1
|
Ambekar A, Sahoo J, Singh K. Breaking barriers in ocular drug delivery for Uveitis: Advanced drug delivery systems, challenges and future prospects. Exp Eye Res 2025; 257:110456. [PMID: 40436361 DOI: 10.1016/j.exer.2025.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/14/2025] [Accepted: 05/26/2025] [Indexed: 06/01/2025]
Abstract
Uveitis is inflammation of the uvea, the middle layer of the eye which comprises of iris, ciliary body and choroid. Complications associated with uveitis include chronic pain, vision impairment and even blindness if not treated adequately. Conventional treatments for uveitis include immunosuppressive medications such as corticosteroids and biologics, which present challenges of low bioavailability due to complex anatomical structure of eye, rapid drug elimination, enzymatic degradation and the blood-retinal barrier. Consequently, they require frequent administration and are often associated with systemic side effects. In comparison to conventional drug delivery advanced drug delivery systems offer advantages such as targeted drug delivery, sustained drug release and reduction in side effects. A thorough literature search was conducted using Google Scholar, PubMed, covering publications from 2000 to 2024. The search terms included "uveitis," "pathology and pathophysiology of uveitis," "barriers in ocular drug delivery," and "uveitis conventional treatments." To refine the search results, "uveitis" was combined with different keywords such as "polymeric nanoparticles," "liposomes," "nanomicelles," "dendrimers," "nanoemulsions," "hydrogels," "implants," or "microneedles" to gather information related to each novel drug delivery system. Only English language studies were considered. The inclusion criteria encompassed both review and research articles specifically related to uveitis, with a focus on studies evaluating novel drug delivery systems for its treatment. Studies on ocular drug delivery systems unrelated to uveitis were excluded. No formal statistical analysis was conducted. This review highlights various advanced drug delivery approaches including polymeric nanoparticles, liposomes, nanomicelles, dendrimers, nanoemulsions, hydrogels, implants and microneedles for the treatment of uveitis.
Collapse
Affiliation(s)
- Anju Ambekar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta road, Vile Parle (West), Mumbai, 400056, Maharashtra, India.
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta road, Vile Parle (West), Mumbai, 400056, Maharashtra, India.
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta road, Vile Parle (West), Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
2
|
Qin M, Luo J, Patel B, Thong KX, Latefa S, Shao D, Tanner A, Yu-Wai-Man C. Developing a synergistic rate-retarding polymeric implant for controlling monoclonal antibody delivery in minimally invasive glaucoma surgery. Int J Biol Macromol 2024; 272:132655. [PMID: 38797299 PMCID: PMC11780753 DOI: 10.1016/j.ijbiomac.2024.132655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) have garnered substantial attention within the field of ophthalmology and can be used to suppress scar formation after minimally invasive glaucoma surgeries. Here, by controlling mAb passive diffusion, we developed a polymeric, rate-controlling membrane reservoir loaded with poly(lactic-co-glycolic acid) microspheres to deliver mAb for several weeks. Different parameters were tested to ensure that the microspheres achieved a good quality characteristic, and our results showed that 1 %W/V emulsifier with 5 %W/V NaCl achieved mAb-loaded microspheres with the highest stability, encapsulation efficiency and minimal burst release. Then, we fabricated and compared 10 types of microporous films based on polylactic acid (PLA), polycaprolactone (PCL), and polyethylene glycol (PEG). Our results revealed distinct pore characteristics and degradation patterns in different films due to varying polymer properties, and all the polymeric film formulations showed good biocompatibility in both human trabecular meshwork cells and human conjunctival fibroblasts. Finally, the optimized microspheres were loaded into the reservoir-type polymeric implant assembled by microporous membranes with different surface coating modifications. The implant formulation, which was fabricated by 60 PCL: 40 PEG (3 %W/V) polymer with 0.1 %W/V poly(lactic-co-glycolic acid) barrier, exerted the best drug release profile that can sustained release mAb (83.6 %) for 4 weeks.
Collapse
Affiliation(s)
- Mengqi Qin
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Jinyuan Luo
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Brihitejas Patel
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Kai Xin Thong
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Samar Latefa
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Daniel Shao
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Alexander Tanner
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK.
| |
Collapse
|
3
|
Farooq U, O'Reilly NJ, Ahmed Z, Gasco P, Raghu Raj Singh T, Behl G, Fitzhenry L, McLoughlin P. Design of liposomal nanocarriers with a potential for combined dexamethasone and bevacizumab delivery to the eye. Int J Pharm 2024; 654:123958. [PMID: 38442797 DOI: 10.1016/j.ijpharm.2024.123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Clinicians face numerous challenges when delivering medications to the eyes topically because of physiological barriers, that can inhibit the complete dose from getting to the intended location. Due to their small size, the ability to deliver drugs of different polarities simultaneously, and their biocompatibility, liposomes hold great promise for ocular drug delivery. This study aimed to develop and characterise a dual loaded liposome formulation encapsulating Bevacizumab (BEV) and Dexamethasone (DEX) that possessed the physicochemical attributes suitable for topical ocular delivery. Liposomes were prepared by using thin film hydration followed by extrusion, and the formulations were optimised using a design of experiments approach. Physicochemical characterisation along with cytocompatibility and bioactivity of the formulations were assessed. Liposomes were successfully prepared with a particle size of 139 ± 2 nm, PDI 0.03 ± 0.01 and zeta potential -2 ± 0.7 mV for the optimised formulation. BEV and DEX were successfully encapsulated into the liposomes with an encapsulation efficiency of 97 ± 0.5 % and 26 ± 0.5 %, respectively. A sustained release of BEV was observed from the liposomes and the bioactivity of the formulation was confirmed using a wound healing assay. In summary, a potential topical eye drop drug delivery system, which can co-load DEX and BEV was developed and characterised for its potential to be used in ocular drug delivery.
Collapse
Affiliation(s)
- Umer Farooq
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Cork Road, Waterford City, Co. Waterford X91 K0EK, Ireland
| | - Niall J O'Reilly
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Cork Road, Waterford City, Co. Waterford X91 K0EK, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Paolo Gasco
- Nanovector srl, Via Livorno, 60 Turin, Italy
| | - Thakur Raghu Raj Singh
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Gautam Behl
- Eirgen Pharma Limited, Westside Business Park, Old, Kilmeaden Road Co. Waterford X91 YV67, Ireland
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Cork Road, Waterford City, Co. Waterford X91 K0EK, Ireland.
| | - Peter McLoughlin
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Cork Road, Waterford City, Co. Waterford X91 K0EK, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland.
| |
Collapse
|
4
|
Jeong M, Lee Y, Park J, Jung H, Lee H. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv Drug Deliv Rev 2023; 200:114990. [PMID: 37423563 DOI: 10.1016/j.addr.2023.114990] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
RNA therapeutics show a significant breakthrough for the treatment of otherwise incurable diseases and genetic disorders by regulating disease-related gene expression. The successful development of COVID-19 mRNA vaccines further emphasizes the potential of RNA therapeutics in the prevention of infectious diseases as well as in the treatment of chronic diseases. However, the efficient delivery of RNA into cells remains a challenge, and nanoparticle delivery systems such as lipid nanoparticles (LNPs) are necessary to fully realize the potential of RNA therapeutics. While LNPs provide a highly efficient platform for the in vivo delivery of RNA by overcoming various biological barriers, several challenges remain to be resolved for further development and regulatory approval. These include a lack of targeted delivery to extrahepatic organs and a gradual loss of therapeutic potency with repeated doses. In this review, we highlight the fundamental aspects of LNPs and their uses in the development of novel RNA therapeutics. Recent advances in LNP-based therapeutics and preclinical/clinical studies are overviewed. Lastly, we discuss the current limitations of LNPs and introduce breakthrough technologies that might overcome these challenges in future applications.
