1
|
Daud T, Roberts S, Zounemat Kermani N, Richardson M, Heaney LG, Adcock IM, Amrani Y, Bradding P, Siddiqui S. The Role of WNT5a and TGF-β1 in Airway Remodelling and Severe Asthma. Allergy 2025; 80:1025-1037. [PMID: 39749571 DOI: 10.1111/all.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Airway remodelling is a feature of severe asthma with airway epithelial damage observed frequently. We evaluated the role of WNT5a and TGF-β1 in asthmatic airway biopsies and in sputum and bronchial brushings assessed their role in remodelling. METHODS WNT5a and TGF-β1 protein expression were assessed in the lamina propria epithelium of people with asthma (GINA 1-3, n-8 and GINA 4-5, n-14) and healthy subjects (n-9), alongside relevant remodelling markers. The effects of WNT5a and TGF-β1 on BEAS-2B epithelial cell wound healing and differentiation were assessed in vitro. Replication was performed in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) study in sputum (n = 120) and bronchial brushes (n = 147). RESULTS WNT5a and TGF-β1 protein expression were significantly increased in the airway epithelium and lamina propria in asthma patients with concurrent airflow limitation or severe disease. Furthermore, WNT5a protein expression in the lamina propria correlated with tissue eosinophils and vascular remodelling. Airway epithelial WNT5a was co-localised predominantly to airway basal cells and correlated with Th17 gene expression (r = 0.40, p = 0.025) and both the % intact (rs = 0.54, p = 0.001) and % denuded epithelium (rs = -0.39, p = 0.003). Experiments in BEAS-2B cells confirmed that WNT5a at maximal physiological concentrations (1 μg/mL), promoted epithelial wound healing, independently of TGF-β1, as well as induction of EMT-like morphology. WNT5a mRNA was associated with severe asthma, airflow limitation, sputum eosinophilia and Th2, and Th17 and neutrophil activation transcriptomes in sputum in U-BIOPRED. CONCLUSION WNT5a is associated with both airway remodelling and severe asthma. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01982162.
Collapse
Affiliation(s)
- Tariq Daud
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
| | - Sheree Roberts
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
| | - Nazanin Zounemat Kermani
- Data Science Institute, Imperial College, London, UK
- Imperial NIHR Biomedical Research Centre, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Matthew Richardson
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
| | - Liam G Heaney
- Wellcome-Wolfson Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Ian M Adcock
- Imperial NIHR Biomedical Research Centre, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Yassine Amrani
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
| | - Peter Bradding
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
| | - Salman Siddiqui
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
- Imperial NIHR Biomedical Research Centre, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| |
Collapse
|
2
|
Zhai M, Peng B, Zhu H, Xiao J, Xu L, Song XJ. Wnt5a/Ryk signaling contributes to bone cancer pain by sensitizing the peripheral nociceptors through JNK-mediated TRPV1 pathway in rats. Pain 2025; 166:680-692. [PMID: 39382316 DOI: 10.1097/j.pain.0000000000003426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT Treating bone cancer pain (BCP) continues to be a clinical challenge, and the underlying mechanisms of BCP remain elusive. This study reports that Wnt5a/Ryk signaling in the dorsal root ganglion neurons is critical to the development of BCP. Tibia bone cavity tumor cell implantation produces spontaneous and evoked behaviorally expressed pain as well as ectopic sprouting and activity of Wnt5a/Ryk signaling in the neural soma and peripheral terminals and the tumor-affected bone tissues. Intraplantar, intratibial, or intrathecal injection of Wnt5a/Ryk signaling blockers significantly suppresses the painful symptoms. Peripheral injection of exogenous Wnt5a in naïve rats produces pain, and the dorsal root ganglion neurons become more sensitive to Wnt5a. Wnt5a/Ryk signaling activation increases intracellular calcium response and expression of transient receptors potential vanilloid type-1 and regulates capsaicin-induced intracellular calcium response. Blocking Ryk receptor activation suppresses Wnt5a-induced mechanical allodynia and thermal hyperalgesia. Wnt5a facilitation of transient receptors potential vanilloid type-1 sensitization is blocked by inhibiting c-Jun N-terminal kinase activation. These findings indicate a critical peripheral mechanism of Wnt5a/Ryk signaling underlying the pathogenesis of BCP and suggest that targeting Wnt5a/Ryk in the primary sensory neurons and the tumor-invasive area may be an effective approach for the prevention and treatment of BCP.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
- Center for Medical Experiments, Shenzhen Guangming District People's Hospital, Shenzhen, China
| | - Bo Peng
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hanxu Zhu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Xiao
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lihong Xu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xue-Jun Song
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Sun Y, Zhang C, Lei T, Lin F, Huang J, Hu Y, Wang D, Zhang W. HIV1 gp120 activates microglia via TLR2-nf-κb signaling to up-regulate inflammatory cytokine expression and induce neuropathic pain. Neuropharmacology 2024; 260:110136. [PMID: 39216684 DOI: 10.1016/j.neuropharm.2024.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
HIV associated neuropathic pain (HANP) is a common complication of AIDS. Intrathecal injection of recombinant HIV-1 gp120 in mice is a well-known model. Previous RNA sequencing revealed spinal TLR2 acts as a differentially expressed gene in HANP mice. The spinal TLR2 is involved in HANP, but its role and underlying mechanism remains unclear. In this study the transcription, expression and distribution characteristics of TLR2 in the spinal cord of HANP male mice have been analyzed by qRT-PCR, Western blotting, and immunofluorescent staining. We found that TLR2 expression was upregulated in the spinal dorsal horn and mainly distributed in microglial cells, and blocking TLR2 relieved pain of HANP mice. Following stimulation by gp120 microglial cells upregulate TLR2 expression and become activated. The activation stimulates their differentiation into the M1 type, increasing IL-1β and TNF-α expression while inhibiting IL-10 expression. Silencing the Tlr2 gene slows down the activation, polarization, and secretion of pro-inflammatory factors in microglial cells induced by gp120, and enhances the expression of anti-inflammatory factors. Further analysis of the impact of gp120 on downstream signaling pathways of TLR2 in microglial cells, including NF-κB, MAPK (p38MAPK, ERK, and JNK) and PI3K/AKT, revealed that TLR2-NF-κB signaling plays a crucial role in the activation and polarization of microglial cells by gp120. Activation of NF-κB signaling aggravates pain in HANP mice, while blocking it lightens pain. This data indicates that gp120, through the TLR2-NF-κB signaling, activates spinal microglial cells, promotes the secretion of inflammatory cytokines, leading to HANP. This provides new targets to develop drugs for HANP.
