1
|
Motaghi S, Pullenayegum E, Morgan RL, Loeb M. The role of influenza Hemagglutination-Inhibition antibody as a vaccine mediator in children. Vaccine 2024; 42:126122. [PMID: 39074996 DOI: 10.1016/j.vaccine.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/14/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Influenza vaccination may protect through the humoral immune response, cellular immune response, or possibly both. Immunity after vaccination can be mediated through antibodies that may be detected by the rise of serum hemagglutination inhibition (HAI) titers. Our objective was to investigate the proportion of protection against influenza mediated through antibodies by measuring the rise of HAI titer (indirect effect) compared to that induced through other immune mechanisms (direct effect) for influenza A and B. METHODS We analysed data from a cluster randomized trial conducted during the 2008-2009 season in which Canadian Hutterite children were vaccinated against influenza. We used inverse probability weighting to calculate the indirect and direct effect of vaccination against influenza A/H3N2 and influenza B/Brisbane using HAI titres and overall vaccine efficacy. RESULTS We included data on 617 children from 46 Hutterite colonies, aged between 3 and 15 years who were vaccinated with either inactivated trivalent influenza vaccine or hepatitis A vaccine. Vaccine efficacy was 63 % for influenza A (H3N2) and 28 % for influenza B. The hazard ratio for protection against influenza A/H3N2 due to an indirect effect of vaccination was 0.96 (95 % confidence interval (CI) of 0.00 to 2.89) while for the direct effect it was 0.38 (95 % CI of 0.00 to 5.47). The hazard ratio for influenza B indirect effect was 0.75 (95 % CI of 0.07 to 1) and for the direct effect 0.96 (95 % CI of 0.00 to 12.02). In contrast, repeating the analysis using microneutralization in a subgroup of 488 children revealed that the protective effect for vaccination for A/H3N2 was entirely mediated by antibodies but only for 13 % for influenza B. CONCLUSIONS Although vaccination provided higher protective effectiveness against influenza A than B, most of the influenza A vaccine efficacy likely occurred through antibodies other than what could be detected by HAI titres. In contrast, for influenza B, while the HAI titres appeared to mediate most of the vaccine effectiveness, this was not confirmed by microneutralization analysis.
Collapse
Affiliation(s)
- Shahrzad Motaghi
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.
| | - Eleanor Pullenayegum
- The Hospital for Sick Children, Toronto, Ontario, Canada; Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada; Dalla Lana School of Public Health, The University of Toronto, Toronto, Ontario, Canada.
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada; School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Mark Loeb
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Choi UY, Kim KH, Lee KY, Kim JH, Kim CS, Eun BW, Kim HM, Kim DH, Song SE, Jo DS, Lee J, Ma SH, Kim KN, Kang JH. Active-controlled phase III study of an egg-cultivated quadrivalent inactivated split-virion influenza vaccine (GC3110A) in healthy Korean children aged 6-35 months. Vaccine 2021; 39:2103-2109. [PMID: 33736920 DOI: 10.1016/j.vaccine.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The inactivated trivalent influenza vaccine (TIV) offers limited protection when two influenza B lineages co-circulate or when there is a vaccine mismatch (i.e., discordance in the predominant circulating B strain and WHO-recommended B strain). Inactivated quadrivalent influenza vaccine (QIV) may reduce the burden of influenza. Here, we report the results of a phase 3 clinical trial that evaluated the immunogenicity and safety of a novel QIV, GC3110A, in Korean children aged 6-35 months, which has been approved and is currently in use in Korea. The study involved two parts. In Part 1, the safety of GC3110A was evaluated in 10 subjects. After none of the subjects reported grade 3 adverse events (AEs), we proceeded to Part 2. Part 2 was a randomized, double-blind, multicenter phase 3 trial wherein we compared the immunogenicity and safety of GC3110A with those of a licensed control TIV. Immunogenicity was evaluated by measuring hemagglutination inhibition titers. The 200 participants enrolled in Part 2 were randomized in a 4:1 ratio to receive GC3110A or control TIV. The study vaccine group met both primary (i.e., the lower limit of 95% confidence interval [CI] of the seroconversion rate exceeds 40% for four strains) and secondary (i.e., the lower limit of 95% CI of the seroprotection rate exceeds 70% for four strains) immunogenicity endpoints. There was no significant between-group difference in the seroconversion rate, seroprotection rate, and geometric mean titer for the shared strains. However, the study vaccine group demonstrated significantly higher immunity for the additional strain B/Yamagata. In the safety analysis, there was no significant between-group difference in the proportion of participants with solicited local AEs, solicited systemic AEs, and unsolicited AEs. In conclusion, the results indicate that GC3110A has comparable immunogenicity and safety to those of TIV. Clinical Trial Registry Number: NCT03285997.
