1
|
Li Y, Chen X, Guo Y, Lin Y, Wang X, He G, Wang M, Xu J, Song M, Tan X, Zhuo C, Lin Z. Overexpression of KPC contributes to ceftazidime-avibactam heteroresistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2024; 14:1450530. [PMID: 39711783 PMCID: PMC11659205 DOI: 10.3389/fcimb.2024.1450530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Ceftazidime-avibactam (CZA) is one of the effective antibiotics used for the treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) infections, but its resistance rate has increased recently. Previous studies have focused on the mechanisms of CZA resistance, while its heteroresistance in CRKP remains poorly understood. This study aimed to investigate the characteristics and mechanisms of CZA heteroresistance in CRKP isolates. A total of 311 CRKP clinical strains were collected in China from 2020 to 2022. The MICs of CZA and other antibiotics against K. pneumoniae were determined by broth microdilution method. The occurrence of CZA heteroresistance in CRKP was evaluated with population analysis profiling (PAP) and their characteristics were detected by polymerase chain reaction (PCR). The underlying mechanism of CZA heteroresistance in CRKP strains was investigated by molecular sequencing, whole genome sequencing (WGS), quantitative real-time PCR (qRT-PCR), and in vitro functional experiments. Strategies for preventing the emergence of CZA heteroresistance and alternative treatment options for strains exhibiting CZA heteroresistance were further explored. Thirty-four (12.4%) CZA-susceptible CRKP isolates were found to exhibit heteroresistance to CZA. All heteroresistant strains belonged to KPC-2 (97.1%) or KPC-3 (2.9%). The dominant multilocus sequence typing (MLST) was ST11 (64.7%) and the prevalent capsular serotypes were KL47 (38.2%) and KL64 (32.4%). Imipenem-relebactam and meropenem-vaborbactam still exhibited excellent antimicrobial activity against the resistant subpopulations of CZA heteroresistant strains. No significant mutations were found in KPC, OmpK35/36, PBP2/3, and LamB in resistant subpopulations. The relative expression and copy number of bla KPC were significantly upregulated in 47.1% and 35.3% of the resistant subpopulations compared with their parental strains, respectively. Silencing bla KPC expression significantly decreased the CZA MIC in resistant subpopulations with high bla KPC expression and hindered the emergence of CZA heteroresistance in their parental strains. Moreover, increasing the avibactam concentration to 8 or 16 mg/L or combining CZA with 0.5 × MIC tigecycline significantly suppressed the formation of CZA heteroresistance (P<0.05). In conclusion, we identified the occurrence of CZA heteroresistance in CRKP in China, which was attributed to the overexpression of KPC. Increasing the concentration of avibactam or combining CZA with tigecycline could effectively prevent the development of CZA heteroresistance in CRKP isolates. Besides, imipenem-relebactam and meropenem-vaborbactam may serve as alternative therapeutic options when clinical isolates with CZA heteroresistance are detected.
Collapse
Affiliation(s)
- Yitan Li
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Xiandi Chen
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Yingyi Guo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingzhuo Lin
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Xiaohu Wang
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Guohua He
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Mingzhen Wang
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Jianbo Xu
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Mingdong Song
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Xixi Tan
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Chao Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiwei Lin
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| |
Collapse
|
2
|
Venuti F, Romani L, De Luca M, Tripiciano C, Palma P, Chiriaco M, Finocchi A, Lancella L. Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review. Microorganisms 2023; 11:1798. [PMID: 37512970 PMCID: PMC10385558 DOI: 10.3390/microorganisms11071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Infections due to carbapenem-resistant Enterobacterales (CRE) are increasingly prevalent in children and are associated with poor clinical outcomes, especially in critically ill patients. Novel beta lactam antibiotics, including ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, and cefiderocol, have been released in recent years to face the emerging challenge of multidrug-resistant (MDR) Gram-negative bacteria. Nonetheless, several novel agents lack pediatric indications approved by the Food and Drug Administration (FDA) and the European Medicine Agency (EMA), leading to uncertain pediatric-specific treatment strategies and uncertain dosing regimens in the pediatric population. In this narrative review we have summarized the available clinical and pharmacological data, current limitations and future prospects of novel beta lactam antibiotics in the pediatric population.