Collapse
Affiliation(s)
- Michaela Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Yeji Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jeongeun Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hyein Jung
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
5
|
Teal CJ, Ho MT, Huo L, Harada H, Bahlmann LC, Léveillard T, Monnier PP, Ramachandran A, Shoichet MS. Affinity-controlled release of rod-derived cone viability factor enhances cone photoreceptor survival. Acta Biomater 2023; 161:37-49. [PMID: 36898472 DOI: 10.1016/j.actbio.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Retinitis pigmentosa (RP) is a group of genetic diseases that results in rod photoreceptor cell degeneration, which subsequently leads to cone photoreceptor cell death, impaired vision and eventual blindness. Rod-derived cone viability factor (RdCVF) is a protein which has two isoforms: a short form (RdCVF) and a long form (RdCVFL) which act on cone photoreceptors in the retina. RdCVFL protects photoreceptors by reducing hyperoxia in the retina; however, sustained delivery of RdCVFL remains challenging. We developed an affinity-controlled release strategy for RdCVFL. An injectable physical blend of hyaluronan and methylcellulose (HAMC) was covalently modified with a peptide binding partner of the Src homology 3 (SH3) domain. This domain was expressed as a fusion protein with RdCVFL, thereby enabling its controlled release from HAMC-binding peptide. Sustained release of RdCVFL was demonstrated for the first time as RdCVFL-SH3 from HAMC-binding peptide for 7 d in vitro. To assess bioactivity, chick retinal dissociates were harvested and treated with the affinity-released recombinant protein from the HAMC-binding peptide vehicle. After 6 d in culture, cone cell viability was greater when cultured with released RdCVFL-SH3 relative to controls. We utilized computational fluid dynamics to model release of RdCVFL-SH3 from our delivery vehicle in the vitreous of the human eye. We demonstrate that our delivery vehicle can prolong the bioavailability of RdCVFL-SH3 in the retina, potentially enhancing its therapeutic effects. Our affinity-based system constitutes a versatile delivery platform for ultimate intraocular injection in the treatment of retinal degenerative diseases. STATEMENT OF SIGNIFICANCE: Retinitis pigmentosa (RP) is the leading cause of inherited blindness in the world. Rod-derived cone viability factor (RdCVF), a novel protein paracrine factor, is effective in preclinical models of RP. To extend its therapeutic effects, we developed an affinity-controlled release strategy for the long form of RdCVF, RdCVFL. We expressed RdCVFL as a fusion protein with an Src homology 3 domain (SH3). We then utilized a hydrogel composed of hyaluronan and methylcellulose (HAMC) and modified it with SH3 binding peptides to investigate its release in vitro. Furthermore, we designed a mathematical model of the human eye to investigate delivery of the protein from the delivery vehicle. This work paves the way for future investigation of controlled release RdCVF.
Collapse
Affiliation(s)
- Carter J Teal
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, M5S 3G9 Toronto, Ontario, Canada; Donnelly Centre, University of Toronto, 160 College Street, M5S3E1 Toronto, Ontario, Canada
| | - Margaret T Ho
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, M5S 3G9 Toronto, Ontario, Canada; Donnelly Centre, University of Toronto, 160 College Street, M5S3E1 Toronto, Ontario, Canada
| | - Lia Huo
- Donnelly Centre, University of Toronto, 160 College Street, M5S3E1 Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada
| | - Hidekiyo Harada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, Ontario, Canada
| | - Laura C Bahlmann
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, M5S 3G9 Toronto, Ontario, Canada; Donnelly Centre, University of Toronto, 160 College Street, M5S3E1 Toronto, Ontario, Canada
| | - Thierry Léveillard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Philippe P Monnier
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, Ontario, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arun Ramachandran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, M5S 3E5 Toronto, Ontario, Canada
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, M5S 3G9 Toronto, Ontario, Canada; Donnelly Centre, University of Toronto, 160 College Street, M5S3E1 Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, M5S 3E5 Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, 80 Saint George Street, M5S 3H6 Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Gogoi NR, Marbaniang D, Pal P, Ray S, Mazumder B. Targeted Nanotherapies for the Posterior Segment of the Eye: An Integrative Review on Recent Advancements and Challenges. Pharm Nanotechnol 2022; 10:268-278. [PMID: 35946098 DOI: 10.2174/2211738510666220806102612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022]
Abstract
The eye is a one-of-a-kind sensory organ with intricate anatomy and physiology. It is protected by a variety of barriers, ranging from static barriers to dynamic barriers. Although these barriers are very effective at protecting the eye from exogenous substances and external stress, they are highly compromised by various vision-impairing diseases of both the anterior and the posterior segment of the eye. Due to ocular elimination systems and intricate obstacles that selectively limit drug entry into the eye, effective drug delivery to the posterior segment of the eye (PSE) continues to be a challenge in ophthalmology. Since more than half of the most debilitating eye illnesses are thought to originate in the posterior segment (PS), understanding the physiology and clearance mechanism of the eye could help design improved formulations that could be noninvasive and intended for targeted posterior segment therapeutics. Moreover, the major drawback associated with the conventional drug delivery system to PSE is minimal therapeutic drug concentration in the desired ocular tissue and life-threatening ophthalmic complications. One possible approach that can be implemented to overcome these ocular barriers for efficient ocular therapy, non-invasive and targeted drug action to the posterior tissues is by designing nanomedicines. This review summarizes the recent non-invasive and patient compliant advances in designing nanomedicines targeting PSE. The various routes and pathways of drug administration to the ocular tissue are also summarized.
Collapse
Affiliation(s)
- Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Daphisha Marbaniang
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Subhabrata Ray
- Department of Pharmaceutical Sciences, Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
7
|
Dadgar Pakdel F, Mirshahi A, Zahedi P, Mohammad K, Hemmati F, Dadgar Pakdel J, Nicknam MH, Abedin Dorkoosh F. A Novel Approach for Development of Intraocular Biodegradable Ranibizumab Implant: A Solution for Stability of Protein Activity. Adv Pharm Bull 2021; 11:632-642. [PMID: 34888210 PMCID: PMC8642803 DOI: 10.34172/apb.2021.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/02/2020] [Accepted: 10/17/2020] [Indexed: 01/07/2023] Open
Abstract
Purpose: Ranibizumab is a monoclonal antibody fragment, targeting all isoforms of vascular endothelial growth factor A (VEGF-A), a protein involved in angiogenesis. It is used to treat age-related macular degeneration (AMD), retinal vein occlusion (RVO), and diabetic macular edema (DME), which are associated with blindness worldwide. However, proper treatment can decrease the loss of vision in about 90% of patients. Because of poor drug uptake in topical therapy and several adverse side effects of systemic irregularities and intravitreal injections, sustained-release drug delivery systems are more suitable for treatment. However, there are many challenges in the development of these systems due to the loss of protein activities. Methods: After drug complexation by the ion pairing method and preparation of a polymeric implant, containing the drug, the characteristics of the complexes were examined by Fourier-transform infrared spectroscopy and circular dichroism spectroscopy. The stability of antibody activity and biocompatibility of the released drug from the implant were assessed by bioassays and MTT assay, respectively. Finally, the release kinetics were investigated. Results: The bioassays showed the higher activity of the drug complex, compared to the free form, besides good biocompatibility in vitro. Also, the release data confirmed sustained and controlled release characteristics for the prepared implant. Conclusion: In this study, for the first time, we proposed a method for developing a sustained-release intraocular implant, consisting of ranibizumab by the heating method. This method allows for the industrial production of ranibizumab by extrusion and eliminates the complications related to reservoir systems.
Collapse
Affiliation(s)
- Fatemeh Dadgar Pakdel
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Mirshahi
- Department of Ophthalmology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Zahedi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran
| | - Kazem Mohammad
- Epidemiology and Biostatistics Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Hemmati
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O.BOX 43841-119, Gilan, Iran
| | | | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Barbosa-Alfaro D, Andrés-Guerrero V, Fernandez-Bueno I, García-Gutiérrez MT, Gil-Alegre E, Molina-Martínez IT, Pastor-Jimeno JC, Herrero-Vanrell R, Bravo-Osuna I. Dexamethasone PLGA Microspheres for Sub-Tenon Administration: Influence of Sterilization and Tolerance Studies. Pharmaceutics 2021; 13:pharmaceutics13020228. [PMID: 33562155 PMCID: PMC7915986 DOI: 10.3390/pharmaceutics13020228] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Many diseases affecting the posterior segment of the eye require repeated intravitreal injections with corticosteroids in chronic treatments. The periocular administration is a less invasive route attracting considerable attention for long-term therapies. In the present work, dexamethasone-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres (Dx-MS) were prepared using the oil-in-water (O/W) emulsion solvent evaporation technique. MS were characterized in terms of mean particle size and particle size distribution, external morphology, polymer integrity, drug content, and in vitro release profiles. MS were sterilized by gamma irradiation (25 kGy), and dexamethasone release profiles from sterilized and non-sterilized microspheres were compared by means of the similarity factor (f2). The mechanism of drug release before and after irradiation exposure of Dx-MS was identified using appropriate mathematical models. Dexamethasone release was sustained in vitro for 9 weeks. The evaluation of the in vivo tolerance was carried out in rabbit eyes, which received a sub-Tenon injection of 5 mg of sterilized Dx-MS (20–53 µm size containing 165.6 ± 3.6 µg Dx/mg MS) equivalent to 828 µg of Dx. No detectable increase in intraocular pressure was reported, and clinical and histological analysis of the ocular tissues showed no adverse events up to 6 weeks after the administration. According to the data presented in this work, the sub-Tenon administration of Dx-MS could be a promising alternative to successive intravitreal injections for the treatment of chronic diseases of the back of the eye.
