
Abstract
Background Thoracic aortic dissection (TAD) is one of the most severe aortic diseases. The study aimed to explore the potential role of heat shock protein 27 (HSP27) in the pathogenesis of TAD using an in vitro model of oxidative stress in vascular smooth muscle cells (VSMCs). Methods HSP27 was analyzed in aortic surgical specimens from 12 patients with TAD and 8 healthy controls. A lentiviral vector was used to overexpress HSP27 in rat aortic VSMCs. Cell proliferation and apoptosis were measured under oxidative stress induced by H2O2. Results HSP27 expression was significantly higher in aortic tissue from patients with TAD and VSMCs in the aortic media were the main cell type producing HSP27. Elevated oxidative stress was also detected in the TAD samples. Overexpression of HSP27 significantly attenuated H2O2-induced inhibition of cell proliferation. Furthermore, HSP27 was found to decrease H2O2-induced cell apoptosis and oxidative stress. Conclusions These results suggest that HSP27 expression promotes VSMC viability, suppresses cell apoptosis, and confers protection against oxidative stress in TAD.
Collapse
Affiliation(s)
- Sili Zou
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, the Second Military Medical University, 415 Fengyang Road, Shanghai, People's Republic of China
| | - Mingfang Liao
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, the Second Military Medical University, 415 Fengyang Road, Shanghai, People's Republic of China
| | - Junlin Yang
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, the Second Military Medical University, 415 Fengyang Road, Shanghai, People's Republic of China
| | - Tong Huang
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, the Second Military Medical University, 415 Fengyang Road, Shanghai, People's Republic of China
| | - Mark Green
- DICAT Biomedical Computation Centre, Vancouver, BC Canada
| | - Jianjin Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, the Second Military Medical University, 415 Fengyang Road, Shanghai, People's Republic of China
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, the Second Military Medical University, 415 Fengyang Road, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Kandhavelu J, Demonte NL, Namperumalsamy VP, Prajna L, Thangavel C, Jayapal JM, Kuppamuthu D. Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection. J Proteomics 2016; 152:13-21. [PMID: 27789337 DOI: 10.1016/j.jprot.2016.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022]
Abstract
Aspergillus flavus and Fusarium sp. are primary causative agents of keratitis that results in corneal tissue damage leading to vision loss particularly in individuals from the tropical parts of the world. Proteins in the tear film collected from control and keratitis patients was profiled and compared. A total of 1873 proteins from control and 1400 proteins from patient tear were identified by mass spectrometry. While 847 proteins were found to be glycosylated in the patient tear, only 726 were glycosylated in control tear. And, some of the tear proteins showed alterations in their glycosylation pattern after infection. Complement system proteins, proteins specific for neutrophil extracellular traps and proteins involved in would healing were found only in the patient tear. The presence of these innate immune system proteins in the tear film of patients supports the previous data indicating the involvement of neutrophil and complement pathways in antifungal defense. High levels of wound healing proteins in keratitis patient tear implied activation of tissue repair during infection. The early appearance of the host defense proteins and wound healing response indicates that tear proteins could be used as an early marker system for monitoring the progression of pathogenesis. Identification of negative regulators of the above defense pathways in keratitis tear indicates an intricate balance of pro and anti-defense mechanisms operating in fungal infection of the eye. SIGNIFICANCE Tear proteins from control and mycotic keratitis patients were separated into glycoproteins and non-glycosylated proteins and then identified by mass spectrometry. Tear proteins from keratitis patients showed alteration in the glycosylation pattern indicating the alteration of glycosylation machinery due to infection. Neutrophil extracellular traps specific proteins, complement pathway proteins, as well as wound healing proteins, were found only in patient tear showing the activation of antifungal defense in the patient tear. Negative regulators of these defense pathways were also found in patient tear indicating a fine balance between pathogen clearance and host tissue destruction during fungal infection depending upon the individual specific host - pathogen interaction. This understanding could be used to predict the progression and outcome of infection.
Collapse
Affiliation(s)
- Jeyalakshmi Kandhavelu
- Department of Proteomics, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Naveen Luke Demonte
- Department of Proteomics, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Eye Hospital, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Chitra Thangavel
- Department of Proteomics, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Jeya Maheshwari Jayapal
- Department of Proteomics, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Dharmalingam Kuppamuthu
- Department of Proteomics, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India.
| |
Collapse
|
8
|
Yoo A, Park HM, Kang SS, Kim ES, Tchah H, Kim JY. RNA Interference-based Investigation of the Function of Heat Shock Protein 27 during Corneal Epithelial Wound Healing. J Vis Exp 2016. [PMID: 27768052 DOI: 10.3791/54280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Small interfering RNA (siRNA) is among the most widely used RNA interference methods for the short-term silencing of protein-coding genes. siRNA is a synthetic RNA duplex created to specifically target a mRNA transcript to induce its degradation and it has been used to identify novel pathways in various cellular processes. Few reports exist regarding the role of phosphorylated heat shock protein 27 (HSP27) in corneal epithelial wound healing. Herein, cultured human corneal epithelial cells were divided into a scrambled control-siRNA transfected group and a HSP27-specific siRNA-transfected group. Scratch-induced directional wounding assays, and western blotting, and flow cytometry were then performed. We conclude that HSP27 has roles in corneal epithelial wound healing that may involve epithelial cell apoptosis and migration. Here, step-by-step descriptions of sample preparation and the study protocol are provided.
