1
|
Xu Y, Liu X, Guan J, Chen J, Xu X. iTRAQ-Based Proteomic Profiling of Skin Aging Protective Effects of Tremella fuciformis-Derived Polysaccharides on D-Galactose-Induced Aging Mice. Molecules 2024; 29:5191. [PMID: 39519833 PMCID: PMC11547511 DOI: 10.3390/molecules29215191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
In the present study, a heteromannan primarily composed of mannose, fucose, xylose, glucose, and arabinose at a molar ratio of 4.78:1.18:1:0.82:0.11 containing a low proportion of glucuronic acid with weight-average molecular weights of 3.6 × 106 Da, named NTP, was prepared from the fruiting body of Tremella fuciformis. The anti-skin-aging effects of NTP on d-Galactose-induced aging mice and the biological mechanisms were investigated by an iTRAQ-based proteomics approach. NTP substantially mitigated skin aging characterized by a decreased loss of hydroxyproline and hyaluronic acid and reduced oxidative stress in the skin. Moreover, 43 differentially expressed proteins (DEPs) were identified in response to NTP, of which 23 were up-regulated and 20 were down-regulated. Bioinformatics analysis revealed that these DEPs were mainly involved in the biological functions of cellular and metabolic regulations, immune system responses, and structural components. The findings provided new insights into the biological mechanisms underlying the anti-skin-aging actions of T. fuciformis-derived polysaccharides and facilitated NTP applications in naturally functional foods.
Collapse
Affiliation(s)
- Yuanyuan Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xiaofei Liu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
- Yangjiang Institute of Guangdong Ocean University, Yangjiang 529500, China
| |
Collapse
|
2
|
Jain A, Meshram RJ, Lohiya S, Patel A, Kaplish D. Exploring the Microbial Landscape of Neonatal Skin Flora: A Comprehensive Review. Cureus 2024; 16:e52972. [PMID: 38406113 PMCID: PMC10894447 DOI: 10.7759/cureus.52972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
This comprehensive review explores the intricate landscape of the neonatal skin microbiome, shedding light on its dynamic composition, developmental nuances, and influential factors. The neonatal period represents a critical window during which microbial colonization significantly impacts local skin health and the foundational development of the immune system. Factors such as mode of delivery and gestational age underscore the vulnerability of neonates to disruptions in microbial establishment. Key findings emphasize the broader systemic implications of the neonatal skin microbiome, extending beyond immediate health outcomes to influence susceptibility to infections, allergies, and immune-related disorders. This review advocates for a paradigm shift in neonatal care, proposing strategies to preserve and promote a healthy skin microbiome for long-term health benefits. The implications of this research extend to public health, where interventions targeting the neonatal skin microbiome could potentially mitigate diseases originating in early life. As we navigate the intersection of research and practical applications, bridging the gap between knowledge and implementation becomes imperative for translating these findings into evidence-based practices and improving neonatal well-being on a broader scale.
Collapse
Affiliation(s)
- Aditya Jain
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Revat J Meshram
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sham Lohiya
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ankita Patel
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Divyanshi Kaplish
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Li XZ, Chiang CF, Lin YH, Chen TM, Wang CH, Tzeng YS, Cui HY. Safety and efficacy of hyaluronic acid injectable filler in the treatment of nasolabial fold wrinkle: a randomized, double-blind, self-controlled clinical trial. J DERMATOL TREAT 2023; 34:2190829. [PMID: 37694979 DOI: 10.1080/09546634.2023.2190829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION The injectable skin fillers available for soft tissue augmentation are constantly growing, providing esthetic surgeons with more options in the treatment of scars, lines, and wrinkles. Hyaluronic acid (HA)-derived injectable fillers are ideal to reduce the appearance of nasolabial folding. This study investigated the efficacy and safety of the commercially available HA filler from Maxigen Biotech Inc. (MBI-FD) in the treatment of nasolabial folds (NLFs). METHODS We analyzed 1,4-butanediol diglycidyl ether (BDDE) residues and injection force test and observed the protein content in MBI-FD, and then was cultured in fibroblast L929 cells and examined for cytotoxicity. Finally, 95 healthy participants underwent dermal filler injection therapy to evaluate the efficacy and safety for 24 and 52 weeks, respectively. RESULTS BDDE residues in MBI-FD was <0.125 µg/mL. MBI-FD was fitted using 27- and 30-G injection needles with an average pushing force of 14.30 ± 2.07 and 36.43 ± 3.11 N, respectively. Sodium hyaluronate protein in MBI-FD was 7.19 µg/g. The cell viabilities of 1× and 0.5× MBI-FD were 83.25% ± 3.58% and 82.23% ± 1.85%, respectively, indicating MBI-FD had no cytotoxicity, and decreased NLF wrinkles with no serious adverse events. CONCLUSION MBI-FD is an effective filler for tissue augmentation of the NLFs and may be a suitable candidate as an injectable dermal filler for tissue augmentation in humans in the future.