Collapse
Affiliation(s)
- Yimeng Sun
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chen Zhang
- Department of Biological Sciences, University of Denver (currently at Entos Pharmaceuticals), Denver, CO 80210, USA
| | - Tao Lei
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jian Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanling Hu
- The First Affiliated Hospital,College of Medicine,Zhejiang University, Hangzhou, 310003, China
| | - Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Fitzsimons LA, Staurengo-Ferrari L, Khomula EV, Bogen O, Araldi D, Bonet IJM, Green PG, Jordan EE, Sclafani F, Nowak CE, Moulton JK, Ganter GK, Levine JD, Tucker KL. The Nociceptor Primary Cilium Contributes to Mechanical Nociceptive Threshold and Inflammatory and Neuropathic Pain. J Neurosci 2024; 44:e1265242024. [PMID: 39349056 PMCID: PMC11580782 DOI: 10.1523/jneurosci.1265-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The primary cilium, a single microtubule-based organelle protruding from the cell surface and critical for neural development, also functions in adult neurons. While some dorsal root ganglion neurons elaborate a primary cilium, whether it is expressed by and functional in nociceptors is unknown. Recent studies have shown the role of Hedgehog, whose canonical signaling is primary cilium dependent, in nociceptor sensitization. We establish the presence of primary cilia in soma of rat nociceptors, where they contribute to mechanical threshold, prostaglandin E2 (PGE2)-induced hyperalgesia, and chemotherapy-induced neuropathic pain (CIPN). Intrathecal administration of siRNA targeting Ift88, a primary cilium-specific intraflagellar transport (IFT) protein required for ciliary integrity, resulted in attenuation of Ift88 mRNA and nociceptor primary cilia. Attenuation of primary cilia was associated with an increase in mechanical nociceptive threshold in vivo and decrease in nociceptor excitability in vitro, abrogation of hyperalgesia, and nociceptor sensitization induced by both a prototypical pronociceptive inflammatory mediator PGE2 and paclitaxel CIPN, in a sex-specific fashion. siRNA targeting Ift52, another IFT protein, and knockdown of NompB, the Drosophila Ift88 ortholog, also abrogated CIPN and reduced baseline mechanosensitivity, respectively, providing independent confirmation for primary cilia control of nociceptor function. Hedgehog-induced hyperalgesia is attenuated by Ift88 siRNA, supporting the role for primary cilia in Hedgehog-induced hyperalgesia. Attenuation of CIPN by cyclopamine (intradermal and intraganglion), which inhibits Hedgehog signaling, supports the role of Hedgehog in CIPN. Our findings support the role of the nociceptor primary cilium in control of mechanical nociceptive threshold and inflammatory and neuropathic pain, the latter Hedgehog-dependent.
Collapse
Affiliation(s)
- Lindsey A Fitzsimons
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Larissa Staurengo-Ferrari
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Eugen V Khomula
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Dionéia Araldi
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Ivan J M Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Paul G Green
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Preventative and Restorative Dental Sciences, University of California San Francisco, San Francisco 94115
| | - Ethan E Jordan
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Finn Sclafani
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Connor E Nowak
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Julie K Moulton
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Geoffrey K Ganter
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Medicine, Division of Neuroscience, University of California San Francisco, San Francisco 94115
| | - Kerry L Tucker
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| |
Collapse
|
5
|
Xu S, Li H, Ai Z, Guo R, Cheng H, Wang Y. Exploring viral neuropathic pain: Molecular mechanisms and therapeutic implications. PLoS Pathog 2024; 20:e1012397. [PMID: 39116040 PMCID: PMC11309435 DOI: 10.1371/journal.ppat.1012397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
As the Coronavirus Disease 2019 (COVID-19) pandemic continues, there is a growing concern regarding the relationship between viral infections and neuropathic pain. Chronic neuropathic pain resulting from virus-induced neural dysfunction has emerged as a significant issue currently faced. However, the molecular mechanisms underlying this phenomenon remain unclear, and clinical treatment outcomes are often suboptimal. Therefore, delving into the relationship between viral infections and neuropathic pain, exploring the pathophysiological characteristics and molecular mechanisms of different viral pain models, can contribute to the discovery of potential therapeutic targets and methods, thereby enhancing pain relief and improving the quality of life for patients. This review focuses on HIV-related neuropathic pain (HNP), postherpetic neuralgia (PHN), and neuropathic pain caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections, examining rodent models and relevant cellular molecular pathways. Through elucidating the connection between viral infections and neuropathic pain, it aims to delineate the current limitations and challenges faced by treatments, thereby providing insights and directions for future clinical practice and research.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huili Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhangran Ai
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Cheng
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Lu Y, Liu S, Wang P, Guo X, Qin Z, Hou H, Tao T. A novel microglia-targeting strategy based on nanoparticle-mediated delivery of miR-26a-5p for long-lasting analgesia in chronic pain. J Nanobiotechnology 2024; 22:128. [PMID: 38519978 PMCID: PMC10960380 DOI: 10.1186/s12951-024-02420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
Accumulating evidence supports the notion that microglia play versatile roles in different chronic pain conditions. However, therapeutic strategies of chronic pain by targeting microglia remain largely overlooked. This study seeks to develop a miRNA-loaded nano-delivery system by targeting microglia, which could provide a decent and long-lasting analgesia for chronic pain. Surface aminated mesoporous silica nanoparticles were adopted to load miR-26a-5p, a potent analgesic miRNA, by electrostatic adsorption, which can avoid miR-26a-5p is rapidly released and degraded. Then, targeting peptide MG1 was modified on the surface of aminated mesoporous silica particles for microglia targeting. In peripheral nerve injury induced neuropathic pain model, a satisfactory anti-allodynia effect with about 6 weeks pain-relief duration were achieved through targeting microglia strategy, which decreased microglia activation and inflammation by Wnt5a, a non-canonical Wnt pathway. In inflammatory pain and chemotherapy induced peripheral neuropathic pain, microglia targeting strategy also exhibited more efficient analgesia and longer pain-relief duration than others. Overall, we developed a microglia-targeting nano-delivery system, which facilitates precisely miR-26a-5p delivery to enhance analgesic effect and duration for several chronic pain conditions.
