1
|
Hancock DG, Kicic-Starcevich E, Sondag T, Rivers R, McGee K, Karpievitch YV, D’Vaz N, Agudelo-Romero P, Caparros-Martin JA, Iosifidis T, Kicic A, Stick SM. Real time monitoring of respiratory viral infections in cohort studies using a smartphone app. iScience 2024; 27:110912. [PMID: 39346675 PMCID: PMC11439530 DOI: 10.1016/j.isci.2024.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Cohort studies investigating respiratory disease pathogenesis aim to pair mechanistic investigations with longitudinal virus detection but are limited by the burden of methods tracking illness over time. In this study, we explored the utility of a purpose-built AERIAL TempTracker smartphone app to assess real-time data collection and adherence monitoring and overall burden to participants, while identifying symptomatic respiratory illnesses in two birth cohort studies. We observed strong adherence with daily app usage over the six-month study period, with positive feedback from participant families. A total of 648 symptomatic respiratory illness events were identified with significant variability between individuals in the frequency, duration, and virus detected. Collectively, our data show that a smartphone app provides a reliable method to capture the longitudinal virus data in cohort studies which facilitates the understanding of early life infections in chronic respiratory disease development.
Collapse
Affiliation(s)
- David G. Hancock
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands WA 6009, Australia
| | | | - Thijs Sondag
- WeGuide, The Royal Children’s Hospital, Parkville VIC 3052, Australia
| | - Rael Rivers
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands WA 6009, Australia
| | - Kate McGee
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands WA 6009, Australia
| | - Yuliya V. Karpievitch
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands WA 6009, Australia
| | - Nina D’Vaz
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands WA 6009, Australia
| | - Patricia Agudelo-Romero
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands WA 6009, Australia
- European Virus Bioinformatics Centre, Jena, Thuringia, Germany
| | | | - Thomas Iosifidis
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands WA 6009, Australia
- School of Population Health, Curtin University, Bentley WA 6102, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands WA 6009, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands WA 6009, Australia
- School of Population Health, Curtin University, Bentley WA 6102, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands WA 6009, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands WA 6009, Australia
| |
Collapse
|
2
|
Coenen I, de Jong E, Jones AC, Khoo SK, Foo S, Howland SW, Ginhoux F, Le Souëf PN, Holt PG, Strickland DH, Laing IA, Leffler J. Impaired interferon response in plasmacytoid dendritic cells from children with persistent wheeze. J Allergy Clin Immunol 2024; 153:1083-1094. [PMID: 38110059 DOI: 10.1016/j.jaci.2023.11.920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Impaired interferon response and allergic sensitization may contribute to virus-induced wheeze and asthma development in young children. Plasmacytoid dendritic cells (pDCs) play a key role in antiviral immunity as critical producers of type I interferons. pDCs also express the high-affinity IgE receptor through which type I interferon production may be negatively regulated. Whether antiviral function of pDCs is associated with recurrent episodes of wheeze in young children is not well understood. OBJECTIVE We sought to evaluate the phenotype and function of circulating pDCs in children with a longitudinally defined wheezing phenotype. METHODS We performed multiparameter flow cytometry on PBMCs from 38 children presenting to the emergency department with an acute episode of respiratory wheeze and 19 controls. RNA sequencing on isolated pDCs from the same individuals was also performed. For each subject, their longitudinal exacerbation phenotype was determined using the Western Australia public hospital database. RESULTS We observed a significant depletion of circulating pDCs in young children with a persistent phenotype of wheeze. The same individuals also displayed upregulation of the FcεRI on their pDCs. Based on transcriptomic analysis, pDCs from these individuals did not mount a robust systemic antiviral response as observed in children who displayed a nonrecurrent wheezing phenotype. CONCLUSIONS Our data suggest that circulating pDC phenotype and function are altered in young children with a persistent longitudinal exacerbation phenotype. Expression of high-affinity IgE receptor is increased and their function as major interferon producers is impaired during acute exacerbations of wheeze.