Collapse
Affiliation(s)
- Xing-Zhou Li
- Department of Plastic Surgery, Hainan Women and Children's Medical Center, Hainan Province, China
| | - Chi-Fu Chiang
- Research & Design Center, TCI CO., Ltd, Taipei, Taiwan
| | | | - Tim-Mo Chen
- Division of Plastic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hsing Wang
- Division of Plastic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Sheng Tzeng
- Division of Plastic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hai-Yan Cui
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Balavigneswaran CK, Selvaraj S, Vasudha TK, Iniyan S, Muthuvijayan V. Tissue engineered skin substitutes: A comprehensive review of basic design, fabrication using 3D printing, recent advances and challenges. BIOMATERIALS ADVANCES 2023; 153:213570. [PMID: 37540939 DOI: 10.1016/j.bioadv.2023.213570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
The multi-layered skin structure includes the epidermis, dermis and hypodermis, which forms a sophisticated tissue composed of extracellular matrix (ECM). The wound repair is a well-orchestrated process when the skin is injured. However, this natural wound repair will be ineffective for large surface area wounds. Autografts-based treatment is efficient but, additional pain and secondary healing of the patient limits its successful application. Therefore, there is a substantial need for fabricating tissue-engineered skin constructs. The development of a successful skin graft requires a fundamental understanding of the natural skin and its healing process, as well as design criteria for selecting a biopolymer and an appropriate fabrication technique. Further, the fabrication of an appropriate skin graft needs to meet physicochemical, mechanical, and biological properties equivalent to the natural skin. Advanced 3D bioprinting provides spatial control of the placement of functional components, such as biopolymers with living cells, which can satisfy the prerequisites for the preparation of an ideal skin graft. In this view, here we elaborate on the basic design requirements, constraints involved in the fabrication of skin graft and choice of ink, the probable solution by 3D bioprinting technique, as well as their latest advancements, challenges, and prospects.
Collapse
Affiliation(s)
- Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Sowmya Selvaraj
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - T K Vasudha
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Saravanakumar Iniyan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
5
|
Zhang S, Dong J, Pan R, Xu Z, Li M, Zang R. Structures, Properties, and Bioengineering Applications of Alginates and Hyaluronic Acid. Polymers (Basel) 2023; 15:2149. [PMID: 37177293 PMCID: PMC10181120 DOI: 10.3390/polym15092149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, polymeric materials have been used in a wide range of applications in a variety of fields. In particular, in the field of bioengineering, the use of natural biomaterials offers a possible new avenue for the development of products with better biocompatibility, biodegradability, and non-toxicity. This paper reviews the structural and physicochemical properties of alginate and hyaluronic acid, as well as the applications of the modified cross-linked derivatives in tissue engineering and drug delivery. This paper summarizes the application of alginate and hyaluronic acid in bone tissue engineering, wound dressings, and drug carriers. We provide some ideas on how to replace or combine alginate-based composites with hyaluronic-acid-based composites in tissue engineering and drug delivery to achieve better eco-economic value.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.D.)
| | | | | | | | | | | |
Collapse
|
6
|
Ding H, Wang J, Zhou J, Wang C, Lu B. Building electrode skins for ultra-stable potassium metal batteries. Nat Commun 2023; 14:2305. [PMID: 37085541 PMCID: PMC10121571 DOI: 10.1038/s41467-023-38065-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
In nature, the human body is a perfect self-organizing and self-repairing system, with the skin protecting the internal organs and tissues from external damages. In this work, inspired by the human skin, we design a metal electrode skin (MES) to protect the metal interface. MES can increase the flatness of electrode and uniform the electric field distribution, inhibiting the growth of dendrites. In detail, an artificial film made of fluorinated graphene oxide serves as the first protection layer. At molecular level, fluorine is released and in-situ formed a robust SEI as the second protection "skin" for metal anode. As a result, Cu@MES | | K asymmetric cell is able to achieve an unprecedented cycle life (over 1600 cycles). More impressively, the full cell of K@MES | | Prussian blue exhibits a long cycle lifespan over 5000 cycles. This work illustrates a mechanism for metal electrode protection and provides a strategy for the applying bionics in batteries.