Collapse
Affiliation(s)
- Francesco Venuti
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy
| | - Lorenza Romani
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Maia De Luca
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Costanza Tripiciano
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Paolo Palma
- Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Chiriaco
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Laura Lancella
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
3
|
Franzese RC, McFadyen L, Watson KJ, Riccobene T, Carrothers TJ, Vourvahis M, Chan PL, Raber S, Bradley JS, Lovern M. Population Pharmacokinetic Modeling and Probability of Pharmacodynamic Target Attainment for Ceftazidime-Avibactam in Pediatric Patients Aged 3 Months and Older. Clin Pharmacol Ther 2022; 111:635-645. [PMID: 34687548 PMCID: PMC9298731 DOI: 10.1002/cpt.2460] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022]
Abstract
Increasing prevalence of infections caused by antimicrobial-resistant gram-negative bacteria represents a global health crisis, and while several novel therapies that target various aspects of antimicrobial resistance have been introduced in recent years, few are currently approved for children. Ceftazidime-avibactam is a novel β-lactam β-lactamase inhibitor combination approved for adults and children 3 months and older with complicated intra-abdominal infection, and complicated urinary tract infection or hospital-acquired ventilator-associated pneumonia (adults only in the United States) caused by susceptible gram-negative bacteria. Extensive population pharmacokinetic (PK) data sets for ceftazidime and avibactam obtained during the adult clinical development program were used to iteratively select, modify, and validate the approved adult dosage regimen (2,000-500 mg by 2-hour intravenous (IV) infusion every 8 hours (q8h), with adjustments for renal function). Following the completion of one phase I (NCT01893346) and two phase II ceftazidime-avibactam studies (NCT02475733 and NCT02497781) in children, adult PK data sets were updated with pediatric PK data. This paper describes the development of updated combined adult and pediatric population PK models and their application in characterizing the population PK of ceftazidime and avibactam in children, and in dose selection for further pediatric evaluation. The updated models supported the approval of ceftazidime-avibactam pediatric dosage regimens (all by 2-hour IV infusion) of 50-12.5 mg/kg (maximum 2,000-500 mg) q8h for those ≥6 months to 18 years old, and 40-10 mg/kg q8h for those ≥3 to 6 months old with creatinine clearance > 50 mL/min/1.73 m2 .
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John S. Bradley
- Rady Children’s Hospital/University of California San Diego School of MedicineSan DiegoCaliforniaUSA
| | - Mark Lovern
- Certara Strategic ConsultingRaleighNorth CarolinaUSA
| |
Collapse
|
4
|
Zalas-Więcek P, Prażyńska M, Pojnar Ł, Pałka A, Żabicka D, Orczykowska-Kotyna M, Polak A, Możejko-Pastewka B, Głowacka EA, Pieniążek I, Pawlik M, Grys M, Bogiel M. Ceftazidime/Avibactam and Other Commonly Used Antibiotics Activity Against Enterobacterales and Pseudomonas aeruginosa Isolated in Poland in 2015–2019. Infect Drug Resist 2022; 15:1289-1304. [PMID: 35370409 PMCID: PMC8965333 DOI: 10.2147/idr.s344165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/19/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Infections caused by resistant Gram-negative bacteria are becoming increasingly common and now pose a serious public health threat worldwide, because they are difficult to treat due to few treatment options and they are associated with high morbidity and mortality. The combination of ceftazidime with the beta-lactamase inhibitor avibactam – seems to be the right choice in this situation. The aim of the study was to evaluate the activity of ceftazidime/avibactam and other commonly used antibiotics against Enterobacterales and Pseudomonas aeruginosa strains isolated within last years in Poland. Patients and Methods This study analyzed the antibiotic susceptibility of 1607 Enterobacterales isolates and 543 nonfermenting P. aeruginosa strains collected between 2015 and 2019 in 4 medical laboratories participating in the ATLAS (Antimicrobial Testing Leadership And Surveillance) program in Poland. Unduplicated clinically significant Enterobacterales and P. aeruginosa strains were collected from patients with respiratory, skin and musculoskeletal, genitourinary, abdominal, bloodstream or other infections (ear, eye). Results The ceftazidime/avibactam combination