Collapse
Affiliation(s)
- Deyanira Barbosa-Alfaro
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
| | - Ivan Fernandez-Bueno
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
| | | | - Esther Gil-Alegre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
| | - Irene Teresa Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
| | - José Carlos Pastor-Jimeno
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
- Department of Ophthalmology, Hospital Clínico Universitario of Valladolid, 47003 Valladolid, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
- Correspondence:
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
| |
Collapse
|
9
|
To investigate fit-to-purpose nanocarrier for non-invasive drug delivery to posterior segment of eye. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye. J Med Chem 2020; 63:10533-10593. [PMID: 32482069 DOI: 10.1021/acs.jmedchem.9b01033] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Collapse
Affiliation(s)
- Kuei-Ju Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Pharmacy, Taipei Municipal Wanfang Hospital, Taipei Medical University, No. 111, Section 3, Xing-Long Road, Taipei 11696, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Sapino S, Peira E, Chirio D, Chindamo G, Guglielmo S, Oliaro-Bosso S, Barbero R, Vercelli C, Re G, Brunella V, Riedo C, Fea AM, Gallarate M. Thermosensitive Nanocomposite Hydrogels for Intravitreal Delivery of Cefuroxime. NANOMATERIALS 2019; 9:nano9101461. [PMID: 31618969 PMCID: PMC6835325 DOI: 10.3390/nano9101461] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Endophthalmitis is a rare, but serious, intravitreal inflammatory disorder that can arise after cataract surgery. The intracameral injection of 1 mg cefuroxime (CEF) followed by three-times daily antibiotic topical administration for a week is generally recognized as the routine method of prophylaxis after cataract surgery. This procedure is controversial because of both the low efficacy and the low adherence to therapy by elderly patients. A unique slow release antibiotic intravitreal injection could solve these problems. The objective of the present study was to design ophthalmic nanocomposite delivery systems based on in situ gelling formulations that undergo sol-to-gel transition upon change in temperature to prolong the effect of CEF. Oil in water (O/W) microemulsion (µE) and solid lipid nanoparticles (SLN), obtained with an innovative formulation technology called cold microemulsion dilution, were evaluated as ocular drug delivery systems for CEF. Drug entrapment efficiency up to 80% was possible by esterifying CEF with 1-dodecanol to obtain dodecyl-CEF (dCEF). Both dCEF-loaded SLN and µE were then added with Pluronic®F127 (20% w/v) to obtain a nanocomposite hydrogel-based long acting system. The prepared thermosensitive formulations were evaluated for their physical appearance, drug content, gelation temperature, injectability and rheological properties, in vitro release studies and stability studies. Moreover, cell proliferation assays on human retinal pigment epithelial ARPE-19 cells were performed to evaluate the influence of this innovative system on the cellular viability. In addition, minimal inhibitory concentration (MIC) was assessed for both CEF and dCEF, revealing the need of dCEF hydrolysis for the antimicrobial activity. Although further experimental investigations are required, the physico-chemical characterization of the nanocomposite hydrogels and the preliminary in vitro release studies highlighted the potential of these systems for the sustained release of CEF.
Collapse
Affiliation(s)
- Simona Sapino
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Elena Peira
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Daniela Chirio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Giulia Chindamo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Stefano Guglielmo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | | | - Raffaella Barbero
- SC of Serology, Istituto Zooprofilattico Sperimentale Piemonte Liguria e Valle d'Aosta, 10154 Turin, Italy.
| | - Cristina Vercelli
- Department of Veterinary Sciences of Turin, University of Turin, 10095 Turin, Italy.
| | - Giovanni Re
- Department of Veterinary Sciences of Turin, University of Turin, 10095 Turin, Italy.
| | | | - Chiara Riedo
- Department of Chemistry, University of Turin, 10125 Turin, Italy.
| | - Antonio Maria Fea
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy.
| | - Marina Gallarate
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| |
Collapse
|
12
|
Sapino S, Chirio D, Peira E, Abellán Rubio E, Brunella V, Jadhav SA, Chindamo G, Gallarate M. Ocular Drug Delivery: A Special Focus on the Thermosensitive Approach. NANOMATERIALS 2019; 9:nano9060884. [PMID: 31207951 PMCID: PMC6630567 DOI: 10.3390/nano9060884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
The bioavailability of ophthalmic therapeutics is reduced because of the presence of physiological barriers whose primary function is to hinder the entry of exogenous agents, therefore also decreasing the bioavailability of locally administered drugs. Consequently, repeated ocular administrations are required. Hence, the development of drug delivery systems that ensure suitable drug concentration for prolonged times in different ocular tissues is certainly of great importance. This objective can be partially achieved using thermosensitive drug delivery systems that, owing to their ability of changing their state in response to temperature variations, from room to body temperature, may increase drug bioavailability. In the case of topical instillation, in situ forming gels increase pre-corneal drug residence time as a consequence of their enhanced adhesion to the corneal surface. Otherwise, in the case of intraocular and periocular, i.e., subconjunctival, retrobulbar, peribulbar administration, among others, they have the undoubted advantage of being easily injectable and, owing to their sudden thickening at body temperature, have the ability to form an in situ drug reservoir. As a result, the frequency of administration can be reduced, also favoring the patient’s adhesion to therapy. In the main section of this review, we discuss some of the most common treatment options for ocular diseases, with a special focus on posterior segment treatments, and summarize the most recent improvement deriving from thermosensitive drug delivery strategies. Aside from this, an additional section describes the most widespread in vitro models employed to evaluate the functionality of novel ophthalmic drug delivery systems.
Collapse
Affiliation(s)
- Simona Sapino
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| | - Daniela Chirio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| | - Elena Peira
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| | | | - Valentina Brunella
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
- Department of Chemistry, University of Turin, 10125 Turin, Italy.
| | - Sushilkumar A Jadhav
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
- School of Nanoscience and Technology, Shivaji University Kolhapur, Maharashtra 416004, India.
| | - Giulia Chindamo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Marina Gallarate
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| |
Collapse
|
13
|
Hosseini HRJ, Montaseri H, Khalili MR, Simakani SA. Aqueous Concentration of Tranexamic Acid after 5% and 10% Eyedrop Administration. Eur J Ophthalmol 2018; 19:661-6. [DOI: 10.1177/112067210901900422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose To determine whether topical tranexamic acid can provide acceptable therapeutic concentration in the aqueous humor. Methods A total of 47 patients with cataract as the sole eye disease who have been scheduled for cataract operation received one drop of tranexamic acid 5% solution at various time intervals prior to operation (from 15 minutes to 9 hours). Two patients received 10% solution of the drug. Paracentesis of the anterior chamber was done and the aqueous humor was aspirated in the operation room. The aqueous samples were analyzed using high-performance liquid chromatography method with the limit of quantification around 0.1 μg/mL. Systemic and ocular side effects were evaluated. Results Aqueous concentrations of tranexamic acid was higher than 1.5 μg/mL up to 160 minutes after administration of a single drop of 5% solution of the drug and then declined to an average concentration of 1 μg/mL at 300 minutes which persisted up to 9 hours after administration. In two patients for whom a single drop of 10% tranexamic acid solution was used, aqueous concentrations of 2.72 and 2.90 μg/mL were detected 60 minutes after administration. None of the patients experienced ocular or systemic side effects. Conclusions Topical administration of tranexamic acid is effective in yielding therapeutic intraocular concentrations of drug without any ocular or systemic toxicity.
Collapse
Affiliation(s)
| | - Hashem Montaseri
- Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz - Iran
| | | | | |
Collapse
|
14
|
Ratay ML, Bellotti E, Gottardi R, Little SR. Modern Therapeutic Approaches for Noninfectious Ocular Diseases Involving Inflammation. Adv Healthc Mater 2017; 6:10.1002/adhm.201700733. [PMID: 29034584 PMCID: PMC5915344 DOI: 10.1002/adhm.201700733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/25/2017] [Indexed: 12/12/2022]
Abstract
Dry eye disease, age-related macular degeneration, and uveitis are ocular diseases that significantly affect the quality of life of millions of people each year. In these diseases, the action of chemokines, proinflammatory cytokines, and immune cells drives a local inflammatory response that results in ocular tissue damage. Multiple therapeutic strategies are developed to either address the symptoms or abate the underlying cause of these diseases. Herein, the challenges to deliver drugs to the relevant location in the eye for each of these diseases are reviewed along with current and innovative therapeutic approaches that attempt to restore homeostasis within the ocular microenvironment.