Collapse
Affiliation(s)
- Ui Yoon Choi
- Department of Pediatrics, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021, Tongil-ro, Eunpyeong-gu, Seoul, 03312, Republic of Korea.
| | - Ki Hwan Kim
- Department of Pediatrics, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Kyung Yil Lee
- Department of Pediatrics, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Jong-Hyun Kim
- Department of Pediatrics, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Chun Soo Kim
- Department of Pediatrics, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Republic of Korea.
| | - Byung Wook Eun
- Department of Pediatrics, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Republic of Korea.
| | - Hwang Min Kim
- Department of Pediatrics, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| | - Dong Ho Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Republic of Korea.
| | - Song Eun Song
- Department of Pediatrics, Chonnam National University Children's Hospital, Gwangju, Republic of Korea.
| | - Dae Sun Jo
- Department of Pediatrics, Chonbuk National University Children's Hospital, Jeonju, Republic of Korea.
| | - Jin Lee
- Department of Pediatrics, Hanil General Hospital, Seoul, Republic of Korea.
| | - Sang Hyuk Ma
- Department of Pediatrics, Changwon Fatima Hospital, Changwon, Republic of Korea.
| | - Kwang Nam Kim
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea.
| | - Jin Han Kang
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Vidaña B, Brookes SM, Everett HE, Garcon F, Nuñez A, Engelhardt O, Major D, Hoschler K, Brown IH, Zambon M. Inactivated pandemic 2009 H1N1 influenza A virus human vaccines have different efficacy after homologous challenge in the ferret model. Influenza Other Respir Viruses 2020; 15:142-153. [PMID: 32779850 PMCID: PMC7767958 DOI: 10.1111/irv.12784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/06/2020] [Accepted: 06/21/2020] [Indexed: 01/01/2023] Open
Abstract
Background The 2009 pandemic H1N1 (A(H1N1)pdm09) influenza A virus (IAV) has replaced the previous seasonal H1N1 strain in humans and continues to circulate worldwide. The comparative performance of inactivated A(H1N1)pdm09 influenza vaccines remains of considerable interest. The objective of this study was to evaluate the efficacy of two licensed A(H1N1)pdm09 inactivated vaccines (AS03B adjuvanted split virion Pandemrix from GlaxoSmithKline and referred here as (V1) and non‐adjuvanted whole virion Celvapan from Baxter and referred here as (V2)) in ferrets as a pre‐clinical model for human disease intervention. Methods Naïve ferrets were divided into two groups (V1 and V2) and immunised intramuscularly with two different A/California/07/2009‐derived inactivated vaccines, V1 administered in a single dose and V2 administered in 2 doses separated by 21 days. Six weeks after the first immunisation, vaccinated animals and a non‐vaccinated control (NVC) group were intra‐nasally challenged with 106.5 TCID50 of the isolate A/England/195/2009 A(H1N1)pdm09 with 99.1% amino acid identity to the vaccine strain. Clinical signs, lung histopathology, viral quantification and antibody responses were evaluated. Results and Conclusions Results revealed important qualitative differences in the performance of both inactivated vaccines in relation to protection against challenge with a comparable virus in a naive animal (ferret) model of human disease. Vaccine V1 limited and controlled viral shedding and reduced lower respiratory tract infection. In contrast, vaccine V2 did not control infection and animals showed sustained viral shedding and delayed lower respiratory infection, resulting in pulmonary lesions, suggesting lower efficacy of V2 vaccine.