Collapse
Affiliation(s)
- Yitian Lu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peng Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiangna Guo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Tao Tao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
7
|
Fitzsimons LA, Staurengo-Ferrari L, Bogen O, Araldi D, Bonet IJM, Jordan EE, Levine JD, Tucker KL. The Primary Cilium and its Hedgehog Signaling in Nociceptors Contribute to Inflammatory and Neuropathic Pain. RESEARCH SQUARE 2024:rs.3.rs-3812442. [PMID: 38464172 PMCID: PMC10925437 DOI: 10.21203/rs.3.rs-3812442/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The primary cilium, a 1-3 μm long hair-like structure protruding from the surface of almost all cells in the vertebrate body, is critical for neuronal development and also functions in the adult. As the migratory neural crest settles into dorsal root ganglia (DRG) sensory neurons elaborate a single primary cilium at their soma that is maintained into adult stages. While it is not known if primary cilia are expressed in nociceptors, or their potential function in the mature DRG neuron, recent studies have shown a role for Hedgehog, whose signaling demonstrates a dependence on primary cilia, in nociceptor sensitization. Here we report the expression of primary cilia in rat and mouse nociceptors, where they modulate mechanical nociceptive threshold, and contribute to inflammatory and neuropathic pain. When siRNA targeting Ift88, a primary cilium-specific intraflagellar transport (IFT) protein required for ciliary integrity, was administered by intrathecal injection, in the rat, it resulted in loss of Ift88 mRNA in DRG, and primary cilia in neuronal cell bodies, which was associated with an increase in mechanical nociceptive threshold, and abrogation of hyperalgesia induced by the pronociceptive inflammatory mediator, prostaglandin E2, and painful peripheral neuropathy induced by a neurotoxic chemotherapy drug, paclitaxel. To provide further support for the role of the primary cilium in nociceptor function we also administered siRNA for another IFT protein, Ift52. Ift52 siRNA results in loss of Ift52 in DRG and abrogates paclitaxel-induced painful peripheral neuropathy. Attenuation of Hedgehog-induced hyperalgesia by Ift88 knockdown supports a role for the primary cilium in the hyperalgesia induced by Hedgehog, and attenuation of paclitaxel chemotherapy-induced neuropathy (CIPN) by cyclopamine, which attenuates Hedgehog signaling, suggests a role of Hedgehog in CIPN. Our findings support a role of nociceptor primary cilia in the control of mechanical nociceptive threshold and in inflammatory and neuropathic pain, the latter, at least in part, Hedgehog dependent.
Collapse
Affiliation(s)
- Lindsey A. Fitzsimons
- Dept. of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Larissa Staurengo-Ferrari
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco, United States
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco, United States
| | - Dioneia Araldi
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco, United States
| | - Ivan J. M. Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco, United States
| | - Ethan E. Jordan
- Dept. of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Jon D. Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco, United States
| | - Kerry L. Tucker
- Dept. of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| |
Collapse
|
8
|
Fitzsimons LA, Staurengo-Ferrari L, Bogen O, Araldi D, Bonet IJM, Jordan EE, Levine JD, Tucker KL. The Primary Cilium and its Hedgehog Signaling in Nociceptors Contribute to Inflammatory and Neuropathic Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573420. [PMID: 38234719 PMCID: PMC10793418 DOI: 10.1101/2023.12.27.573420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The primary cilium, a 1-3 μm long hair-like structure protruding from the surface of almost all cells in the vertebrate body, is critical for neuronal development and also functions in the adult. As the migratory neural crest settles into dorsal root ganglia (DRG) sensory neurons elaborate a single primary cilium at their soma that is maintained into adult stages. While it is not known if primary cilia are expressed in nociceptors, or their potential function in the mature DRG neuron, recent studies have shown a role for Hedgehog, whose signaling demonstrates a dependence on primary cilia, in nociceptor sensitization. Here we report the expression of primary cilia in rat and mouse nociceptors, where they modulate mechanical nociceptive threshold, and contribute to inflammatory and neuropathic pain. When siRNA targeting Ift88 , a primary cilium-specific intra-flagellar transport (IFT) protein required for ciliary integrity, was administered by intrathecal injection, in the rat, it resulted in loss of Ift88 mRNA in DRG, and primary cilia in neuronal cell bodies, which was associated with an increase in mechanical nociceptive threshold, and abrogation of hyperalgesia induced by the pronociceptive inflammatory mediator, prostaglandin E 2 , and painful peripheral neuropathy induced by a neurotoxic chemotherapy drug, paclitaxel. To provide further support for the role of the primary cilium in nociceptor function we also administered siRNA for another IFT protein, Ift 52. Ift 52 siRNA results in loss of Ift 52 in DRG and abrogates paclitaxel-induced painful peripheral neuropathy. Attenuation of Hedgehog-induced hyperalgesia by Ift88 knockdown supports a role for the primary cilium in the hyperalgesia induced by Hedgehog, and attenuation of paclitaxel chemotherapy-induced neuropathy (CIPN) by cyclopamine, which attenuates Hedgehog signaling, suggests a role of Hedgehog in CIPN. Our findings support a role of nociceptor primary cilia in the control of mechanical nociceptive threshold and in inflammatory and neuropathic pain, the latter, at least in part, Hedgehog dependent.
