1
|
Canchi Sistla H, Talluri S, Rajagopal T, Venkatabalasubramanian S, Rao Dunna N. Genomic instability in ovarian cancer: Through the lens of single nucleotide polymorphisms. Clin Chim Acta 2025; 565:119992. [PMID: 39395774 DOI: 10.1016/j.cca.2024.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy among all female reproductive cancers. It is characterized by high mortality rate and poor prognosis. Genomic instability caused by mutations, single nucleotide polymorphisms (SNPs), copy number variations (CNVs), microsatellite instability (MSI), and chromosomal instability (CIN) are associated with OC predisposition. SNPs, which are highly prevalent in the general population, show a greater relative risk contribution, particularly in sporadic cancers. Understanding OC etiology in terms of genetic basis can increase the use of molecular diagnostics and provide promising approaches for designing novel treatment modalities. This will help deliver personalized medicine to OC patients, which may soon be within reach. Given the pivotal impact of SNPs in cancers, the primary emphasis of this review is to shed light on their prevalence in key caretaker genes that closely monitor genomic integrity, viz., DNA damage response, repair, cell cycle checkpoints, telomerase maintenance, and apoptosis and their clinical implications in OC. We highlight the current challenges faced in different SNP-based studies. Various computational methods and bioinformatic tools employed to predict the functional impact of SNPs have also been comprehensively reviewed concerning OC research. Overall, this review identifies that variants in the DDR and HRR pathways are the most studied, implying their critical role in the disease. Conversely, variants in other pathways, such as NHEJ, MMR, cell cycle, apoptosis, telomere maintenance, and PARP genes, have been explored the least.
Collapse
Affiliation(s)
- Harshavardhani Canchi Sistla
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA 02215, USA; Veterans Administration Boston Healthcare System, West Roxbury, MA 02132, USA
| | | | - Sivaramakrishnan Venkatabalasubramanian
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai 603 203, India
| | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India.
| |
Collapse
|
2
|
Ziółkowska S, Kosmalski M, Kołodziej Ł, Jabłkowska A, Szemraj JZ, Pietras T, Jabłkowski M, Czarny PL. Single-Nucleotide Polymorphisms in Base-Excision Repair-Related Genes Involved in the Risk of an Occurrence of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:11307. [PMID: 37511066 PMCID: PMC10379279 DOI: 10.3390/ijms241411307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is one of the pillars crucial in the development of a non-alcoholic fatty liver disease (NAFLD) and may cause DNA damage. Since the main pathway responsible for the repair of oxidative DNA damage is the base-excision repair (BER) pathway, we examined the relationship between the presence of different genetic variants of BER-associated genes and the risk of NAFLD. The study evaluates seven single nucleotide polymorphisms (SNPs) within five genes, hOGG1, APEX1, NEIL1, LIG3, LIG1, in 150 NAFLD patients and 340 healthy controls. The genotyping was performed using TaqMan probes and the results were presented as odds ratio with its corresponding 95% confidence interval. The following SNPs were assessed in the study: hOGG1 (rs1052133), APEX1 (rs176094 and rs1130409), NEIL1 (rs4462560), LIG3 (rs1052536), LIG3 (rs4796030), and LIG1 (rs20579). Four of the investigated SNPs, i.e., rs176094, rs1130409, rs4462560 and rs4796030, were found to be associated with NAFLD risk. Furthermore, the occurrence of insulin resistance in patients with steatosis depended on various LIG3 genetic variants. The findings imply the impact of genes involved in BER on NAFLD and fatty liver-related insulin sensitivity.
Collapse
Affiliation(s)
- Sylwia Ziółkowska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Łukasz Kołodziej
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Aleksandra Jabłkowska
- Department of Infectious and Liver Diseases, Medical University of Lodz, 91-347 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Maciej Jabłkowski
- Department of Infectious and Liver Diseases, Medical University of Lodz, 91-347 Lodz, Poland
| | - Piotr Lech Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
3
|
Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers (Basel) 2023; 15:448. [PMID: 36672401 PMCID: PMC9856346 DOI: 10.3390/cancers15020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Hu J, Xu Z, Ye Z, Li J, Hao Z, Wang Y. The association between single nucleotide polymorphisms and ovarian cancer risk: A systematic review and network meta-analysis. Cancer Med 2023; 12:541-556. [PMID: 35637613 PMCID: PMC9844622 DOI: 10.1002/cam4.4891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The relationship between single nucleotide polymorphisms (SNPs) and ovarian cancer (OC) risk remains controversial. This systematic review and network meta-analysis was aimed to determine the association between SNPs and OC risk. METHODS Several databases (PubMed, EMBASE, China National Knowledge Infrastructure, Wanfang databases, China Science and Technology Journal Database, and China Biology Medicine disc) were searched to summarize the association between SNPs and OC published throughout April 2021. Direct meta-analysis was used to identify SNPs that could predict the incidence of OC. Ranking probability resulting from network meta-analysis and the Thakkinstian's algorithm was used to select the most appropriate gene model. The false positive report probability (FPRP) and Venice criteria were further tested for credible relationships. Subgroup analysis was also carried out to explore whether there are racial differences. RESULTS A total of 63 genes and 92 SNPs were included in our study after careful consideration. Fok1 rs2228570 is likely a dominant risk factor for the development of OC compared to other selected genes. The dominant gene model of Fok1 rs2228570 (pooled OR = 1.158, 95% CI: 1.068-1.256) was determined to be the most suitable model with a FPRP <0.2 and moderate credibility. CONCLUSIONS Fok1 rs2228570 is closely linked to OC risk, and the dominant gene model is likely the most appropriate model for estimating OC susceptibility.