Collapse
Affiliation(s)
- Isabelle Coenen
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Emma de Jong
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Anya C Jones
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia; School of Medicine, University of Western Australia, Perth, Australia
| | - Siew-Kim Khoo
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Shihui Foo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Peter N Le Souëf
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia; School of Medicine, University of Western Australia, Perth, Australia
| | - Patrick G Holt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Deborah H Strickland
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Ingrid A Laing
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia; School of Medicine, University of Western Australia, Perth, Australia
| | - Jonatan Leffler
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia.
| |
Collapse
|
3
|
Lingani M, Cissé A, Ilboudo AK, Yaméogo I, Tarnagada Z. Patterns of Non-influenza Respiratory Viruses Among Severe Acute Respiratory Infection Cases in Burkina Faso: A Surveillance Study. Influenza Other Respir Viruses 2024; 18:e13271. [PMID: 38501305 PMCID: PMC10949177 DOI: 10.1111/irv.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Although influenza viruses cause only one-fifth of severe acute respiratory infections (SARI) in Burkina Faso, the other viral causes of SARI remain poorly investigated to inform clinical and preventive decision making. METHODS Between 2016 and 2019, we prospectively enrolled inpatients meeting the World Health Organization (WHO) case definition of SARI in Burkina Faso. Results of viral etiologies among inpatients tested negative for influenza using the Fast Track Diagnostics Respiratory Kits (FTD-33) were reported. RESULTS Of 1541 specimens tested, at least one respiratory virus was detected in 76.1% of the 1231 specimens negative for influenza virus. Human rhinoviruses (hRVs) were the most detected pathogens (476; 38.7%), followed by human adenoviruses (hAdV) (17.1%, 210/1231), human respiratory syncytial virus (hRSV) (15.4%, 189/1231), enterovirus (EnV) (11.2%, 138/1231), human bocavirus (hBoV) (7.9%, 97/1231), parainfluenza 3 (hPIV3) (6.1%, 75/1231), human metapneumovirus (hMPV) (6.0%,74/1321), parainfluenza 4 (hPIV4) (4.1%, 51/1231), human coronavirus OC43 (hCoV-OC43) (3.4%, 42/1231), human coronavirus HKU1(hCoV-HKU1) (2.7%, 33/1231), human coronavirus NL63 (hCoV-NL63) (2.5%, 31/1231), parainfluenza 1 (hPIV1) (2.0%, 25/1231), parainfluenza 2 (hPIV2) (1.8%, 22/1231), human parechovirus (PeV) (1.1%, 14/1231), and human coronavirus 229E (hCoV-229E) (0.9%, 11/1231). Among SARI cases, infants aged 1-4 years were mostly affected (50.7%; 622/1231), followed by those <1 year of age (35.7%; 438/1231). Most detected pathogens had year-long circulation patterns, with seasonal peaks mainly observed during the cold and dry seasons. CONCLUSION Several non-influenza viruses are cause of SARI in Burkina Faso. The integration of the most common pathogens into the routine influenza surveillance system might be beneficial.
Collapse
Affiliation(s)
- Moussa Lingani
- Laboratoire National de Référence‐GrippesInstitut de Recherche en Sciences de la Santé (LNRG‐IRSS)OuagadougouBurkina Faso
- Unité de Recherche Clinique de NanoroInstitut de Recherche en Sciences de la Santé (IRSS‐URCN)NanoroBurkina Faso
| | - Assana Cissé
- Laboratoire National de Référence‐GrippesInstitut de Recherche en Sciences de la Santé (LNRG‐IRSS)OuagadougouBurkina Faso
- One Health Association Burkina FasoOuagadougouBurkina Faso
| | - Abdoul Kader Ilboudo
- Laboratoire National de Référence‐GrippesInstitut de Recherche en Sciences de la Santé (LNRG‐IRSS)OuagadougouBurkina Faso
- One Health Association Burkina FasoOuagadougouBurkina Faso
| | - Issaka Yaméogo
- One Health Association Burkina FasoOuagadougouBurkina Faso
- Service de surveillance épidémiologiqueMinistère de la santé et de l'Hygiène publiqueOuagadougouBurkina Faso
| | - Zekiba Tarnagada
- Laboratoire National de Référence‐GrippesInstitut de Recherche en Sciences de la Santé (LNRG‐IRSS)OuagadougouBurkina Faso
- One Health Association Burkina FasoOuagadougouBurkina Faso
| |
Collapse
|
4
|
McEvoy CT, Le Souef PN, Martinez FD. The Role of Lung Function in Determining Which Children Develop Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:677-683. [PMID: 36706985 PMCID: PMC10329781 DOI: 10.1016/j.jaip.2023.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Longitudinal studies have demonstrated that altered indices of airway function, assessed shortly after birth, are a risk factor for the subsequent development of wheezing illnesses and asthma, and that these indices predict airway size and airway wall thickness in adult life. Pre- and postnatal factors that directly alter early airway function, such as extreme prematurity and cigarette smoke, may continue to affect airway function and, hence, the risks for wheeze and asthma. Early airway function and an associated asthma risk may also be indirectly influenced by immune system responses, respiratory viruses, the airway microbiome, genetics, and epigenetics, especially if they affect airway epithelial dysfunction. Few if any interventions, apart from smoking avoidance, have been proven to alter the risks of developing asthma, but vitamin C supplementation to pregnant smokers may help decrease the effects of in utero smoke on offspring lung function. We conclude that airway size and the factors influencing this play an important role in determining the risk for asthma across the lifetime. Progress in asthma prevention is long overdue and this may benefit from carefully designed interventions in well-phenotyped longitudinal birth cohorts with early airway function assessments monitored through to adulthood.