Collapse
Affiliation(s)
- Michelle L. Ratay
- Department of Bioengineering, University of Pittsburgh, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Elena Bellotti
- Department of Chemical Engineering, University of Pittsburgh, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Riccardo Gottardi
- Department of Chemical Engineering, Department of Orthopedic Surgery, Ri.MED Foundation, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Steven R. Little
- Department of Chemical Engineering, Department of Bioengineering, Department of Ophthalmology, Department of Immunology, Department of Pharmaceutical Sciences, The McGowan Institute for Regenerative Medicine, 940 Benedum Hall 3700 O’Hara Street Pittsburgh Pa 15261
| |
Collapse
|
15
|
Zhang J, Sun H, Zhou N, Zhang B, Ma J. Preparation and Evaluation of Biodegradable Scleral Plug Containing Curcumin in Rabbit Eye. Curr Eye Res 2017; 42:1597-1603. [PMID: 29111828 DOI: 10.1080/02713683.2016.1242753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND To test whether biodegradable curcumin-loaded scleral plug is a promising choice for treating posterior ocular diseases, the study investigated the in vitro release profile of the scleral plug and its safety in vivo. METHODS Scleral plugs containing 0.5 mg, 1.0 mg and 1.5 mg curcumin were synthesized by a compression-sintering method. These scleral plugs were placed in tubes containing balanced salt solution (BSS) buffer, which was replaced by fresh buffer daily. The curcumin concentration in the removed aliquot was tested daily for 14 days using high-performance liquid chromatography (HPLC). In the study, 44 rabbits were randomly divided into four groups: control, 0.5 mg, 1.0 mg and 1.5 mg curcumin groups. The scleral plug was trans-scleral fixed in the right eye of the rabbits in the three curcumin-treated groups. The control rabbits only received sclerotomy. The treated rabbit eyes were examined by a slit-lamp biomicroscope, an indirect ophthalmoscope and electroretinogram (ERG), and subjected to histological analysis. RESULTS The concentration of the 1.5 mg curcumin-loaded scleral plug was higher than 15 μg/ml for consecutive 14 days in vitro. The in vivo experiments revealed intraocular pressure, a-wave and b-wave amplitudes of ERG, and conjunctival reaction degree were not significantly different between the four groups. Retinal structure was normal in the curcumin-treated groups. The sclerotomy wound healed after the plug was completely degraded. Anterior chamber reaction or complications were not observed. CONCLUSION The study suggests that curcumin-loaded scleral plug could sustain high concentration of curcumin in vitro and is safe in vivo. It might be a promising alternative choice for the treatment of posterior ocular diseases.
Collapse
Affiliation(s)
- Jun Zhang
- a Ophthalmology Department , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Haiyan Sun
- a Ophthalmology Department , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Nalei Zhou
- b Ophthalmology Department , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Bin Zhang
- b Ophthalmology Department , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Jingxue Ma
- b Ophthalmology Department , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| |
Collapse
|
16
|
Huang X, Liu S, Yang Y, Duan Y, Lin D. Controllable continuous sub-tenon drug delivery of dexamethasone disodium phosphate to ocular posterior segment in rabbit. Drug Deliv 2017; 24:452-458. [PMID: 28165816 PMCID: PMC8241022 DOI: 10.1080/10717544.2016.1264498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
Corticosteroids have been used for treatment of posterior segment eye diseases, but the delivery of drug to the posterior segments is still a problem to resolve. In our study, we explore the feasibility of Sub-tenon's Controllable Continuous Drug Delivery to ocular posterior segment. Controllable continuous sub-tenon drug delivery (CCSDD) system, intravenous injections (IV) and sub-conjunctival injections (SC) were used to deliver dexamethasone disodium phosphate (DEXP) in rabbits, the dexamethasone concentration was measured in the ocular posterior segment tissue by Shimadzu LC-MS 2010 system at different time points in 24 h after first dose injection. Levels of dexamethasone were significantly higher at 12, 24 h in CCSDD than two other approaches, and at 3, 6 h in CCSDD than IV in vitreous body (p < 0.01); at 6, 12, 24 h in CCSDD than two other approaches, and at 1, 3 h in CCSDD than IV in retinal/choroidal compound (p < 0.01); at 3, 6, 12, 24 h in CCSDD than two other approaches, and at 1 h in CCSDD than IV in sclera (p < 0.05). The AUC0-24 in CCSDD group is higher than two other groups in all ocular posterior segment tissue. Our results demonstrated that dexamethasone concentration could be sustained moderately higher in the posterior segment by CCSDD than SC and IV, indicating that CCSDD might be a therapeutic alternative to treat a variety of intractable posterior segment diseases.
Collapse
Affiliation(s)
- Xuetao Huang
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China, and
| | - Shaogang Liu
- Advanced Research Center, Central South University, Changsha, China
| | - Yezhen Yang
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China, and
| | - Yiqin Duan
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China, and
| | - Ding Lin
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China, and
| |
Collapse
|
17
|
Huang X, Peng M, Yang Y, Duan Y, Li K, Liu S, Ye C, Lin D. Dexamethasone distribution characteristic following controllable continuous sub-tenon drug delivery in rabbit. Drug Deliv 2017; 24:818-824. [PMID: 28509581 PMCID: PMC8241131 DOI: 10.1080/10717544.2017.1324531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 02/08/2023] Open
Abstract
Drug delivery systems are required to be safe, minimally invasive and effectively delivery drug to the target tissues. But delivery drugs to the eye has not yet satisfied this need. Here, we focused on examining the distribution of dexamethasone (DEX) in ocular and plasmic samples following controllable continuous sub-Tenon drug delivery (CCSDD) of dexamethasone disodium phosphate (DEXP) in rabbit, and to compare that with two traditional routes: subconjunctival injection and intravenous injection. The DEX concentration was analyzed by Shimadzu LC-MS 2010 system. In CCSDD group, during observed 24 h, the mean DEX level in collected samples from highest to lowest following in order: sclera, cornea, retina/choroid, iris, plasma, aqueous humor, lens and vitreous body. In ocular solid tissue, the DEX level in posterior segment is higher than in anatomic corresponding anterior segment, but it is opposite in ocular fluid tissue. High levels of DEX were maintained at 12 h in the ocular tissue immediately after the administration. Even at 24 h, the mean DEX concentration was 31.72 ng/ml and 22.40 ng/ml in aqueous and vitreous, respectively. In CCSDD group, the ocular DEX exposure (AUC0-24) is much higher and plasma exposure is much less than IV group, and it is also similar in SC group except iris. The amount of DEX levels are markedly increased in ocular tissues but it yield lower plasma levels indicating reduction of systemic absorption by CCSDD. Thus, CCSDD is an effective method of delivering DEX into anterior and posterior segment of the eye.
Collapse
Affiliation(s)
- Xuetao Huang
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Manqiang Peng
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Yezhen Yang
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Yiqin Duan
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Kuanshu Li
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Shaogang Liu
- Advanced Research Center, Central South University, Changsha, China
| | - Changhua Ye
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Ding Lin
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| |
Collapse
|
18
|
Li H, Liu W, Sorenson CM, Sheibani N, Albert DM, Senanayake T, Vinogradov S, Henkin J, Zhang HF. Sustaining Intravitreal Residence With L-Arginine Peptide-Conjugated Nanocarriers. Invest Ophthalmol Vis Sci 2017; 58:5142-5150. [PMID: 28986592 PMCID: PMC5634351 DOI: 10.1167/iovs.17-22160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Intravitreal injection of antiangiogenic agents is becoming a standard treatment for neovascular retinal diseases. Sustained release of therapeutics by injecting colloidal carriers is a promising approach to reduce the injection frequency, which reduces treatment burdens and the risk of complications on patients. Such sustained release often requires carriers to have micrometer-scale dimension that, however, can potentially promote glaucoma and inflammation. Small, polycationic particles can be immobilized in vitreous through multiple cooperative ionic interactions with hyaluronic acid of the vitreous interior, but such particles are generally toxic. Here, we synthesized and examined a biocompatible dextran-based nanocarrier (<50 nm in diameter) conjugated with cationic peptides containing L-arginine with minimal toxicity, aiming to provide sustained release of therapeutic drugs in vitreous. Methods We synthesized the nanocarriers with condensed cholesteryl dextran (CDEX) as core material. Cationic peptides containing 1 to 4 arginine groups, along with fluorescence tags, were conjugated to the CDEX surface. We monitored the carrier diffusion rate ex vivo and half-lives in vivo in rodent vitreous using fluorescence imaging. We evaluated the toxicity by histological examinations at the second, third, eighth, and thirty-sixth week. Results The diffusion rate of nanocarriers was inversely related to zeta potential values in freshly isolated vitreous humor. We observed increased half-lives in vivo with increasing zeta potential (up to 240 days). Histological examinations confirmed no adverse effects on ocular morphology and organization. Conclusions We demonstrated the potential of L-arginine peptide-conjugated nanocarriers toward safe and sustained therapeutic release system for posterior eye diseases.