demonstrates the highest activity against Enterobacterales (98.9%), in both adults and children, including strains presenting MDR (multidrug-resistant) (97.5%) and ESBL (extended spectrum β-lactamase) (96.3%) phenotypes. The activity of ceftazidime/avibactam increased to 100% when only MBL (metallo-β-lactamase)-negative subset of Enterobacterales was considered. This combination also achieved the second highest activity result (89.3%) after colistin in P. aeruginosa, including isolates of MDR (65.9%) and carbapenem-resistant (CR) phenotypes (54.8%). When MBL-positive isolates were excluded, susceptibility rate of P. aeruginosa increased to 94.7%. It is worth to note that susceptibility of the examined P. aeruginosa strains to ceftazidime/avibactam was very high in children (93.3%), especially in a pediatric intensive care unit (94.2%). Conclusion Enterobacterales and P. aeruginosa included in this analysis presented high susceptibility rates to ceftazidime/avibactam. Ceftazidime/avibactam showed the highest activity against Enterobacterales strains among all antibiotics studied, both for the total population as well as for MDR phenotype and ESBL phenotype. Ceftazidime/avibactam also achieved the second highest activity result against P. aeruginosa strains (including MDR and CR phenotypes). These results are much higher when excluding MBL-positive isolates that exhibit intrinsic resistance to ceftazidime/avibactam.
Collapse
Affiliation(s)
- Patrycja Zalas-Więcek
- Department of Microbiology, Ludwik Rydygier Collegium Medicum; Department of Clinical Microbiology, University Hospital No. 1, Bydgoszcz, Poland
| | - Małgorzata Prażyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum; Department of Clinical Microbiology, University Hospital No. 1, Bydgoszcz, Poland
| | - Łukasz Pojnar
- Department of Microbiology, University Hospital, Cracow, Poland
| | - Anna Pałka
- Department of Microbiology, University Hospital, Cracow, Poland
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | | | - Aleksandra Polak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | | | | | | | | | - Maciej Grys
- Arcana Institute, a Certara Company, Cracow, Poland
| | - Monika Bogiel
- Pfizer Polska Sp. z o.o., Warsaw, Poland
- Correspondence: Monika Bogiel, Pfizer Polska sp. z o.o., Żwirki i Wigury 16B, Warszawa, 02-092, Poland, Tel +48 885557081, Fax +48 223356111, Email
| |
Collapse
|
5
|
Contemporary Treatment of Resistant Gram-Negative Infections in Pediatric Patients. Infect Dis Clin North Am 2022; 36:147-171. [DOI: 10.1016/j.idc.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Chen F, Zhong H, Yang T, Shen C, Deng Y, Han L, Chen X, Zhang H, Qian Y. Ceftazidime-Avibactam as Salvage Treatment for Infections Due to Carbapenem-Resistant Klebsiella pneumoniae in Liver Transplantation Recipients. Infect Drug Resist 2022; 14:5603-5612. [PMID: 34992387 PMCID: PMC8710070 DOI: 10.2147/idr.s342163] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ceftazidime-avibactam (CZA) has been approved in vitro activity against carbapenem-resistant K. pneumoniae (CRKP), but the experience for the treatment of CRKP in liver transplantation (LT) recipients was limited, and previous data on its efficacy in this setting are lacking. Methods LT recipients with CRKP infection who received CZA treatment were reviewed retrospectively, microbiological and clinical response, adverse events were also assessed. The primary outcome was 30-day mortality after CZA administration. Results CZA was used in 21 LT recipients (including 4 pediatric patients) with CRKP infections after failure with other antimicrobials. CZA was administered as monotherapy in 4 patients. Median time from the onset of CRKP infection until the initiation of CZA treatment was 2 days (IQR, 1–6.5), and the median treatment duration was 12 days (IQR, 8.5–18.5). The mortality at 14 days, 30 days and all-cause was 28.6%, 38.1% and 42.9%, respectively. In adult patients, clinical response of 14 days and 30 days was 70.6% (12/17) and 58.8% (10/17), respectively, while in pediatric patients the 14-day and 30-day clinical response were both 75%, respectively. The relapse rate during the treatment developed in 3 patients after 30 days with the cessation of CZA monotherapy. CZA resistance was not detected in any case and 3 (3/21, 14.3%) patients developed acute kidney injury related to uncontrolled infection. Conclusion CZA shows promising results, even in monotherapy, for the treatment of patients with severe infections due to carbapenem-resistant K. pneumoniae among LT recipients. The emergence of resistance to CZA was not observed.