Collapse
|
9
|
Deng W, Zou H, Qian L, de Souza SC, Chen Q, Cao S. Stauntonia chinensis injection relieves neuropathic pain by increasing the expression of PSD-95 and reducing the proliferation of phagocytic microglia. IBRAIN 2023; 10:3-18. [PMID: 38682013 PMCID: PMC11045182 DOI: 10.1002/ibra.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 05/01/2024]
Abstract
Neuroinflammation induced by engulfment of synapses by phagocytic microglia plays a crucial role in neuropathic pain. Stauntonia chinensis is extracted from Stauntonia chinensis DC, which has been used as a traditional Chinese medicine to control trigeminal neuralgia or sciatica. However, the specific anti-neuralgia mechanism of Stauntonia chinensis is unknown. In this study, the analgesic effect of Stauntonia chinensis injection (SCI) in mice with neuropathic pain and the possible mechanisms are explored. We find that a local injection of 0.1 mL Stauntonia chinensis for 14 days can considerably relieve mechanical hyperalgesia and thermal hyperalgesia in mice with sciatic chronic constriction injury (CCI). Immunofluorescence staining shows that SCI reduces neuroinflammation in the spinal cord of CCI mice. RNA sequencing reveals that the expression of postsynaptic density protein 95 (PSD-95), a postsynaptic scaffold protein, is downregulated in the spinal cord of CCI mice, but upregulated after SCI administration. Immunofluorescence experiments also demonstrate that SCI administration reverses microglia proliferation and PSD-95 downregulation in CCI mice. These data suggest that SCI relieves neuropathic pain by increasing the expression of PSD-95 and reducing the proliferation of phagocytic microglia.
Collapse
Affiliation(s)
- Wenwen Deng
- Department of CardiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Lab of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Helin Zou
- Guizhou Key Lab of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Li Qian
- Department of Pain MedicineGuizhou Provincial Orthopedics HospitalGuiyangGuizhouChina
| | | | - Qian Chen
- Department of Pain MedicineGuizhou Provincial Orthopedics HospitalGuiyangGuizhouChina
| | - Song Cao
- Guizhou Key Lab of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
10
|
Hu Y, Liu J, Zhuang R, Zhang C, Lin F, Wang J, Peng S, Zhang W. Progress in Pathological and Therapeutic Research of HIV-Related Neuropathic Pain. Cell Mol Neurobiol 2023; 43:3343-3373. [PMID: 37470889 PMCID: PMC11410024 DOI: 10.1007/s10571-023-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
HIV-related neuropathic pain (HRNP) is a neurodegeneration that gradually develops during the long-term course of acquired immune deficiency syndrome (AIDS) and manifests as abnormal sock/sleeve-like symmetrical pain and nociceptive hyperalgesia in the extremities, which seriously reduces patient quality of life. To date, the pathogenesis of HRNP is not completely clear. There is a lack of effective clinical treatment for HRNP and it is becoming a challenge and hot spot for medical research. In this study, we conducted a systematic review of the progress of HRNP research in recent years including (1) the etiology, classification and clinical symptoms of HRNP, (2) the establishment of HRNP pathological models, (3) the pathological mechanisms underlying HRNP from three aspects: molecules, signaling pathways and cells, (4) the therapeutic strategies for HRNP, and (5) the limitations of recent HRNP research and the future research directions and prospects of HRNP. This detailed review provides new and systematic insight into the pathological mechanism of HRNP, which establishes a theoretical basis for the future exploitation of novel target drugs. HIV infection, antiretroviral therapy and opioid abuse contribute to the etiology of HRNP with symmetrical pain in both hands and feet, allodynia and hyperalgesia. The pathogenesis involves changes in cytokine expression, activation of signaling pathways and neuronal cell states. The therapy for HRNP should be patient-centered, integrating pharmacologic and nonpharmacologic treatments into multimodal intervention.
Collapse
Affiliation(s)
- YanLing Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - JinHong Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Renjie Zhuang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jun Wang
- Department of Orthopedics, Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Sha Peng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Liu X, Tang SJ. Pathogenic mechanisms of human immunodeficiency virus (HIV)-associated pain. Mol Psychiatry 2023; 28:3613-3624. [PMID: 37857809 DOI: 10.1038/s41380-023-02294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Chronic pain is a prevalent neurological complication among individuals living with human immunodeficiency virus (PLHIV) in the post-combination antiretroviral therapy (cART) era. These individuals experience malfunction in various cellular and molecular pathways involved in pain transmission and modulation, including the neuropathology of the peripheral sensory neurons and neurodegeneration and neuroinflammation in the spinal dorsal horn. However, the underlying etiologies and mechanisms leading to pain pathogenesis are complex and not fully understood. In this review, we aim to summarize recent progress in this field. Specifically, we will begin by examining neuropathology in the pain pathways identified in PLHIV and discussing potential causes, including those directly related to HIV-1 infection and comorbidities, such as antiretroviral drug use. We will also explore findings from animal models that may provide insights into the molecular and cellular processes contributing to neuropathology and chronic pain associated with HIV infection. Emerging evidence suggests that viral proteins and/or antiretroviral drugs trigger a complex pathological cascade involving neurons, glia, and potentially non-neural cells, and that interactions between these cells play a critical role in the pathogenesis of HIV-associated pain.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA.