Collapse
Affiliation(s)
- Cindy T McEvoy
- Department of Pediatrics, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, Ore.
| | - Peter N Le Souef
- Department of Pediatrics, School of Medical School, University of Western Australia, Crawley, Western Australia, Australia; Department of Respiratory Medicine, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center and Department of Pediatrics, University of Arizona, Tucson, Ariz
| |
Collapse
|
5
|
IFN-γ Attenuates Eosinophilic Inflammation but Is Not Essential for Protection against RSV-Enhanced Asthmatic Comorbidity in Adult Mice. Viruses 2022; 14:v14010147. [PMID: 35062354 PMCID: PMC8778557 DOI: 10.3390/v14010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022] Open
Abstract
The susceptibility to respiratory syncytial virus (RSV) infection in early life has been associated with a deficient T-helper cell type 1 (Th1) response. Conversely, healthy adults generally do not exhibit severe illness from RSV infection. In the current study, we investigated whether Th1 cytokine IFN-γ is essential for protection against RSV and RSV-associated comorbidities in adult mice. We found that, distinct from influenza virus, prior RSV infection does not induce significant IFN-γ production and susceptibility to secondary Streptococcus pneumoniae infection in adult wild-type (WT) mice. In ovalbumin (OVA)-induced asthmatic mice, RSV super-infection increases airway neutrophil recruitment and inflammatory lung damage but has no significant effect on OVA-induced eosinophilia. Compared with WT controls, RSV infection of asthmatic Ifng−/− mice results in increased airway eosinophil accumulation. However, a comparable increase in eosinophilia was detected in house dust mite (HDM)-induced asthmatic Ifng−/− mice in the absence of RSV infection. Furthermore, neither WT nor Ifng−/− mice exhibit apparent eosinophil infiltration during RSV infection alone. Together, these findings indicate that, despite its critical role in limiting eosinophilic inflammation during asthma, IFN-γ is not essential for protection against RSV-induced exacerbation of asthmatic inflammation in adult mice.
Collapse
|
6
|
Coleman LA, Khoo SK, Franks K, Prastanti F, Le Souëf P, Karpievitch YV, Laing IA, Bosco A. Personal Network Inference Unveils Heterogeneous Immune Response Patterns to Viral Infection in Children with Acute Wheezing. J Pers Med 2021; 11:1293. [PMID: 34945765 PMCID: PMC8706513 DOI: 10.3390/jpm11121293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
Human rhinovirus (RV)-induced exacerbations of asthma and wheeze are a major cause of emergency room presentations and hospital admissions among children. Previous studies have shown that immune response patterns during these exacerbations are heterogeneous and are characterized by the presence or absence of robust interferon responses. Molecular phenotypes of asthma are usually identified by cluster analysis of gene expression levels. This approach however is limited, since genes do not exist in isolation, but rather work together in networks. Here, we employed personal network inference to characterize exacerbation response patterns and unveil molecular phenotypes based on variations in network structure. We found that personal gene network patterns were dominated by two major network structures, consisting of interferon-response versus FCER1G-associated networks. Cluster analysis of these structures divided children into subgroups, differing in the prevalence of atopy but not RV species. These network structures were also observed in an independent cohort of children with virus-induced asthma exacerbations sampled over a time course, where we showed that the FCER1G-associated networks were mainly observed at late time points (days four-six) during the acute illness. The ratio of interferon- and FCER1G-associated gene network responses was able to predict recurrence, with low interferon being associated with increased risk of readmission. These findings demonstrate the applicability of personal network inference for biomarker discovery and therapeutic target identification in the context of acute asthma which focuses on variations in network structure.
Collapse
Affiliation(s)
- Laura A. Coleman
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| | - Siew-Kim Khoo
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Kimberley Franks
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Franciska Prastanti
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Peter Le Souëf
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| | - Yuliya V. Karpievitch
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Ingrid A. Laing
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| |
Collapse
|