Collapse
Affiliation(s)
- Hongbo Ding
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Jue Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiang Zhou
- School of Materials Science and Engineering and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha, 410083, China
| | - Chengxin Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, China.
| | - Bingan Lu
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China.
| |
Collapse
|
7
|
Tamer TM, Kenawy ER, Agwa MM, Sabra SA, El-Meligy MA, Mohy-Eldin MS. Wound dressing membranes based on immobilized Anisaldehyde onto (chitosan-GA-gelatin) copolymer: In-vitro and in-vivo evaluations. Int J Biol Macromol 2022; 211:94-106. [PMID: 35568154 DOI: 10.1016/j.ijbiomac.2022.05.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Herein, wound dressing membranes based on covalently linked Chitosan (Ch) to Gelatin (GE) via Glutaraldehyde (GA) to have (Ch-GA-GE) copolymer have been developed. In addition, Anisaldehyde (An) was immobilized onto Ch-GA-GE to has An-(Ch-GA-GE) membrane. The changes of the Ch-GA-GE membranes wettability, from 26 ± 1.3° to 45.3 ± 2.27° of the An-(Ch-GA-GE) copolymer membrane, indicating the reduction of copolymers hydrophilicity. The thermal characterization was done using TGA and DSC, while the morphological analysis was done using SEM. The antibacterial properties were assessed against four bacterial strains (P. aeruginosa, S. aureus, Streptococcus, and E. coli). In-vitro evaluation of the fabricated membranes to be used as wound dressings was investigated by measuring their hemocompatibility, cytotoxicity, and biodegradability. Finally, the in-vivo assessment of the developed membranes to encourage skin regeneration was assessed utilizing adult Wistar albino rats. The results illustrated that the An-(Ch-GA-GE) copolymer membranes significantly enhanced the rat's full-thickness injuries, as monitored by reducing the wound region. Furthermore, histological analyses of the injuries covered with An-(Ch-GA-GE) membranes demonstrated a notable re-epithelialisation contrasted with wounds treated with the cotton gauze Ch-GA-GE membranes dressings proving the efficiency of Anisaldehyde. Those findings indicate that the An-(Ch-GA-GE) membrane has considerable potential for wound healing and skin regeneration.
Collapse
Affiliation(s)
- T M Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box, 21934 Alexandria, Egypt.
| | - E R Kenawy
- Chemistry Department, Polymer Research Group, Faculty of Science, University of Tanta, Tanta 31527, Egypt
| | - M M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Behooth St, Dokki, Giza 12311, Egypt
| | - S A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - M A El-Meligy
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box, 21934 Alexandria, Egypt; Chemistry Department, Polymer Research Group, Faculty of Science, University of Tanta, Tanta 31527, Egypt
| | - M S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box, 21934 Alexandria, Egypt
| |
Collapse
|
8
|
Salimian J, Salehi Z, Ahmadi A, Emamvirdizadeh A, Davoudi SM, Karimi M, Korani M, Azimzadeh Jamalkandi S. Atopic dermatitis: molecular, cellular, and clinical aspects. Mol Biol Rep 2022; 49:3333-3348. [PMID: 34989960 DOI: 10.1007/s11033-021-07081-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Atopic dermatitis (AD) is a complicated, inflammatory skin disease, which numerous genetic and environmental factors play roles in its development. AD is categorized into different phenotypes and stages, although they are mostly similar in their pathophysiological aspects. Immune response alterations and structural distortions of the skin-barrier layer are evident in AD patients. Genetic makeup, lifestyle, and environment are also significantly involved in contextual factors. Genes involved in AD-susceptibility, including filaggrin and natural moisturizing, cause considerable structural modifications in the skin's lipid bilayer and cornified envelope. Additionally, the skin's decreased integrity and altered structure are accompanied by biochemical changes in the normal skin microflora's dysbiosis. The dynamic immunological responses, genetic susceptibilities, and structural modifications associated with AD's pathophysiology will be extensively discussed in this review, each according to the latest achievements and findings.