| |
Collapse
|
12
|
Liu X, Bae C, Liu B, Zhang YM, Zhou X, Zhang D, Zhou C, DiBua A, Schutz L, Kaczocha M, Puopolo M, Yamaguchi TP, Chung JM, Tang SJ. Development of opioid-induced hyperalgesia depends on reactive astrocytes controlled by Wnt5a signaling. Mol Psychiatry 2023; 28:767-779. [PMID: 36203006 PMCID: PMC10388343 DOI: 10.1038/s41380-022-01815-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Opioids are the frontline analgesics for managing various types of pain. Paradoxically, repeated use of opioid analgesics may cause an exacerbated pain state known as opioid-induced hyperalgesia (OIH), which significantly contributes to dose escalation and consequently opioid overdose. Neuronal malplasticity in pain circuits has been the predominant proposed mechanism of OIH expression. Although glial cells are known to become reactive in OIH animal models, their biological contribution to OIH remains to be defined and their activation mechanism remains to be elucidated. Here, we show that reactive astrocytes (a.k.a. astrogliosis) are critical for OIH development in both male and female mice. Genetic reduction of astrogliosis inhibited the expression of OIH and morphine-induced neural circuit polarization (NCP) in the spinal dorsal horn (SDH). We found that Wnt5a is a neuron-to-astrocyte signal that is required for morphine-induced astrogliosis. Conditional knock-out of Wnt5a in neurons or its co-receptor ROR2 in astrocytes blocked not only morphine-induced astrogliosis but also OIH and NCP. Furthermore, we showed that the Wnt5a-ROR2 signaling-dependent astrogliosis contributes to OIH via inflammasome-regulated IL-1β. Our results reveal an important role of morphine-induced astrogliosis in OIH pathogenesis and elucidate a neuron-to-astrocyte intercellular Wnt signaling pathway that controls the astrogliosis.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Chilman Bae
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, 62901, IL, USA
| | - Bolong Liu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Yong-Mei Zhang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Donghang Zhang
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Adriana DiBua
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Livia Schutz
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Martin Kaczocha
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Michelino Puopolo
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Terry P Yamaguchi
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, 21702, MD, USA
| | - Jin Mo Chung
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA. .,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA. .,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.
| |
Collapse
|
13
|
Salampe M, Mamada SS, Evary YM, Mitra S, Bin Emran T, Harapan H, Nainu F, Simal-Gandara J. Promising Marine Natural Products for Tackling Viral Outbreaks: A Focus on Possible Targets and Structure-activity Relationship. Curr Top Med Chem 2023; 23:1352-1379. [PMID: 36045529 DOI: 10.2174/1568026622666220831114838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
Recently, people worldwide have experienced several outbreaks caused by viruses that have attracted much interest globally, such as HIV, Zika, Ebola, and the one being faced, SARSCoV- 2 viruses. Unfortunately, the availability of drugs giving satisfying outcomes in curing those diseases is limited. Therefore, it is necessary to dig deeper to provide compounds that can tackle the causative viruses. Meanwhile, the efforts to explore marine natural products have been gaining great interest as the products have consistently shown several promising biological activities, including antiviral activity. This review summarizes some products extracted from marine organisms, such as seaweeds, seagrasses, sponges, and marine bacteria, reported in recent years to have potential antiviral activities tested through several methods. The mechanisms by which those compounds exert their antiviral effects are also described here, with several main mechanisms closely associated with the ability of the products to block the entry of the viruses into the host cells, inhibiting replication or transcription of the viral genetic material, and disturbing the assembly of viral components. In addition, the structure-activity relationship of the compounds is also highlighted by focusing on six groups of marine compounds, namely sulfated polysaccharides, phlorotannins, terpenoids, lectins, alkaloids, and flavonoids. In conclusion, due to their uniqueness compared to substances extracted from terrestrial sources, marine organisms provide abundant products having promising activities as antiviral agents that can be explored to tackle virus-caused outbreaks.
Collapse
Affiliation(s)
| | - Sukamto Salang Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Yayu Mulsiani Evary
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka ,1207, Bangladesh
| | - Harapan Harapan
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
14
|
Huang J, Lin F, Hu Y, Bloe CB, Wang D, Zhang W. From Initiation to Maintenance: HIV-1 Gp120-induced Neuropathic Pain Exhibits Different Molecular Mechanisms in the Mouse Spinal Cord Via Bioinformatics Analysis Based on RNA Sequencing. J Neuroimmune Pharmacol 2022; 17:553-575. [PMID: 35059976 DOI: 10.1007/s11481-021-10044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS), remains one of the most diverse crucial health and development challenges around the world. People infected with HIV constitute a large patient population, and a significant number of them experience neuropathic pain. To study the key mechanisms that mediate HIV-induced neuropathic pain (HNP), we established an HNP mouse model via intrathecal injection of the HIV-1 envelope glycoprotein gp120. The L3~L5 spinal cord was isolated on postoperative days 1/12 (POD1/12), 1 (POD1), and 14 (POD14) for RNA sequencing to investigate the gene expression profiles of the initiation, transition, and maintenance stages of HNP. A total of 1682, 430, and 413 differentially expressed genes were obtained in POD1/12, POD1, and POD14, respectively, and their similarity was low. Bioinformatics analysis confirmed that POD1/12, POD1, and POD14 exhibited different biological processes and signaling pathways. Inflammation, oxidative damage, apoptosis, and inflammation-related signaling pathways were enriched on POD1/12. Inflammation, chemokine activity, and downstream signaling regulated by proinflammatory cytokines, such as the MTOR signaling pathway, were enriched on POD1, while downregulation of ion channel activity, mitochondrial damage, endocytosis, MAPK and neurotrophic signaling pathways developed on POD14. Additionally, we screened key genes and candidate genes, which were verified at the transcriptional and translational levels. Our results suggest that the initiation and maintenance of HNP are regulated by different molecular mechanisms. Therefore, our research may yield a fresh and deeper understanding of the mechanisms underlying HNP, providing accurate molecular targets for HNP therapy.