Collapse
Affiliation(s)
- Aeri Yoo
- Department of Ophthalmology, Saevit Eye Hospital
| | - Hyun-Min Park
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center
| | - Soon-Suk Kang
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center
| | - Eun-Soon Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center
| | - Hungwon Tchah
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center
| | - Jae Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center;
| |
Collapse
|
9
|
Qin Z, Ruinan S, Zhenkun Z. [Expression of heat shock protein 27 in cigarette smoke extract-induced injury of human gingival fibroblasts]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:17-22. [PMID: 27266192 PMCID: PMC7030785 DOI: 10.7518/hxkq.2016.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/02/2015] [Indexed: 06/06/2023]
Abstract
OBJECTIVE This research aimed to observe the expression of heat shock protein 27 (HSP27) in human gingival fibroblasts (HGFs) cell injury induced by different concentrations of cigarette smoke extract (CSE). METHODS The third to eighth generations of cultured HGFs were treated with serially diluted CSE of different concentrations (0, 2.5%, 5.0%, 12.5%, 25.0%, 50.0%). Wound-healing assay was performed to determine the migration of HGFs, and Western blot was used to determine the expression of HSP27. RESULTS The migration capability of HGFs weakened with the increase of CSE concentration. HSP27 expression was negative in normal HGFs but positive in CSE-intervened HGFs in a concentration-dependent manner. CONCLUSION HSP27 concentration increased in the CSE-induced injury of HGFs. This finding suggests that HSP27 plays an important role in CSE-induced epithelial injury.
Collapse
|
10
|
Qin Z, Ruinan S, Zhenkun Z. [Expression of heat shock protein 27 in cigarette smoke extract-induced injury of human gingival fibroblasts]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:17-22. [PMID: 27266192 PMCID: PMC7030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/02/2015] [Indexed: 12/16/2023]
Abstract
OBJECTIVE This research aimed to observe the expression of heat shock protein 27 (HSP27) in human gingival fibroblasts (HGFs) cell injury induced by different concentrations of cigarette smoke extract (CSE). METHODS The third to eighth generations of cultured HGFs were treated with serially diluted CSE of different concentrations (0, 2.5%, 5.0%, 12.5%, 25.0%, 50.0%). Wound-healing assay was performed to determine the migration of HGFs, and Western blot was used to determine the expression of HSP27. RESULTS The migration capability of HGFs weakened with the increase of CSE concentration. HSP27 expression was negative in normal HGFs but positive in CSE-intervened HGFs in a concentration-dependent manner. CONCLUSION HSP27 concentration increased in the CSE-induced injury of HGFs. This finding suggests that HSP27 plays an important role in CSE-induced epithelial injury.
Collapse
|
11
|
Peterson CWM, Carter RT, Bentley E, Murphy CJ, Chandler HL. Heat-shock protein expression in canine corneal wound healing. Vet Ophthalmol 2015; 19:262-6. [PMID: 26302381 DOI: 10.1111/vop.12302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Heat-shock proteins, particularly the 70-kDa member (Hsp70), have been implicated in facilitating wound healing in multiple tissues. Expression and localization of three HSPs were assessed in normal and wounded canine corneas to elucidate a role in epithelial healing. METHODS Paraffin-embedded normal corneas, acute and repeatedly abraded corneas, and keratectomies of spontaneous chronic corneal epithelial defects (SCCEDs) were subjected to routine immunohistochemistry for Hsp27, 47, and 70 expression. Ex vivo corneal defects were created and treated with anti-HSPs or IgG controls, and wound healing was monitored. Primary cultures of canine corneal stromal fibroblasts and corneal epithelial cells were treated with exogenous Hsp70, and an artificial wound was created in vitro to monitor restoration of the monolayer. RESULTS Normal canine corneas exhibited constitutive expression of all HSPs evaluated. Inducible expression was demonstrated in acutely wounded tissues, and expression in the chronically abraded corneas was relocalized. All HSP expression was below the limits of detection in the epithelium of SCCED samples. Inhibition of HSPs in culture resulted in delayed wound healing when compared to controls. Hsp70-treated fibroblasts demonstrated significantly (P < 0.001) increased migration and proliferation compared to the vehicle control; however, there was no significant effect of exogenous Hsp70 on corneal epithelial cells. CONCLUSIONS These findings suggest that HSPs are induced in the normal canine cornea during re-epithelialization. Hsp70 expression is likely important for inducing the cytoarchitectural remodeling, migration, and proliferation necessary early in the canine corneal healing response, and suppressed expression may contribute to the pathophysiology of nonhealing defects.
Collapse
Affiliation(s)
| | - Renee T Carter
- Clinical Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | | | - Heather L Chandler
- The Ohio State University, 338 West 10th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
12
|
Song IS, Kang SS, Kim ES, Park HM, Choi CY, Tchah H, Kim JY. Heat shock protein 27 phosphorylation is involved in epithelial cell apoptosis as well as epithelial migration during corneal epithelial wound healing. Exp Eye Res 2014; 118:36-41. [DOI: 10.1016/j.exer.2013.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/18/2013] [Accepted: 11/05/2013] [Indexed: 12/27/2022]
|