Collapse
Affiliation(s)
- Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Masoud Davoudi
- Department of Dermatology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Korani
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int J Biol Macromol 2021; 192:298-322. [PMID: 34634326 DOI: 10.1016/j.ijbiomac.2021.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Today, chronic wound care and management can be regarded as a clinically critical issue. However, the limitations of current approaches for wound healing have encouraged researchers and physicians to develop more efficient alternative approaches. Advances in tissue engineering and regenerative medicine have resulted in the development of promising approaches that can accelerate wound healing and improve the skin regeneration rate and quality. The design and fabrication of scaffolds that can address the multifactorial nature of chronic wound occurrence and provide support for the healing process can be considered an important area requiring improvement. In this regard, polysaccharide-based scaffolds have distinctive properties such as biocompatibility, biodegradability, high water retention capacity and nontoxicity, making them ideal for wound healing applications. Their tunable structure and networked morphology could facilitate a number of functions, such as controlling their diffusion, maintaining wound moisture, absorbing a large amount of exudates and facilitating gas exchange. In this review, the wound healing process and the influential factors, structure and properties of carbohydrate polymers, physical and chemical crosslinking of polysaccharides, scaffold fabrication techniques, and the use of polysaccharide-based scaffolds in skin tissue engineering and wound healing applications are discussed.
Collapse
|
10
|
Henning JA, Liette MD, Laklouk M, Fadel M, Masadeh S. The Role of Dermal Regenerative Templates in Complex Lower Extremity Wounds. Clin Podiatr Med Surg 2020; 37:803-820. [PMID: 32919606 DOI: 10.1016/j.cpm.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dermal regenerative templates (DRTs) provide an option for management of complex lower extremity wounds. DRTs may be used to achieve definitive wound closure by serving as a scaffold for local tissue infiltration. Healing with a DRT interface leads to histologic and structural properties similar to native skin. DRTs can be applied over deep wounds with exposed critical structures that may have required a local or free flap. DRTs are a valuable option for lower extremity limb reconstruction.
Collapse
Affiliation(s)
- Jordan A Henning
- University of Cincinnati Medical Center, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Michael D Liette
- University of Cincinnati Medical Center, 231 Albert Sabin Way, ML 0513, Cincinnati, OH 45276, USA
| | - Mohamed Laklouk
- Faculty of Medicine, Minia University, Doctors Building Minia University Second Floor, 10th Ramadan Street, Minia, Egypt
| | - Mohamed Fadel
- Orthopedic and Trauma Surgery, Minia University Hospital, Minia, Egypt
| | - Suhail Masadeh
- University of Cincinnati Medical Center, Cincinnati Veteran Affairs Medical Center, 231 Albert Sabin Way, ML 0513, Cincinnati, OH 45276, USA.
| |
Collapse
|
11
|
Lv H, Cui S, Yang Q, Song X, Wang D, Hu J, Zhou Y, Liu Y. AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111331. [PMID: 33254963 DOI: 10.1016/j.msec.2020.111331] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022]
Abstract
Silver nanoparticles (AgNPs) have a wide antimicrobial spectrum and low incidence of resistance. They have been widely incorporated into wound dressings for antimicrobial purpose. However, these wound dressings suffer from the accompanied cytotoxicity. It is important but challenging for them to reduce the cytotoxicity without compromising antimicrobial activity, while the affecting factors are unknown. In this work, we incorporated AgNPs into starch nanofiber mats with the in situ reduction method, and investigated the structure and property of the composite nanofiber mats in detail. We found that the cytotoxicity and antibacterial activity of the starch/AgNPs composite nanofiber mats are both affected by the release behavior of silver from the mats, while of various stages and governing factors. The cytotoxicity of the mats depends on the silver release rate at the early stage, which is governed by both the size and content of the AgNPs. The antibacterial activity is more related to the silver release rate at the later stage and is determined mainly by the content of AgNPs. By optimizing the size and content of AgNPs, we found a safe window and obtained starch/AgNPs composite nanofiber mats with good antibacterial activity and excellent cytocompatibility as well. The composite nanofiber mats also showed moderate wet strength (1-2 MPa), high liquid absorption capability (19-34 times of their own weights) and suitable vapor permeability [0.22-0.26 g/(cm2·24 h)]. These starch/AgNPs composite nanofiber mats are ideal candidates for the treatment of infected and exuding wounds.
Collapse
Affiliation(s)
- Huaxin Lv
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Sisi Cui
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qianwen Yang
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Xiaoyu Song
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Duo Wang
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China; National Demonstration Centre for Experimental Physics Education, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China; National Demonstration Centre for Experimental Physics Education, Northeast Normal University, Changchun, Jilin 130024, China.
| |
Collapse
|
12
|
Abstract
Under many circumstances, prophylactic immunizations are considered as the only possible strategy to control infectious diseases. Considerable efforts are typically invested in immunogen selection but, erroneously, the route of administration is not usually a major concern despite the fact that it can strongly influence efficacy. The skin is now considered a key component of the lymphatic system with tremendous potential as a target for vaccination. The purpose of this review is to present the immunological basis of the skin-associated lymphoid tissue, so as to provide understanding of the skin vaccination strategies. Several strategies are currently being developed for the transcutaneous delivery of antigens. The classical, mechanical or chemical disruptions versus the newest approaches based on microneedles for antigen delivery through the skin are discussed herein.