Collapse
Affiliation(s)
- Jian Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yanling Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Chris Bloe Bloe
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Liu X, Bae C, Gelman BB, Chung JM, Tang SJ. A neuron-to-astrocyte Wnt5a signal governs astrogliosis during HIV-associated pain pathogenesis. Brain 2022; 145:4108-4123. [PMID: 35040478 PMCID: PMC10200293 DOI: 10.1093/brain/awac015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 10/21/2023] Open
Abstract
Chronic pain is the most common neurological disorder of HIV patients. Multiple neuropathologies were identified in the pain pathway. Among them is the prominent astrocytic reaction (also know an astrogliosis). However, the pathogenic role and mechanism of the astrogliosis are unclear. Here, we show that the astrogliosis is crucial for the pain development induced by a key neurotoxic HIV protein gp120 and that a neuron-to-astrocyte Wnt5a signal controls the astrogliosis. Ablation of astrogliosis blocked the development of gp120-induced mechanical hyperalgesia, and concomitantly the expression of neural circuit polarization in the spinal dorsal horn. We demonstrated that conditional knockout of either Wnt5a in neurons or its receptor ROR2 in astrocytes abolished not only gp120-induced astrogliosis but also hyperalgesia and neural circuit polarization. Furthermore, we found that the astrogliosis promoted expression of hyperalgesia and NCP via IL-1β regulated by a Wnt5a-ROR2-MMP2 axis. Our results shed light on the role and mechanism of astrogliosis in the pathogenesis of HIV-associated pain.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Analgesia Research Center (SPARC) and Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chilman Bae
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL 62901, USA
| | - Benjamin B Gelman
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jin Mo Chung
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Analgesia Research Center (SPARC) and Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
16
|
Siddiqui A, He C, Lee G, Figueroa A, Slaughter A, Robinson-Papp J. Neuropathogenesis of HIV and emerging therapeutic targets. Expert Opin Ther Targets 2022; 26:603-615. [PMID: 35815686 PMCID: PMC9887458 DOI: 10.1080/14728222.2022.2100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION HIV infection causes a wide range of neurological complications, many of which are among the most common complications of chronic HIV infection in the era of combined antiretroviral therapy. These neurological conditions arise due to complex interactions between HIV viral proteins and neuronal and glial cells that lead to the activation of various inflammatory and neurotoxic pathways across the nervous system. AREAS COVERED This review summarizes the current literature on the pathogenesis and clinical manifestations of neurological injuries associated with HIV in the brain, spinal cord, and peripheral nervous system. Molecular pathways relevant for possible therapeutic targets or advancements are emphasized. Gaps in knowledge and current challenges in therapeutic design are also discussed. EXPERT OPINION Several challenges exist in the development of therapeutic targets for HIV-associated cognitive impairments. However, recent developments in drug delivery systems and treatment strategies are encouraging. Treatments for HIV-associated pain and peripheral sensory neuropathies currently consist of symptomatic management, but a greater understanding of their pathogenesis can lead to the development of targeted molecular therapies and disease-modifying therapies. HIV-associated autonomic dysfunction may affect the course of systemic disease via disrupted neuro-immune interactions; however, more research is needed to facilitate our understanding of how these processes present clinically.
Collapse
Affiliation(s)
- Alina Siddiqui
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Celestine He
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Gina Lee
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Alex Figueroa
- University of Texas at Southwestern Medical School, Dallas, TX, 75390 USA
| | - Alexander Slaughter
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Jessica Robinson-Papp
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| |
Collapse
|
17
|
Li J, Wei Y, Zhou J, Zou H, Ma L, Liu C, Xiao Z, Liu X, Tan X, Yu T, Cao S. Activation of locus coeruleus-spinal cord noradrenergic neurons alleviates neuropathic pain in mice via reducing neuroinflammation from astrocytes and microglia in spinal dorsal horn. J Neuroinflammation 2022; 19:123. [PMID: 35624514 PMCID: PMC9145151 DOI: 10.1186/s12974-022-02489-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background The noradrenergic neurons of locus coeruleus (LC) project to the spinal dorsal horn (SDH), and release norepinephrine (NE) to inhibit pain transmission. However, its effect on pathological pain and the cellular mechanism in the SDH remains unclear. This study aimed to explore the analgesic effects and the anti-neuroinflammation mechanism of LC-spinal cord noradrenergic pathway (LC:SC) in neuropathic pain (NP) mice with sciatic chronic constriction injury. Methods The Designer Receptors Exclusively Activated by Designer Drugs (DREADD) was used to selectively activate LC:SC. Noradrenergic neuron-specific retro–adeno-associated virus was injected to the spinal cord. Pain threshold, LC and wide dynamic range (WDR) neuron firing, neuroinflammation (microglia and astrocyte activation, cytokine expression), and α2AR expression in SDH were evaluated. Results Activation of LC:SC with DREADD increased the mechanical and thermal nociceptive thresholds and reduced the WDR neuron firing. LC:SC activation (daily, 7 days) downregulated TNF-α and IL-1β expression, upregulated IL-4 and IL-10 expression in SDH, and inhibited microglia and astrocytes activation in NP mice. Immunofluorescence double staining confirmed that LC:SC activation decreased the expression of cytokines in microglia of the SDH. In addition, the effects of LC:SC activation could be reversed by intrathecal injection of yohimbine. Immunofluorescence of SDH showed that NE receptor α2B-AR was highly expressed in microglia in CCI mice. Conclusion These findings indicate that selective activation of LC:SC alleviates NP in mice by increasing the release of NE and reducing neuroinflammation of astrocytes and microglia in SDH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02489-9.