Collapse
Affiliation(s)
- Fang Chen
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Han Zhong
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tengjiao Yang
- Department of Pharmacy, The Third People's Hospital of Henan Province, Zhengzhou, People's Republic of China
| | - Chuan Shen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Longzhi Han
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Haomin Zhang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yongbing Qian
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Moreira NK, Caierão J. Ceftazidime-avibactam: are we safe from class A carbapenemase producers' infections? Folia Microbiol (Praha) 2021; 66:879-896. [PMID: 34505209 DOI: 10.1007/s12223-021-00918-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 01/14/2023]
Abstract
Recently, new combinations of β-lactams and β-lactamase inhibitors became available, including ceftazidime-avibactam, and increased the ability to treat infections caused by carbapenem-resistant Enterobacterales (CRE). Despite the reduced time of clinical use, isolates expressing resistance to ceftazidime-avibactam have been reported, even during treatment or in patients with no previous contact with this drug. Here, we detailed review data on global ceftazidime-avibactam susceptibility, the mechanisms involved in resistance, and the molecular epidemiology of resistant isolates. Ceftazidime-avibactam susceptibility remains high (≥ 98.4%) among Enterobacterales worldwide, being lower among extended-spectrum β-lactamase (ESBL) producers and CRE. Alterations in class A β-lactamases are the major mechanism involved in ceftazidime-avibactam resistance, and mutations are mainly, but not exclusively, located in the Ω loop of these enzymes. Modifications in Klebsiella pneumoniae carbapenemase (KPC) 3 and KPC-2 have been observed by many authors, generating variants with different mutations, insertions, and/or deletions. Among these, the most commonly described is Asp179Tyr, both in KPC-3 (KPC-31 variant) and in KPC-2 (KPC-33 variant). Changes in membrane permeability and overexpression of efflux systems may also be associated with ceftazidime-avibactam resistance. Although several clones have been reported, ST258 with Asp179Tyr deserves special attention. Surveillance studies and rationale use are essential to retaining the activity of this and other antimicrobials against class A CRE.
Collapse
Affiliation(s)
- Natália Kehl Moreira
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil.
| | - Juliana Caierão
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil
| |
Collapse
|
8
|
Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin Microbiol Rev 2020; 34:e00115-20. [PMID: 33177185 PMCID: PMC7667665 DOI: 10.1128/cmr.00115-20] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel β-lactam-β-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum β-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D β-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-β-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales, with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).
Collapse
Affiliation(s)
- Dafna Yahav
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Christian G Giske
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Alise Grāmatniece
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Pauls Stradins University Hospital, University of Latvia, Riga, Latvia
| | - Henrietta Abodakpi
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Leonard Leibovici
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
- Medicine E, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| |
Collapse
|
9
|
Wang Y, Wang J, Wang R, Cai Y. Resistance to ceftazidime–avibactam and underlying mechanisms. J Glob Antimicrob Resist 2020; 22:18-27. [DOI: 10.1016/j.jgar.2019.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023] Open
|
10
|
Carbapenem-Resistant Gram-Negative Bacterial Infections in Children. Antimicrob Agents Chemother 2020; 64:AAC.02183-19. [PMID: 31844014 DOI: 10.1128/aac.02183-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Carbapenem-resistant organisms (CRO) are a major global public health threat. Enterobacterales hydrolyze almost all β-lactams through carbapenemase production. Infections caused by CRO are challenging to treat due to the limited number of antimicrobial options. This leads to significant morbidity and mortality. Over the last few years, several new antibiotics effective against CRO have been approved. Some of them (e.g., plazomicin or imipenem-cilastatin-relebactam) are currently approved for use only by adults; others (e.g., ceftazidime-avibactam) have recently been approved for use by children. Recommendations for antibiotic therapy of CRO infections in pediatric patients are based on evidence mainly from adult studies. The availability of pediatric pharmacokinetic and safety data is the cornerstone to broaden the use of proposed agents in adults to the pediatric population. This article provides a comprehensive review of the current knowledge regarding infections caused by CRO with a focus on children, which includes epidemiology, risk factors, outcomes, and antimicrobial therapy management, with particular attention being given to new antibiotics.