Collapse
Affiliation(s)
- Jia Hu
- Department of GastroenterologyThe Second Xiangya Hospital, Central South UniversityChangshaChina
- Research Center of Digestive DiseaseThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Zhe Xu
- Department of Pharmacy, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhuomiao Ye
- Department of Oncology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jin Li
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Zhinan Hao
- Department of Gastrointestinal SurgeryHebei General HospitalShijiazhuangChina
| | - Yongjun Wang
- Department of GastroenterologyThe Second Xiangya Hospital, Central South UniversityChangshaChina
- Research Center of Digestive DiseaseThe Second Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
5
|
Association between apurinic/apyrimidinic endonuclease 1 rs1760944 T>G polymorphism and susceptibility of cancer: a meta-analysis involving 21764 subjects. Biosci Rep 2020; 39:221420. [PMID: 31804681 PMCID: PMC6923335 DOI: 10.1042/bsr20190866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/03/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous case-control studies have suggested that apurinic/apyrimidinic endonuclease 1 (APE1) rs1760944 T>G polymorphism may be associated with cancer risk. Here, we carried out an updated meta-analysis to focus on the correlation between APE1 rs1760944 T>G locus and the risk of cancer. METHODS We used the crude odds ratios (ORs) with their 95% confidence intervals (CIs) to evaluate the possible relationship between the APE1 rs1760944 T>G polymorphism and cancer risk. Heterogeneity, publication bias and sensitivity analysis were also harnessed to check the potential bias of the present study. RESULTS Twenty-three independent studies involving 10166 cancer cases and 11598 controls were eligible for this pooled analysis. We found that APE1 rs1760944 T>G polymorphism decreased the risk of cancer in four genetic models (G vs. T: OR, 0.87; 95% CI, 0.83-0.92; P<0.001; GG vs. TT: OR, 0.77; 95% CI, 0.69-0.86; P<0.001; GG/TG vs. TT: OR, 0.83; 95% CI, 0.77-0.89, P<0.001 and GG vs. TT/TG: OR, 0.85; 95% CI, 0.80-0.92, P<0.001). Results of subgroup analyses also demonstrated that this single-nucleotide polymorphism (SNP) modified the risk among lung cancer, breast cancer, osteosarcoma, and Asians. Evidence of publication bias was found in the present study. When we treated the publication bias with 'trim-and-fill' method, the adjusted ORs and CIs were not significantly changed. CONCLUSION In conclusion, current evidence highlights that the APE1 rs1760944 T>G polymorphism is a protective factor for cancer susceptibility. In the future, case-control studies with detailed risk factors are needed to confirm or refute our findings.
Collapse
|
6
|
DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers (Basel) 2020; 12:cancers12071713. [PMID: 32605254 PMCID: PMC7408288 DOI: 10.3390/cancers12071713] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, high-penetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.
Collapse
|
7
|
Liu J, Jia W, Hua RX, Zhu J, Zhang J, Yang T, Li P, Xia H, He J, Cheng J. APEX1 Polymorphisms and Neuroblastoma Risk in Chinese Children: A Three-Center Case-Control Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5736175. [PMID: 31341530 PMCID: PMC6614964 DOI: 10.1155/2019/5736175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is a life-threatening extracranial solid tumor, preferentially occurring in children. However, its etiology remains unclear. APEX1 is a critical gene in the base excision repair (BER) system responsible for maintaining genome stability. Given the potential effects of APEX1 polymorphisms on the ability of the DNA damage repair, many studies have investigated the association between these variants and susceptibility to several types of cancer but not neuroblastoma. Here, we conducted a three-center case-control study to evaluate the association between APEX1 polymorphisms (rs1130409 T>G, rs1760944 T>G, and rs3136817 T>C) and neuroblastoma risk in Chinese children, consisting of 469 cases and 998 controls. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated to evaluate the associations. No significant association with neuroblastoma risk was found for the studied APEX1 polymorphisms in the single locus or combination analysis. Interestingly, stratified analysis showed that rs1130409 GG genotype significantly reduced the risk of tumor in males. Furthermore, we found that carriers with 1-3 protective genotypes had a lower neuroblastoma risk in the children older than18 months and male, when compared to those without protective genotypes. In summary, our data indicate that APEX1 gene polymorphisms may have a weak effect on neuroblastoma susceptibility. These findings should be further validated by well-designed studies with larger sample size.