Collapse
Affiliation(s)
- Hao Li
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Wenzhong Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Daniel M Albert
- Department of Ophthalmology, Casey Eye Institute, Oregon Health Sciences University, Portland, Oregon, United States
| | - Thulani Senanayake
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Serguei Vinogradov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, United States
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States.,Department of Ophthalmology, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
19
|
Abstract
We are entering a new era of ophthalmic pharmacology where new drugs are rapidly being developed for the treatment of anterior and posterior segment of the eye disease. The pharmacokinetics of drug delivery to the eye remains a very active area of ophthalmic research. Intraocular drug delivery systems allow the release of the drug, bypassing the blood-ocular barrier. The main advantage of these preparations is that they can release the drug over a long time with one single administration. These pharmaceutical systems are of great important in the treatment of the posterior segment diseases, and they can be prepared from biodegradable or nonbiodegradable polymers. Biodegradable polymers have the advantage of disappearing from the site of action after releasing the drug. The majority of intraocular devices are prepared from nonbiodegradable polymers, and they can release controlled amounts of drugs for months. Nonbiodegradable polymers include silicone, polyvinyl alcohol, and ethylene-vinyl acetate. The polymers usually employed to prepare nanoparticles for the topical ophthalmic route are poly (acrylic acid) derivatives (polyalquilcyanocrylates), albumin, poly-ε-caprolactone, and chitosan. Dendrimers are a recent class of polymeric materials with unique nanostructure which has been studied to discover their role in the delivery of therapeutics and imaging agents. Hydrogels are polymers that can swell in aqueous solvent system, and they hold the solvents in a swollen cross-linked gel for delivery. This review exhibits the current literature regarding applications of polymers in ophthalmic drug delivery systems including pharmacokinetics, advantages, disadvantages, and indications aimed to obtain successful eye therapy.
Collapse
Affiliation(s)
- Ali Mohammed Alhalafi
- Department of Surgery, Division of Ophthalmology, Security Forces Hospital, Riyadh 11481, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Singh SK, Bhunia BK, Bhardwaj N, Gilotra S, Mandal BB. Reloadable Silk-Hydrogel Hybrid Scaffolds for Sustained and Targeted Delivery of Molecules. Mol Pharm 2016; 13:4066-4081. [DOI: 10.1021/acs.molpharmaceut.6b00672] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Saket Kumar Singh
- Biomaterial
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Bibhas Kumar Bhunia
- Biomaterial
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Nandana Bhardwaj
- Biological
and Chemical Sciences Section, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781 035, India
| | - Sween Gilotra
- Biomaterial
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Biman B. Mandal
- Biomaterial
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| |
Collapse
|
21
|
Battaglia L, Serpe L, Foglietta F, Muntoni E, Gallarate M, Del Pozo Rodriguez A, Solinis MA. Application of lipid nanoparticles to ocular drug delivery. Expert Opin Drug Deliv 2016; 13:1743-1757. [PMID: 27291069 DOI: 10.1080/17425247.2016.1201059] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Although eye drops are widely used as drug delivery systems for the anterior segment of the eye, they are also associated with poor drug bioavailability due to transient contact time and rapid washout by tearing. Moreover, effective drug delivery to the posterior segment of the eye is challenging, and alternative routes of administration (periocular and intravitreal) are generally needed, the blood-retinal barrier being the major obstacle to systemic drug delivery. Areas covered: Nanotechnology, and especially lipid nanoparticles, can improve the therapeutic efficiency, compliance and safety of ocular drugs, administered via different routes, to both the anterior and posterior segment of the eye. This review highlights the main ocular barriers to drug delivery, as well as the most common eye diseases suitable for pharmacological treatment in which lipid nanoparticles have proved efficacious as alternative delivery systems. Expert opinion: Lipid-based nanocarriers are among the most biocompatible and versatile means for ocular delivery. Mucoadhesion with consequent increase in pre-corneal retention time, and enhanced permeation due to cellular uptake by corneal epithelial cells, are the essential goals for topical lipid nanoparticle delivery. Gene delivery to the retina has shown very promising results after intravitreal administration of lipid nanoparticles as non-viral vectors.
Collapse
Affiliation(s)
- Luigi Battaglia
- a Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , Torino , Italy
| | - Loredana Serpe
- a Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , Torino , Italy
| | - Federica Foglietta
- a Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , Torino , Italy
| | - Elisabetta Muntoni
- a Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , Torino , Italy
| | - Marina Gallarate
- a Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , Torino , Italy
| | - Ana Del Pozo Rodriguez
- b Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy , Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain
| | - Maria Angeles Solinis
- b Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy , Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain
| |
Collapse
|
22
|
Bisht R, Jaiswal JK, Chen YS, Jin J, Rupenthal ID. Light-responsive in situ forming injectable implants for effective drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv 2016; 13:953-62. [DOI: 10.1517/17425247.2016.1163334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rohit Bisht
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jagdish Kumar Jaiswal
- Auckland Cancer Society Research Center, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ying-Shan Chen
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jianyong Jin
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Ilva Dana Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Lee CY, Ma Y, You YS, Kim HE, Byeon YD, Jung H. Intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) antibody via Tower Microneedle. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-015-9305-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Shen HH, Chan EC, Lee JH, Bee YS, Lin TW, Dusting GJ, Liu GS. Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery. Nanomedicine (Lond) 2015; 10:2093-107. [PMID: 26096379 DOI: 10.2217/nnm.15.47] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pathologic neovascularization of the retina is a major cause of substantial and irreversible loss of vision. Drugs are difficult to deliver to the lesions in the back of the eye and this is a major obstacle for the therapeutics. Current pharmacological approach involves an intravitreal injection of anti-VEGF agents to prevent aberrant growth of blood vessels, but it has limitations including therapeutic efficacy and side-effects associated with systemic exposure and invasive surgery. Nanotechnology provides novel opportunities to overcome the limitations of conventional delivery system to reach the back of the eye through fabrication of nanostructures capable of encapsulating and delivering small molecules. This review article introduces various forms of nanocarrier that can be adopted by ocular drug delivery systems to improve current therapy. The application of nanotechnology in medicine brings new hope for ocular drug delivery in the back of the eye to manage the major causes of blindness associated with ocular neovascularization.
Collapse
Affiliation(s)
- Hsin-Hui Shen
- Department of Microbiology, Monash University, Clayton, Melbourne, VIC, Australia
| | - Elsa C Chan
- Centre for Eye Research Australia, East Melbourne, VIC, Australia.,Department of Ophthalmology, University of Melbourne, East Melbourne, VIC, Australia
| | - Jia Hui Lee
- Centre for Eye Research Australia, East Melbourne, VIC, Australia
| | - Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan.,National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, Taichung City, Taiwan
| | - Gregory J Dusting
- Centre for Eye Research Australia, East Melbourne, VIC, Australia.,Department of Ophthalmology, University of Melbourne, East Melbourne, VIC, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, East Melbourne, VIC, Australia.,Department of Ophthalmology, University of Melbourne, East Melbourne, VIC, Australia
| |
Collapse
|
25
|
Baek DSH, Liang H, Zhao X, Pankova N, Wang H, Boyd S. Fundus autofluorescence (FAF) non-invasively identifies chorioretinal toxicity in a rat model of retinal pigment epithelium (RPE) damage. J Pharmacol Toxicol Methods 2015; 71:77-82. [DOI: 10.1016/j.vascn.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022]
|
26
|
Use of the Fluocinolone Acetonide Intravitreal Implant for the Treatment of Noninfectious Posterior Uveitis: 3-Year Results of a Randomized Clinical Trial in a Predominantly Asian Population. Ophthalmol Ther 2014; 4:1-19. [PMID: 25502122 PMCID: PMC4470982 DOI: 10.1007/s40123-014-0027-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction The fluocinolone acetonide (FA) intravitreal implant 0.59 mg (Retisert®, Bausch + Lomb, Rochester, NY, USA) provides sustained release of FA directly to the vitreous cavity over a prolonged period of time. The purpose of this study was to evaluate the safety and efficacy of a 0.59- and 2.1-mg FA intravitreal implant in patients with noninfectious posterior uveitis. Methods A prospective, multicenter, randomized, double-masked, dose-controlled study was performed. Patients were randomized to the 0.59- or 2.1-mg FA implant surgically placed in the vitreous cavity through a pars plana incision and were evaluated at visits through 3 years. Patients with bilateral disease had the more severely affected eye implanted. Outcomes included uveitis recurrence rate, best-corrected visual acuity (BCVA), use of adjunctive therapy, and safety. Results A total of 239 patients, predominantly Asian, were implanted (n = 117, 0.59-mg implant; n = 122, 2.1-mg implant). Approximately 80% of patients had bilateral disease. Recurrence rates for implanted eyes decreased from 42.3% during the 1-year pre-implantation period to 25.9% during the 3-year post-implantation period (P = 0.0003) and increased for nonimplanted fellow eyes from 19.8 to 59.7% (P < 0.0001). More implanted eyes gained ≥3 lines of BCVA compared to nonimplanted fellow eyes (P ≤ 0.0046); and implanted eyes required less adjunctive systemic therapy and fewer periocular injections (P < 0.0001). Elevations of intraocular pressure (≥10 mm Hg) were frequent in implanted eyes (67.8%, 0.59-mg implant; 71.3%, 2.1-mg implant); nearly all (94.9%) phakic implanted eyes required cataract surgery. Conclusion The FA intravitreal implant significantly reduced uveitis recurrence rates and led to improvements in visual acuity and reductions in adjunctive therapy. Lens clarity and intraocular pressure require monitoring. Electronic supplementary material The online version of this article (doi:10.1007/s40123-014-0027-6) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Cholkar K, Hariharan S, Gunda S, Mitra AK. Optimization of dexamethasone mixed nanomicellar formulation. AAPS PharmSciTech 2014; 15:1454-67. [PMID: 24980081 DOI: 10.1208/s12249-014-0159-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/22/2014] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to develop a clear aqueous mixed nanomicellar formulation (MNF) of dexamethasone utilizing both D-α-tocopherol polyethylene glycol-1000 succinate (Vit E TPGS) and octoxynol-40 (Oc-40). In this study, Vit E TPGS and Oc-40 are independent variables. Formulations were prepared following solvent evaporation method. A three level full-factorial design was applied to optimize the formulation based on entrapment efficiency, size, and polydispersity index (PDI). A specific blend of Vit E TPGS and Oc-40 at a particular wt% ratio (4.5:2.0) produced excellent drug entrapment, loading, small mixed nanomicellar size and narrow PDI. Solubility of DEX in MNF is improved by ~6.3-fold relative to normal aqueous solubility. Critical micellar concentration (CMC) for blend of polymers (4.5:2.0) was found to be lower (0.012 wt%) than the individual polymers (Vit E TPGS (0.025 wt%) and Oc-40 (0.107 wt%)). No significant effect on mixed nanomicellar size and PDI with one-factor or multi-factor interactions was observed. Qualitative (1)H NMR studies confirmed absence of free drug in the outer aqueous MNF medium. MNF appeared to be highly stable. Cytotoxicity studies on rabbit primary corneal epithelial cells did not indicate any toxicity suggesting MNF of dexamethasone is safe and suitable for human topical ocular drops after further in vivo evaluations.