Collapse
|
11
|
Successful treatment of KPC-MDR septic shock with ceftazidime-avibactam in a pediatric critically ill patient. IDCases 2019; 18:e00634. [PMID: 31538046 PMCID: PMC6745432 DOI: 10.1016/j.idcr.2019.e00634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 09/04/2019] [Indexed: 11/22/2022] Open
Abstract
Ceftazidime–avibactam is a combination agent consisting of the β-lactamase inhibitor avibactam and the broad-spectrum cephalosporin ceftazidime. There are no published case reports or studies evaluating the use of CAZ-AVI in pediatric critically ill patients. We report a case of a successful treatment of septic shock due to Klebsiella pneumonie (KP) in a 14-years-old boy (body weight 50 kg) admitted in intensive care unit (ICU).
Collapse
|
12
|
Safety and Efficacy of Ceftazidime-Avibactam Plus Metronidazole in the Treatment of Children ≥3 Months to <18 Years With Complicated Intra-Abdominal Infection: Results From a Phase 2, Randomized, Controlled Trial. Pediatr Infect Dis J 2019; 38:816-824. [PMID: 31306396 DOI: 10.1097/inf.0000000000002392] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ceftazidime-avibactam plus metronidazole is effective in the treatment of complicated intra-abdominal infection (cIAI) in adults. This single-blind, randomized, multicenter, phase 2 study (NCT02475733) evaluated the safety, efficacy and pharmacokinetics of ceftazidime-avibactam plus metronidazole in children with cIAI. METHODS Hospitalized children (≥3 months to <18 years) with cIAI were randomized 3:1 to receive intravenous ceftazidime-avibactam plus metronidazole, or meropenem, for a minimum of 72 hours (9 doses), with optional switch to oral therapy thereafter for a total treatment duration of 7-15 days. Safety and tolerability were assessed throughout the study, along with clinical and microbiologic outcomes, and pharmacokinetics. A blinded observer determined adverse event (AE) causality, and clinical outcomes up to the late follow-up visit. RESULTS Eighty-three children were randomized and received study drug (61 ceftazidime-avibactam plus metronidazole and 22 meropenem); most (90.4%) had a diagnosis of appendicitis. Predominant Gram-negative baseline pathogens were Escherichia coli (79.7%) and Pseudomonas aeruginosa (33.3%); 2 E. coli isolates were ceftazidime-non-susceptible. AEs occurred in 52.5% and 59.1% of patients in the ceftazidime-avibactam plus metronidazole and meropenem groups, respectively. Serious AEs occurred in 8.2% and 4.5% of patients, respectively; none was considered drug related. No deaths occurred. Favorable clinical/microbiologic responses were observed in ≥90% of patients in both treatment groups at end-of-intravenous treatment and test-of-cure visits. CONCLUSIONS Ceftazidime-avibactam plus metronidazole was well tolerated, with a safety profile similar to ceftazidime alone, and appeared effective in pediatric patients with cIAI due to Gram-negative pathogens, including ceftazidime-non-susceptible strains.
Collapse
|
13
|
Activity of ceftolozane-tazobactam and comparators when tested against Gram-negative isolates collected from paediatric patients in the USA and Europe between 2012 and 2016 as part of a global surveillance programme. Int J Antimicrob Agents 2019; 53:637-643. [DOI: 10.1016/j.ijantimicag.2019.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/15/2019] [Accepted: 01/27/2019] [Indexed: 02/05/2023]
|
14
|
Abstract
PURPOSE OF REVIEW Rising rates of multidrug-resistant organisms has necessitated the development of novel antimicrobials. In this review, we will highlight agents that have recently received licensure and those that are in clinical development. RECENT FINDINGS In recent years, development of novel antimicrobial agents has accelerated. Although most studies have targeted the adult population, studies in pediatric patients are underway. Adequately powered clinical trials are needed to establish the safety and role of these new drugs. SUMMARY The recent development of novel antimicrobials to combat multidrug-resistant organisms is encouraging; however, more studies in the pediatric population are needed.
Collapse
|