Collapse
Affiliation(s)
- Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Rui-Xi Hua
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150040 Heilongjiang, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Peng Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China
| |
Collapse
|
8
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Xiao X, Yang Y, Ren Y, Zou D, Zhang K, Wu Y. rs1760944 Polymorphism in the APE1 Region is Associated with Risk and Prognosis of Osteosarcoma in the Chinese Han Population. Sci Rep 2017; 7:9331. [PMID: 28839218 PMCID: PMC5570937 DOI: 10.1038/s41598-017-09750-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/16/2017] [Indexed: 01/16/2023] Open
Abstract
The effects of single nucleotide polymorphisms (SNPs) at APE1 have been investigated in several types of cancer. However, no reports of the association of APE1 polymorphisms with osteosarcoma (OS) have been published. The present study was designed to determine whether APE1 polymorphisms (rs1130409, rs1760944, rs1760941, rs2275008, rs17111750) are associated with OS. A 2-stage case-control study was performed in a total of 378 OS patients and 616 normal controls. Individuals carrying TG and GG genotypes had significantly lower risk of developing OS than those with the WT genotype TT at rs1760944 (OR = 0.65, 95%CI 0.49–0.86; OR = 0.50, 95%CI 0.34–0.74, respectively). OS patients with allele G at rs1760944 were less susceptible to low differentiation tumor and metastasis (OR = 0.73, 95%CI 0.54–0.98; OR = 0.63, 95%CI 0.43–0.92, respectively). Kaplan-Meier curves and log-rank results revealed that OS patients harboring genotype GG and G allele at rs1760944 had better survival (P < 0.001 for both). In addition, the APE1 protein was underexpressed in individuals who carried G allele at rs1760944. This study suggested that APE1 rs1760944 polymorphism is associated with decreased risk of developing OS and better survival of OS patients.
Collapse
Affiliation(s)
- Xing Xiao
- Department of Spine Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yun Yang
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanjun Ren
- Department of Spine Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Debo Zou
- Department of Spine Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Kaining Zhang
- Department of Spine Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yingguang Wu
- Department of Spine Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
| |
Collapse
|
10
|
Chen Y, Li J, Mo Z. Association between the APEX1 Asp148Glu polymorphism and prostate cancer, especially among Asians: a new evidence-based analysis. Oncotarget 2016; 7:52530-52540. [PMID: 27248666 PMCID: PMC5239571 DOI: 10.18632/oncotarget.9693] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/16/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Prostate cancer (Pca) is a serious disease associated with considerable morbidity and mortality. As a causative factor, the Asp148Glu polymorphism has been identified in the apurinic/apyrimidinic endonuclease (APEX1) gene. However, the association among Asians is considered controversial. METHODS Evidence for this association was obtained from the PubMed, Embase, HuGENet and Chinese National Knowledge Infrastructure (CNKI) databases. In the analysis, four models were applied. Associations between the APEX1 polymorphism and the invasiveness of Pca based on the Gleason score, prostate-specific antigen expression and clinical status were also evaluated. RESULTS Seven articles were included in the analysis. Positive results were not only discovered in the pooled analysis, but also among patients of mixed descentand Asian descent. However, after considering the Hardy-Weinberg equilibrium (HWE), we observed only a 1.557-fold increase in Pca risk for subjects of Asian descent(GG vs. TT: OR=1.557, 95%CI=1.069-2.268) under the co-dominant model. Additionally, we did not also find any relationship between the APEX1 Asp148Glu polymorphism and invasive Pca risk. CONCLUSION On the basis of the function of the APEX1 Asp148Glu polymorphism, recent studies, and our results, we suggest that the APEX1 Asp148Glu polymorphism might be important in stimulating the development of Pca rather than its invasiveness in various populations, especially for Asians.
Collapse
Affiliation(s)
- Yang Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi key laboratory for genomic and personalized medicine, Guangxi collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jie Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Research Center for Guangxi Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi key laboratory for genomic and personalized medicine, Guangxi collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|