Collapse
Affiliation(s)
- Beatriz Vidaña
- Bristol Veterinary School, Faculty of Health Science, University of Bristol, Bristol, UK.,Pathology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK
| | - Sharon M Brookes
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK
| | - Helen E Everett
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK
| | - Fanny Garcon
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK.,Laboratoires Théa, Clermont-Ferrand, France
| | - Alejandro Nuñez
- Pathology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK
| | - Othmar Engelhardt
- National Institute for Biological Standards and Control, Potters Bar, UK
| | - Diane Major
- National Institute for Biological Standards and Control, Potters Bar, UK
| | | | - Ian H Brown
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, UK
| | | |
Collapse
|
4
|
Zhang J, Miao J, Han X, Lu Y, Deng B, Lv F, Zhao Y, Ding C, Hou J. Development of a novel oil-in-water emulsion and evaluation of its potential adjuvant function in a swine influenza vaccine in mice. BMC Vet Res 2018; 14:415. [PMID: 30577861 PMCID: PMC6303909 DOI: 10.1186/s12917-018-1719-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 11/27/2018] [Indexed: 12/03/2022] Open
Abstract
Background Vaccination is the principal strategy for prevention and control of diseases, and adjuvant use is an effective strategy to enhance vaccine efficacy. Traditional mineral oil-based adjuvants have been reported with post-immunization reactions. Developing new adjuvant formulations with improved potency and safety will be of great value. Results In the study reported herein, a novel oil-in-water (O/W) Emulsion Adjuvant containing Squalane (termed EAS) was developed, characterized and investigated for swine influenza virus immunization. The data show that EAS is a homogeneous nanoemulsion with small particle size (~ 105 nm), low viscosity (2.04 ± 0.24 cP at 20 °C), excellent stability (at least 24 months at 4 °C) and low toxicity. EAS-adjuvanted H3N2 swine influenza vaccine was administrated in mice subcutaneously to assess the adjuvant potency of EAS. The results demonstrated that in mice EAS-adjuvanted vaccine induced significantly higher titers of hemagglutination inhibition (HI) and IgG antibodies than water-in-oil (W/O) vaccines or antigen alone, respectively, at day 42 post vaccination (dpv) (P < 0.05). EAS-adjuvanted vaccine elicited significantly stronger IgG1 and IgG2a antibodies and higher concentrations of Th1 (IFN-γ and IL-2) cytokines compared to the W/O vaccine or antigen alone. Mice immunized with EAS-adjuvanted influenza vaccine conferred potent protection after homologous challenge. Conclusion The O/W emulsion EAS developed in the present work induced potent humoral and cellular immune responses against inactivated swine influenza virus, conferred effective protection after homologous virus challenge and showed low toxicity in mice, indicating that EAS is as good as the commercial adjuvant MF59. The superiority of EAS to the conventional W/O formulation in adjuvant activity, safety and stability will make it a potential veterinary adjuvant.
Collapse
Affiliation(s)
- Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yu Lu
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Bihua Deng
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fang Lv
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yanhong Zhao
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jibo Hou
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
5
|
Long-Term Persistence of Cell-Mediated and Humoral Responses to A(H1N1)pdm09 Influenza Virus Vaccines and the Role of the AS03 Adjuvant System in Adults during Two Randomized Controlled Trials. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00553-16. [PMID: 28446441 PMCID: PMC5461372 DOI: 10.1128/cvi.00553-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/17/2017] [Indexed: 12/29/2022]
Abstract
We investigated the role of AS03A (here AS03), an α-tocopherol oil-in-water emulsion-based adjuvant system, on the long-term persistence of humoral and cell-mediated immune responses to A(H1N1)pdm09 influenza vaccines. In two studies, a total of 261 healthy adults (≤60 years old) were randomized to receive two doses of AS03-adjuvanted vaccine containing 3.75 μg of hemagglutinin (HA) or nonadjuvanted vaccine containing 15 μg of hemagglutinin (in study A) or 3.75 μg of hemagglutinin (in study B) 21 days apart. Hemagglutination inhibition (HI) antibody, memory B-cell, and CD4+/CD8+ T-cell responses were characterized up to 1 year following dose 1. We also assessed the effects of age and seasonal influenza vaccination history. AS03-adjuvanted (3.75 μg HA) vaccine and nonadjuvanted vaccine at 15 μg but not at 3.75 μg HA elicited HI antibody responses persisting at levels that continued to meet European licensure criteria through month 12. At month 12, the geometric mean titer for AS03-adjuvanted vaccine was similar to that for nonadjuvanted (15-μg) vaccine in study A (1:86 and 1:88, respectively) and higher than that for nonadjuvanted (3.75-μg) vaccine in study B (1:77 and 1:35, respectively). A(H1N1)pdm09-specific CD4+ T-cell and B-cell responses were stronger in AS03-adjuvanted groups and persisted only in these groups for 12 months at levels exceeding prevaccination frequencies. Advancing age and a seasonal vaccination history tended to reduce HI antibody and memory B-cell responses and, albeit less consistently, CD4+ T-cell responses. Thus, AS03 seemed to enhance the persistence of humoral and cell-mediated responses to A(H1N1)pdm09 vaccine, allowing for antigen sparing and mitigating potential negative effects of age and previous seasonal vaccination. (These studies have been registered at ClinicalTrials.gov under registration no. NCT00968539 and NCT00989287.)
Collapse
|
6
|
Ortiz de Lejarazu R, Tamames S. Vacunación antigripal. Efectividad de las vacunas actuales y retos de futuro. Enferm Infecc Microbiol Clin 2015; 33:480-90. [DOI: 10.1016/j.eimc.2015.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 01/09/2023]
|