Collapse
|
28
|
Kim YC, Chiang B, Wu X, Prausnitz MR. Ocular delivery of macromolecules. J Control Release 2014; 190:172-81. [PMID: 24998941 PMCID: PMC4142116 DOI: 10.1016/j.jconrel.2014.06.043] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
Abstract
Biopharmaceuticals are making increasing impact on medicine, including treatment of indications in the eye. Macromolecular drugs are typically given by physician-administered invasive delivery methods, because non-invasive ocular delivery methods, such as eye drops, and systemic delivery, have low bioavailability and/or poor ocular targeting. There is a need to improve delivery of biopharmaceuticals to enable less-invasive delivery routes, less-frequent dosing through controlled-release drug delivery and improved drug targeting within the eye to increase efficacy and reduce side effects. This review discusses the barriers to drug delivery via various ophthalmic routes of administration in the context of macromolecule delivery and discusses efforts to develop controlled-release systems for delivery of biopharmaceuticals to the eye. The growing number of macromolecular therapies in the eye needs improved drug delivery methods that increase drug efficacy, safety and patient compliance.
Collapse
Affiliation(s)
- Yoo Chun Kim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bryce Chiang
- Wallace Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xianggen Wu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
29
|
Modified titanium implant as a gateway to the human body: the implant mediated drug delivery system. BIOMED RESEARCH INTERNATIONAL 2014; 2014:801358. [PMID: 25136624 PMCID: PMC4129930 DOI: 10.1155/2014/801358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/10/2014] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the efficacy of a proposed new implant mediated drug delivery system (IMDDS) in rabbits. The drug delivery system is applied through a modified titanium implant that is configured to be implanted into bone. The implant is hollow and has multiple microholes that can continuously deliver therapeutic agents into the systematic body. To examine the efficacy and feasibility of the IMDDS, we investigated the pharmacokinetic behavior of dexamethasone in plasma after a single dose was delivered via the modified implant placed in the rabbit tibia. After measuring the plasma concentration, the areas under the curve showed that the IMDDS provided a sustained release for a relatively long period. The result suggests that the IMDDS can deliver a sustained release of certain drug components with a high bioavailability. Accordingly, the IMDDS may provide the basis for a novel approach to treating patients with chronic diseases.
Collapse
|
30
|
Gutiérrez-Hernández JC, Caffey S, Abdallah W, Calvillo P, González R, Shih J, Brennan J, Zimmerman J, Martínez-Camarillo JC, Rodriguez AR, Varma R, Santos A, Sánchez G, Humayun M. One-Year Feasibility Study of Replenish MicroPump for Intravitreal Drug Delivery: A Pilot Study. Transl Vis Sci Technol 2014; 3:8. [PMID: 25774328 DOI: 10.1167/tvst.3.3.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/21/2014] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To determine the feasibility of the surgical procedure and to collect some safety data regarding the bioelectronics of a novel micro drug pump for intravitreal drug delivery in a Beagle dog model for up to 1 year. METHODS Thirteen Beagle dogs were assigned to two groups. The experimental group (n = 11) underwent pars plana implantation of MicroPump; the body of which was sutured episclerally, while its catheter was secured at a pars plana sclerotomy. The control group (n = 2) underwent sham surgeries in the form of a temporary suturing of the MicroPump, including placement of the pars plana tube. Baseline and follow-up exams included ophthalmic examination and imaging. The experimental animals were euthanized and explanted at predetermined time points after surgery (1, 3, and 12 months), while the control animals were euthanized at 3 months. All operated eyes were submitted for histopathology. RESULTS Eyes were scored according to a modified McDonald-Shadduck system and ophthalmic imaging. Neither the implanted eyes nor the control eyes showed clinically significant pathological changes beyond the expected surgical changes. The operated eyes showed neither significant inflammatory reaction nor tissue ingrowth through the sclerotomy site compared with the fellow eyes. CONCLUSION This study shows that the Replenish Posterior MicroPump could be successfully implanted with good safety profile in this animal model. TRANSLATIONAL RELEVANCE The results of this study in a Beagle dog model are supportive of the biocompatibility of Replenish MicroPump and pave the way to the use of these devices for ocular automated drug delivery after further testing in larger animal models.
Collapse
Affiliation(s)
| | | | - Walid Abdallah
- Replenish Inc., Pasadena, CA ; Department of Ophthalmology, Zagazig University, Faculty of Medicine, Zagazig, Egypt ; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | | | | | | | | | | | | | - Rohit Varma
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Arturo Santos
- Centro de Retina Médica y Quirurgica, SC and Tecnológico de Monterrey, Campus Guadalajara, Mexico
| | - Gisela Sánchez
- Centro de Retina Médica y Quirurgica, SC and Tecnológico de Monterrey, Campus Guadalajara, Mexico
| | - Mark Humayun
- Replenish Inc., Pasadena, CA ; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
31
|
Gutiérrez-Hernández JC, Caffey S, Abdallah W, Calvillo P, González R, Shih J, Brennan J, Zimmerman J, Martínez-Camarillo JC, Rodriguez AR, Varma R, Santos A, Sánchez G, Humayun M. One-Year Feasibility Study of Replenish MicroPump for Intravitreal Drug Delivery: A Pilot Study. Transl Vis Sci Technol 2014. [DOI: 10.1167/tvst.3.4.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Lee CY, You YS, Lee SH, Jung H. Tower microneedle minimizes vitreal reflux in intravitreal injection. Biomed Microdevices 2014; 15:841-8. [PMID: 23666517 DOI: 10.1007/s10544-013-9771-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intravitreal injection is widely used for easy control of drug levels in posterior segment of the eye by injecting the drug directly with hypodermic needles. Patients, however, often experience complications from intravitreal injection due to repeated injections, increased intraocular pressure, and infection. In addition, injected drug reflux after intravitreal injection makes it challenging to maintain predetermined drug dose due to the drug loss through backward effusions. Here, we described that the Tower Microneedle can reduce initial reflux and bleb formation due to its smaller outer diameter compared to a traditional hypodermic needle. Furthermore, we use phenylephrine hydrochloride for pupil expansion and demonstrated that Tower Microneedle induced similar pupil expansions using only half the drug volume, in the same period of time, compared to the 31 Gauge hypodermic needle. Consequently, Tower Microneedle achieves the same therapeutic effect in the vitreous body using fewer drugs than a traditional hypodermic needle due to the decreased backward drug effusion. Tower Microneedle described herein holds great promise for intravitreal injection with less reflux and lower drug dosage.
Collapse
Affiliation(s)
- Chang Yeol Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | | | | | | |
Collapse
|
33
|
Kuppermann BD. Sustained-release dexamethasone intravitreal implant for treatment of diabetic macular edema. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Gratieri T, Gelfuso GM, Lopez RFV, Souto EB. Current efforts and the potential of nanomedicine in treating fungal keratitis. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Critical assessment of implantable drug delivery devices in glaucoma management. JOURNAL OF DRUG DELIVERY 2013; 2013:895013. [PMID: 24066234 PMCID: PMC3770064 DOI: 10.1155/2013/895013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022]
Abstract
Glaucoma is a group of heterogeneous disorders involving progressive optic neuropathy that can culminate into visual impairment and irreversible blindness. Effective therapeutic interventions must address underlying vulnerability of retinal ganglion cells (RGCs) to degeneration in conjunction with correcting other associated risk factors (such as elevated intraocular pressure). However, realization of therapeutic outcomes is heavily dependent on suitable delivery system that can overcome myriads of anatomical and physiological barriers to intraocular drug delivery. Development of clinically viable sustained release systems in glaucoma is a widely recognized unmet need. In this regard, implantable delivery systems may relieve the burden of chronic drug administration while potentially ensuring high intraocular drug bioavailability. Presently there are no FDA-approved implantable drug delivery devices for glaucoma even though there are several ongoing clinical studies. The paper critically assessed the prospects of polymeric implantable delivery systems in glaucoma while identifying factors that can dictate (a) patient tolerability and acceptance, (b) drug stability and drug release profiles, (c) therapeutic efficacy, and (d) toxicity and biocompatibility. The information gathered could be useful in future research and development efforts on implantable delivery systems in glaucoma.