Collapse
Affiliation(s)
- Juan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China.,Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
| | - Yiyong Wei
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China.,Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China
| | - Junli Zhou
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
| | - Helin Zou
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
| | - Lulin Ma
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
| | - Chengxi Liu
- Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China
| | - Zhi Xiao
- Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China
| | - Xingfeng Liu
- Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China
| | - Xinran Tan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China.,Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
| | - Tian Yu
- Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China
| | - Song Cao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China. .,Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China. .,Guizhou Key Lab of Anesthesia and Organ Protection, Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563099, Guizhou, China.
| |
Collapse
|
18
|
Xie YK, Luo H, Zhang SX, Chen XY, Guo R, Qiu XY, Liu S, Wu H, Chen WB, Zhen XH, Ma Q, Tian JL, Li S, Chen X, Han Q, Duan S, Shen C, Yang F, Xu ZZ. GPR177 in A-fiber sensory neurons drives diabetic neuropathic pain via WNT-mediated TRPV1 activation. Sci Transl Med 2022; 14:eabh2557. [PMID: 35385340 DOI: 10.1126/scitranslmed.abh2557] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetic neuropathic pain (DNP) is a common and devastating complication in patients with diabetes. The mechanisms mediating DNP are not completely elucidated, and effective treatments are lacking. A-fiber sensory neurons have been shown to mediate the development of mechanical allodynia in neuropathic pain, yet the molecular basis underlying the contribution of A-fiber neurons is still unclear. Here, we report that the orphan G protein-coupled receptor 177 (GPR177) in A-fiber neurons drives DNP via WNT5a-mediated activation of transient receptor potential vanilloid receptor-1 (TRPV1) ion channel. GPR177 is mainly expressed in large-diameter A-fiber dorsal root ganglion (DRG) neurons and required for the development of DNP in mice. Mechanistically, we found that GPR177 mediated the secretion of WNT5a from A-fiber DRG neurons into cerebrospinal fluid (CSF), which was necessary for the maintenance of DNP. Extracellular perfusion of WNT5a induced rapid currents in both TRPV1-expressing heterologous cells and nociceptive DRG neurons. Computer simulations revealed that WNT5a has the potential to bind the residues at the extracellular S5-S6 loop of TRPV1. Using a peptide able to disrupt the predicted WNT5a/TRPV1 interaction suppressed DNP- and WNT5a-induced neuropathic pain symptoms in rodents. We confirmed GPR177/WNT5A coexpression in human DRG neurons and WNT5A secretion in CSF from patients with DNP. Thus, our results reveal a role for WNT5a as an endogenous and potent TRPV1 agonist, and the GPR177-WNT5a-TRPV1 axis as a driver of DNP pathogenesis in rodents. Our findings identified a potential analgesic target that might relieve neuropathic pain in patients with diabetes.
Collapse
Affiliation(s)
- Ya-Kai Xie
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Luo
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shan-Xin Zhang
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Ying Chen
- Department of Biophysics, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ran Guo
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiao-Yun Qiu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuai Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wen-Bo Chen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xing-Hua Zhen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Ma
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin-Lan Tian
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shun Li
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Shumin Duan
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chengyong Shen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhen-Zhong Xu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
19
|
Zhou YQ, Tian XB, Tian YK, Mei W, Liu DQ, Ye DW. Wnt signaling: A prospective therapeutic target for chronic pain. Pharmacol Ther 2022; 231:107984. [PMID: 34480969 DOI: 10.1016/j.pharmthera.2021.107984] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Despite the rapid advance over the past decades to design effective therapeutic pharmacological interventions, chronic pain remains to be an unresolved healthcare concern. Long term use of opioids, the first line analgesics, often causes detrimental side effects. Therefore, a profound understanding of the mechanisms underlying the development and maintenance of chronic pain states is urgently needed for the management of chronic pain. Substantial evidence indicates aberrant activation of Wnt signaling pathways in sciatic nerve, dorsal root ganglia and spinal cord dorsal horn in rodent models of chronic pain. Moreover, growing evidence shows that pharmacological blockage of aberrant activation of Wnt signaling pathways attenuates pain behaviors in animal models of chronic pain. Importantly, both intrathecal injection of Wnt agonists and Wnt ligands to naïve rats lead to the development of mechanical allodynia, which was inhibited by Wnt inhibitors. In this review, we summarized and discussed the therapeutic potential of pharmacological inhibitors of Wnt signaling in chronic pain in preclinical studies. These evidence showed that aberrant activation of Wnt signaling pathways contributed to chronic pain via enhancing neuroinflammation, regulating synaptic plasticity and reducing intraepidermal nerve fiber density. However, these findings raise further questions. Overall, despite the future challenges, these pioneering studies suggest that Wnt signaling is a promising therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Da-Wei Ye
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
20
|
Ror2 mediates chronic post-thoracotomy pain by inducing the transformation of A1/A2 reactive astrocytes in rats. Cell Signal 2021; 89:110183. [PMID: 34728368 DOI: 10.1016/j.cellsig.2021.110183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022]
Abstract
Ror2 plays an important role in neuronal development, neuronal plasticity, and neuropathic pain. In our previous pilot study, we found that Ror2 and GFAP (a marker of astrocytes) protein levels increased in thoracic dorsal root ganglia from postoperative day (POD) 7 to POD 21 in rats with chronic post-thoracotomy pain (CPTP). In the present study, we aimed to further explore the roles of Ror2 and activated astrocytes during CPTP development. Ror2, c-JUN, and C3aR levels increased and the activated astrocytes were mainly expressed as the A1 phenotype in the spinal cord dorsal horn of the rats with CPTP. The knockdown of Ror2 in the spinal cord astrocytes alleviated thoracotomy-induced mechanical hyperalgesia and cold allodynia as well as reverted the A1/A2 ratio of the reactive astrocytes, downregulating the expression of c-JUN and C3aR in rats with CPTP. These results suggest that Ror2 in the spinal cord astrocytes mediates the transformation of A1/A2 reactive astrocytes via regulating the expressions of the c-JUN and C3aR in CPTP. Furthermore, the suppression of Ror2 could be utilized as a new strategy to help prevent CPTP.