Collapse
|
13
|
Impact of Bacterial Membrane Fatty Acid Composition on the Failure of Daptomycin To Kill Staphylococcus aureus. Antimicrob Agents Chemother 2018; 62:AAC.00023-18. [PMID: 29735564 DOI: 10.1128/aac.00023-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022] Open
Abstract
Daptomycin is a last-resort membrane-targeting lipopeptide approved for the treatment of drug-resistant staphylococcal infections, such as bacteremia and implant-related infections. Although cases of resistance to this antibiotic are rare, increasing numbers of clinical, in vitro, and animal studies report treatment failure, notably against Staphylococcus aureus The aim of this study was to identify the features of daptomycin and its target bacteria that lead to daptomycin treatment failure. We show that daptomycin bactericidal activity against S. aureus varies significantly with the growth state and strain, according to the membrane fatty acid composition. Daptomycin efficacy as an antibiotic relies on its ability to oligomerize within membranes and form pores that subsequently lead to cell death. Our findings ascertain that daptomycin interacts with tolerant bacteria and reaches its membrane target, regardless of its bactericidal activity. However, the final step of pore formation does not occur in cells that are daptomycin tolerant, strongly suggesting that it is incapable of oligomerization. Importantly, membrane fatty acid contents correlated with poor daptomycin bactericidal activity, which could be manipulated by fatty acid addition. In conclusion, daptomycin failure to treat S. aureus is not due to a lack of antibiotic-target interaction, but is driven by its capacity to form pores, which depends on membrane composition. Manipulation of membrane fluidity to restore S. aureus daptomycin bactericidal activity in vivo could open the way to novel antibiotic treatment strategies.
Collapse
|
14
|
Ha SJ, Park J, Lee J, Song KM, Um MY, Cho S, Jung SK. Rice bran supplement prevents UVB-induced skin photoaging in vivo. Biosci Biotechnol Biochem 2018; 82:320-328. [DOI: 10.1080/09168451.2017.1417021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Although rice bran consumption is reportedly has numerous beneficial effects on human health, the relationship between rice bran and the prevention of photoaging has not been investigated in detail. We sought to investigate whether consumption of rice bran supplement (RBS) can elicit preventive effects against UVB-induced photoaging in vivo. Dorsal skin sections of hairless mice were exposed to UVB over 16 weeks. RBS consumption suppressed UVB-induced wrinkle formation and inhibited the loss of water content and epidermal thickening in the mouse skin. Western blot and immunohistochemical analyses revealed that repeated exposure to UVB upregulated matrix metalloproteinase-13 (MMP-13) and cyclooxygenase-2 (COX-2) expression, while consumption of RBS suppressed MMP-13 and COX-2 expression, as well as mitogen-activated protein kinase (MAPK) signaling pathways. These findings suggest that RBS could be a potential bioactive ingredient in nutricosmetics to inhibit wrinkle formation and water content loss via the suppression of COX-2 and MMP-13 expression.
Collapse
Affiliation(s)
- Su Jeong Ha
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
| | - Joon Park
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
- Department of Food Bioscience and Technology, Korea University, Seoul, Republic of Korea
| | - Jangho Lee
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Kyung-Mo Song
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
| | - Min Young Um
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Suengmok Cho
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
| | - Sung Keun Jung
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy. Nat Commun 2014; 5:3796. [PMID: 24823347 PMCID: PMC4071057 DOI: 10.1038/ncomms4796] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 04/02/2014] [Indexed: 01/11/2023] Open
Abstract
The increased manufacture and use of nanomaterials raises concerns about the long-term effects of chronic exposure on human health. However, nanoparticle exposure remains difficult to measure. Here we show that mice intravenously administered with high doses of gold nanoparticles have visibly blue skin while quantum dot-treated mice emit green, yellow, or red fluorescence after ultraviolet excitation. More importantly, elemental analysis of excised skin correlates with the injected dose and nanoparticle accumulation in the liver and spleen. We propose that the analysis of skin may be a strategy to quantify systemic nanoparticle exposure and can potentially predict the fate of nanoparticles in vivo. Our results further suggest that dermal accumulation may represent an additional route of nanoparticle toxicity and may be a future strategy to exploit ultra-violet and visible light-triggered therapeutics that are normally not useful in vivo because of the limited light penetration depth of these wavelengths.
Collapse
|