Collapse
|
36
|
Lee CY, Lee K, You YS, Lee SH, Jung H. Tower microneedle via reverse drawing lithography for innocuous intravitreal drug delivery. Adv Healthc Mater 2013. [PMID: 23209023 DOI: 10.1002/adhm.201200239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The "tower microneedle" (TM) via reverse drawing lithography for intravitreal injection by fabricating a long hollow microneedle on the blunt hypodermic needle: The hollow hole between the microneedle and hypodermic needle is aligned concentrically, and fifteen degree bevel angle is introduced to TM by laser cutting to achieve intravitreal injection with minimal damage to eye tissue.
Collapse
Affiliation(s)
- Chang Yeol Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei‐ro, Seodaemun‐gu, Seoul, 120‐749, Republic of Korea
| | - Kwang Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei‐ro, Seodaemun‐gu, Seoul, 120‐749, Republic of Korea
| | - Yong Sung You
- Nune Eye Hospital, B1 Noon Bldg, 907‐16 Daechi‐dong Gangnam‐ku, Seoul, 135‐280, Republic of Korea
| | - Sung Ho Lee
- Lumieye Genetics, B1 Noon Bldg, 907‐16 Daechi‐dong Gangnam‐ku, Seoul, 135‐280, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei‐ro, Seodaemun‐gu, Seoul, 120‐749, Republic of Korea
| |
Collapse
|
37
|
Ong FS, Kuo JZ, Wu WC, Cheng CY, Blackwell WLB, Taylor BL, Grody WW, Rotter JI, Lai CC, Wong TY. Personalized Medicine in Ophthalmology: From Pharmacogenetic Biomarkers to Therapeutic and Dosage Optimization. J Pers Med 2013; 3:40-69. [PMID: 24624293 PMCID: PMC3947950 DOI: 10.3390/jpm3010040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rapid progress in genomics and nanotechnology continue to advance our approach to patient care, from diagnosis and prognosis, to targeting and personalization of therapeutics. However, the clinical application of molecular diagnostics in ophthalmology has been limited even though there have been demonstrations of disease risk and pharmacogenetic associations. There is a high clinical need for therapeutic personalization and dosage optimization in ophthalmology and may be the focus of individualized medicine in this specialty. In several retinal conditions, such as age-related macular degeneration, diabetic macular edema, retinal vein occlusion and pre-threshold retinopathy of prematurity, anti-vascular endothelial growth factor therapeutics have resulted in enhanced outcomes. In glaucoma, recent advances in cytoskeletal agents and prostaglandin molecules that affect outflow and remodel the trabecular meshwork have demonstrated improved intraocular pressure control. Application of recent developments in nanoemulsion and polymeric micelle for targeted delivery and drug release are models of dosage optimization, increasing efficacy and improving outcomes in these major eye diseases.
Collapse
Affiliation(s)
- Frank S. Ong
- Illumina Inc., San Diego, CA 92122, USA
- Author to whom correspondence should be addressed; E-Mail:
| | - Jane Z. Kuo
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Ophthalmology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 119074, Singapore
| | | | - Brian L. Taylor
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wayne W. Grody
- Departments of Pathology and Laboratory Medicine, Pediatrics and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jerome I. Rotter
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pediatrics and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tien Y. Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 119074, Singapore
| |
Collapse
|
38
|
del Pozo-Rodríguez A, Delgado D, Gascón AR, Solinís MÁ. Lipid Nanoparticles as Drug/Gene Delivery Systems to the Retina. J Ocul Pharmacol Ther 2013; 29:173-88. [DOI: 10.1089/jop.2012.0128] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ana del Pozo-Rodríguez
- Pharmacokinetics, Nanotechnology and Gene Therapy Group, Pharmacy Faculty, Laboratory of Pharmacy and Pharmaceutical Technology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Pharmacokinetics, Nanotechnology and Gene Therapy Group, Pharmacy Faculty, Laboratory of Pharmacy and Pharmaceutical Technology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Alicia R. Gascón
- Pharmacokinetics, Nanotechnology and Gene Therapy Group, Pharmacy Faculty, Laboratory of Pharmacy and Pharmaceutical Technology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maria Ángeles Solinís
- Pharmacokinetics, Nanotechnology and Gene Therapy Group, Pharmacy Faculty, Laboratory of Pharmacy and Pharmaceutical Technology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| |
Collapse
|
39
|
Intraocular pressure changes: an important determinant of the biocompatibility of intravitreous implants. PLoS One 2011; 6:e28720. [PMID: 22194895 PMCID: PMC3237488 DOI: 10.1371/journal.pone.0028720] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/14/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In recent years, research efforts exploring the possibility of using biomaterial nanoparticles for intravitreous drug delivery has increased significantly. However, little is known about the effect of material properties on intravitreous tissue responses. PRINCIPAL FINDINGS To find the answer, nanoparticles made of hyaluronic acid (HA), poly (l-lactic acid) (PLLA), polystyrene (PS), and Poly N-isopropyl acrylamide (PNIPAM) were tested using intravitreous rabbit implantation model. Shortly after implantation, we found that most of the implants accumulated in the trabecular meshwork area followed by clearance from the vitreous. Interestingly, substantial reduction of intraocular pressure (IOP) was observed in eyes implanted with particles made of PS, PNIPAM and PLLA, but not HA nanoparticles and buffered salt solution control. On the other hand, based on histology, we found that the particle implantation had no influence on cornea, iris and even retina. Surprisingly, substantial CD11b+ inflammatory cells were found to accumulate in the trabecular meshwork area in some animals. In addition, there was a good relationship between recruited CD11b+ cells and IOP reduction. CONCLUSIONS Overall, the results reveal the potential influence of nanoparticle material properties on IOP reduction and inflammatory responses in trabecular meshwork. Such interactions may be critical for the development of future ocular nanodevices with improved safety and perhaps efficacy.
Collapse
|
40
|
Abstract
INTRODUCTION Diabetes mellitus with its ophthalmic complications is the major cause for legal blindness in industrialized countries. Diabetic macular edema and its complex pathophysiology as part of diabetic retinopathy are the leading cause of vision loss among diabetic patients. In recent years, treatment options have developed involving the intravitreal applications of several compounds. AREAS COVERED Current treatment options for diabetic macular edema including laser therapy and scientific basis of new drugs are discussed. Possible benefits and drawbacks of these new approaches are addressed. EXPERT OPINION In recent years, new drugs against retinal diseases have been developed consisting mainly of steroid or anti-vascular endothelial growth factor compounds. Targeting macular edema, the second shows a possible therapeutic role in the proliferative form of diabetic retinopathy, requiring further investigation. New biodegradable delivery systems show an advantage in sustaining effective compound concentrations for longer times and have positive impact on safety profile and cost-effectiveness of the drug, a factor of grave importance when considering the future of any new drug in the market. All these new therapeutic approaches alone or in combination with the existing treatments have to demonstrate their efficacy and safety in diabetic retinopathy in current and future trials.
Collapse
Affiliation(s)
- Antonios Pipis
- Staedtisches Klinikum Karlsruhe, Augenklinik, Karlsruhe, Germany
| | | | | |
Collapse
|
41
|
Hu J, Coassin M, Stewart JM. Fluocinolone acetonide implant (Retisert) for chronic cystoid macular edema in two patients with AIDS and a history of cytomegalovirus retinitis. Ocul Immunol Inflamm 2011; 19:206-9. [PMID: 21595537 DOI: 10.3109/09273948.2010.538120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To report the authors' experience using fluocinolone acetonide (Retisert) to treat cystoid macular edema (CME) resulting from immune recovery uveitis (IRU) in 2 acquired immunodeficiency syndrome (AIDS) patients with a history of cytomegalovirus (CMV) retinitis. DESIGN Interventional case series. METHODS Medical records were reviewed of 2 patients who received Retisert implantation in 3 eyes for IRU-associated inflammation and CME. Suppression of CMV disease was achieved with oral medication in one patient and with simultaneous implantation of a ganciclovir implant in the other patient. RESULTS After Retisert implantation in 3 eyes in AIDS patients on HAART, improvement in CME was seen in 2 eyes. No CMV reactivation was detected during the several-month follow-up period. CONCLUSIONS Retisert may be an effective treatment for CME in AIDS patients with IRU reactivation and a history of CMV retinitis.
Collapse
Affiliation(s)
- Jianmin Hu
- University of California, San Francisco, Department of Ophthalmology, San Francisco, California 94143-0730, USA
| | | | | |
Collapse
|
42
|
Yilmaz T, Cordero-Coma M, Federici TJ. Pharmacokinetics of triamcinolone acetonide for the treatment of macular edema. Expert Opin Drug Metab Toxicol 2011; 7:1327-35. [PMID: 21790508 DOI: 10.1517/17425255.2011.606215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The use of intravitreal triamcinolone acetonide (TA) for the treatment of various types of macular edema has been widespread, particularly for the last decade. Currently, there is a scant amount of evidence-based literature evaluating the pharmacokinetic profile of TA despite clinical data showing the efficacy of intravitreal TA for multiple forms of macular edema. AREAS COVERED This paper is an extensive review of human and experimental studies published on the pharmacokinetics of TA for the treatment of macular edema. The literature search was conducted via OVID, TRIP Database and EMBASE, up to April 2011. EXPERT OPINION The pharmacokinetic profile of TA is unpredictable and the agent has a time-limited therapeutic action due to its relatively short half-life. This has led to the need for repeated injections. Future research should investigate the pharmacokinetic profiles of TA when administered intravitreally, as well as through alternate routes in more robust studies.
Collapse
Affiliation(s)
- Taygan Yilmaz
- Stony Brook University, Department of Ophthalmology, 33 Research Way, East Setauket, NY 11733, USA.
| | | | | |
Collapse
|
43
|
PPARgamma Agonists: Potential as Therapeutics for Neovascular Retinopathies. PPAR Res 2011; 2008:164273. [PMID: 18509499 PMCID: PMC2396446 DOI: 10.1155/2008/164273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 03/12/2008] [Accepted: 04/10/2008] [Indexed: 01/16/2023] Open
Abstract
The angiogenic, neovascular proliferative retinopathies, proliferative diabetic retinopathy (PDR), and age-dependent macular degeneration (AMD) complicated by choroidal neovascularization (CNV), also termed exudative or “wet” AMD, are common causes of blindness. The antidiabetic thiazolidinediones (TZDs), rosiglitazone, and troglitazone are PPARγ agonists with demonstrable antiproliferative, and anti-inflammatory effects, in vivo, were shown to ameliorate PDR and CNV in rodent models, implying the potential efficacy of TZDs for treating proliferative retinopathies in humans. Activation of the angiotensin II type 1 receptor (AT1-R) propagates proinflammatory and proliferative pathogenic determinants underlying PDR and CNV. The antihypertensive dual AT1-R blocker (ARB), telmisartan, recently was shown to activate PPARγ and improve glucose and lipid metabolism and to clinically improve PDR and CNV in rodent models. Therefore, the TZDs and telmisartan, clinically approved antidiabetic and antihypertensive drugs, respectively, may be efficacious for treating and attenuating PDR and CNV humans. Clinical trials are needed to test these possibilities.
Collapse
|
44
|
Abstract
This review covers both noninvasive and invasive ophthalmic drug delivery systems that can have application to therapy of veterinary ophthalmic diseases. Noninvasive approaches include gel technologies, permeation enhancement via pro-drug development, solubilization agents and nanoparticle technologies, iontophoresis, microneedles, drug-eluting contact lenses and eye misters, and microdroplets. More invasive systems include both eroding implants and noneroding technologies that encompass diffusion based systems, active pumps, intraocular lenses, suprachoroidal drug delivery, and episcleral reservoirs. In addition to addressing the physiologic challenges of achieving the necessary duration of delivery, tissue targeting and patient compliance, the commercial development factors of biocompatibility, sterilization, manufacturability and long-term stability will be discussed.
Collapse
|
45
|
Augustin AJ. Upcoming therapeutic advances in diabetic macular edema: an intravitreal dexamethasone drug delivery system. Expert Opin Drug Deliv 2011; 8:271-9. [PMID: 21222552 DOI: 10.1517/17425247.2011.548802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Diabetes mellitus, through its ophthalmic complications diabetic retinopathy and diabetic macular edema (DME), is a leading cause of vision loss in industrialized countries. AREAS COVERED This review covers laser treatment, which is a standard treatment strategy that has proven efficacy and safety through large clinical trials in DME. Several intravitreal drug applications currently being investigated are also discussed. EXPERT OPINION First results suggest that the administration of anti-VEGF compounds is effective for DME. However, frequent injections may compromise safety. In order to enhance patient compliance, sustained delivery systems are being evaluated as potential treatment approaches. So far, only steroids have been included as active in such non-biodegradable or biodegradable delivery systems. Non-biodegradable systems are more complicated to administer as surgery is required and they need to be retrieved at the end of treatment. Also, in some cases safety issues have arisen, especially around intraocular pressure control. A new biodegradable dexamethasone delivery system seems to show promising efficacy results in addition to a more favorable safety profile, which will potentially improve patient compliance. All new therapeutic approaches, alone and in combination, will need to demonstrate their efficacy and safety in DME in future trials.
Collapse
Affiliation(s)
- Albert J Augustin
- Department of Ophthalmology, Staedtisches Klinikum Karlsruhe, Moltkestrasse 90, Karlsruhe, Germany.
| |
Collapse
|
46
|
|
47
|
Drug delivery to the posterior segment of the eye. Drug Discov Today 2010; 16:270-7. [PMID: 21167306 DOI: 10.1016/j.drudis.2010.12.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/28/2010] [Accepted: 12/06/2010] [Indexed: 12/18/2022]
Abstract
Delivery of drugs to the posterior eye is challenging, owing to anatomical and physiological constrains of the eye. There is an increasing need for managing rapidly progressing posterior eye diseases, such as age-related macular degeneration, diabetic retinopathy and retinitis pigmentosa. Drug delivery to the posterior segment of the eye is therefore compounded by the increasing number of new therapeutic entities (e.g. oligonucleotides, aptamers and antibodies) and the need for chronic therapy. Currently, the intravitreal route is widely used to deliver therapeutic entities to the retina. However, frequent administration of drugs via this route can lead to retinal detachment, endophthalmitis and increased intraocular pressure. Various controlled delivery systems, such as biodegradable and non-biodegradable implants, liposomes and nanoparticles, have been developed to overcome such adverse effects, with some success. The periocular route is a promising alternative, owing to the large surface area and the relatively high permeability of the sclera. Yet, the blood-retinal barrier and efflux transporters hamper the transport of therapeutic entities to the retina. As such, the efficient delivery of drugs to the posterior eye remains a major challenge facing the pharmaceutical scientist. In this review, we discuss the barriers of the posterior eye drug delivery and the various drug-delivery strategies used to overcome these barriers.
Collapse
|
48
|
Ossewaarde-van Norel A, Rothova A. Clinical Review: Update on Treatment of Inflammatory Macular Edema. Ocul Immunol Inflamm 2010; 19:75-83. [DOI: 10.3109/09273948.2010.509530] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Rastogi A, Luo Z, Wu Z, Ho PS, Bowman PD, Stavchansky S. Development and characterization of a scalable microperforated device capable of long-term zero order drug release. Biomed Microdevices 2010; 12:915-21. [DOI: 10.1007/s10544-010-9446-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Abstract
PURPOSE To evaluate the feasibility of developing a novel mini drug pump for ophthalmic use. METHODS Using principles of microelectromechanical systems engineering, a mini drug pump was fabricated. The pumping mechanism is based on electrolysis and the pump includes a drug refill port as well as a check valve to control drug delivery. Drug pumps were tested first on the bench-top and then after implantation in rabbits. For the latter, we implanted 4 elliptical (9.9 x 7.7 x 1.8 mm) non-electrically active pumps into 4 rabbits. The procedure is similar to implantation of a glaucoma aqueous drainage device. To determine the ability to refill and also the patency of the cannula, at intervals of 4-6 weeks after implantation, we accessed the drug reservoir with a transconjunctival needle and delivered approximately as low as 1 microL of trypan blue solution (0.06%) into the anterior chamber. Animals were followed by slit lamp examination, photography, and fluorescein angiography. RESULTS Bench-top testing showed 2.0 microL/min delivery when using 0.4 mW of power for electrolysis. One-way valves showed reliable opening pressures of 470 mmHg. All implanted devices refilled at 4-6 weeks intervals for 4-6 months. No infection was seen. No devices extruded. No filtering bleb formed over the implant. CONCLUSIONS A prototype ocular mini drug pump was built, implanted, and refilled. Such a platform needs more testing to determine the long term biocompatibility of an electrically-controlled implanted pump. Testing with various pharmacological agents is needed to determine its ultimate potential for ophthalmic use.
Collapse
Affiliation(s)
- Saloomeh Saati
- Doheny Eye Institute, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|