Collapse
|
21
|
Lu HJ, Fu YY, Wei QQ, Zhang ZJ. Neuroinflammation in HIV-Related Neuropathic Pain. Front Pharmacol 2021; 12:653852. [PMID: 33959022 PMCID: PMC8093869 DOI: 10.3389/fphar.2021.653852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
In the management of human immunodeficiency virus (HIV) infection around the world, chronic complications are becoming a new problem along with the prolonged life expectancy. Chronic pain is widespread in HIV infected patients and even affects those with a low viral load undergoing long-term treatment with antiviral drugs, negatively influencing the adherence to disease management and quality of life. A large proportion of chronic pain is neuropathic pain, which defined as chronic pain caused by nervous system lesions or diseases, presenting a series of nervous system symptoms including both positive and negative signs. Injury caused by HIV protein, central and peripheral sensitization, and side effects of antiretroviral therapy lead to neuroinflammation, which is regarded as a maladaptive mechanism originally serving to promote regeneration and healing, constituting the main mechanism of HIV-related neuropathic pain. Gp120, as HIV envelope protein, has been found to be the major toxin that induces neuropathic pain. Particularly, the microglia, releasing numerous pro-inflammatory substances (such as TNFα, IL-1β, and IL-6), not only sensitize the neurons but also are the center part of the crosstalk bridging the astrocytes and oligodendrocytes together forming the central sensitization during HIV infection, which is not discussed detailly in recent reviews. In the meantime, some NRTIs and PIs exacerbate the neuroinflammation response. In this review, we highlight the importance of clarifying the mechanism of HIV-related neuropathic pain, and discuss about the limitation of the related studies as future research directions.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Yuan-Yuan Fu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Zhi-Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
22
|
Edara VV, Nooka S, Proulx J, Stacy S, Ghorpade A, Borgmann K. β-Catenin Regulates Wound Healing and IL-6 Expression in Activated Human Astrocytes. Biomedicines 2020; 8:E479. [PMID: 33171974 PMCID: PMC7694627 DOI: 10.3390/biomedicines8110479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Reactive astrogliosis is prominent in most neurodegenerative disorders and is often associated with neuroinflammation. The molecular mechanisms regulating astrocyte-linked neuropathogenesis during injury, aging and human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) are not fully understood. In this study, we investigated the implications of the wingless type (Wnt)/β-catenin signaling pathway in regulating astrocyte function during gliosis. First, we identified that HIV-associated inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor (TNF)-α induced mediators of the Wnt/β-catenin pathway including β-catenin and lymphoid enhancer-binding factor (LEF)-1 expression in astrocytes. Next, we investigated the regulatory role of β-catenin on primary aspects of reactive astrogliosis, including proliferation, migration and proinflammatory responses, such as IL-6. Knockdown of β-catenin impaired astrocyte proliferation and migration as shown by reduced cyclin-D1 levels, bromodeoxyuridine incorporation and wound healing. HIV-associated cytokines, IL-1β alone and in combination with TNF-α, strongly induced the expression of proinflammatory cytokines including C-C motif chemokine ligand (CCL)2, C-X-C motif chemokine ligand (CXCL)8 and IL-6; however, only IL-6 levels were regulated by β-catenin as demonstrated by knockdown and pharmacological stabilization. In this context, IL-6 levels were negatively regulated by β-catenin. To better understand this relationship, we examined the crossroads between β-catenin and nuclear factor (NF)-κB pathways. While NF-κB expression was significantly increased by IL-1β and TNF-α, NF-κB levels were not affected by β-catenin knockdown. IL-1β treatment significantly increased glycogen synthase kinase (GSK)-3β phosphorylation, which inhibits β-catenin degradation. Further, pharmacological inhibition of GSK-3β increased nuclear translocation of both β-catenin and NF-κB p65 into the nucleus in the absence of any other inflammatory stimuli. HIV+ human astrocytes show increased IL-6, β-catenin and NF-κB expression levels and are interconnected by regulatory associations during HAND. In summary, our study demonstrates that HIV-associated inflammation increases β-catenin pathway mediators to augment activated astrocyte responses including migration and proliferation, while mitigating IL-6 expression. These findings suggest that β-catenin plays an anti-inflammatory role in activated human astrocytes during neuroinflammatory pathologies, such as HAND.
Collapse
Affiliation(s)
- Venkata Viswanadh Edara
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| | - Shruthi Nooka
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| | - Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
| | - Satomi Stacy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| |
Collapse
|
23
|
Huang J, Bloe CB, Zhou X, Wu S, Zhang W. The Role of the Spinal Wnt Signaling Pathway in HIV-Related Neuropathic Pain. Cell Mol Neurobiol 2020; 40:1075-1085. [PMID: 32100186 PMCID: PMC11448846 DOI: 10.1007/s10571-020-00805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus (HIV)-related neuropathic pain includes HIV-induced neuropathic pain (HNP) and antiretroviral therapy-induced neuropathic pain (ART-NP). A significant amount of evidence from the past few years has shown that the development of HIV-related neuropathic pain is closely related to the activation of the Wnt signaling pathway in the spinal cord. This review summarizes the function of the spinal Wnt signaling pathway in HIV-induced neuropathic pain, focusing on the role of the spinal Wnt signaling pathway in HNP, and provides a theoretical basis for further studies and the exploration of new target drugs.
Collapse
Affiliation(s)
- Jian Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chris Bloe Bloe
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xinxin Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shengjun Wu
- Clinical Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
24
|
Ji G, Neugebauer V. Kappa opioid receptors in the central amygdala modulate spinal nociceptive processing through an action on amygdala CRF neurons. Mol Brain 2020; 13:128. [PMID: 32948219 PMCID: PMC7501648 DOI: 10.1186/s13041-020-00669-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The amygdala plays an important role in the emotional-affective aspects of behaviors and pain, but can also modulate sensory aspect of pain ("nociception"), likely through coupling to descending modulatory systems. Here we explored the functional coupling of the amygdala to spinal nociception. We found that pharmacological activation of neurons in the central nucleus of the amygdala (CeA) increased the activity of spinal dorsal horn neurons; and this effect was blocked by optogenetic silencing of corticotropin releasing factor (CRF) positive CeA neurons. A kappa opioid receptor (KOR) agonist (U-69,593) was administered into the CeA by microdialysis. KOR was targeted because of their role in averse-affective behaviors through actions in limbic brain regions. Extracellular single-unit recordings were made of CeA neurons or spinal dorsal horn neurons in anesthetized transgenic Crh-Cre rats. Neurons responded more strongly to noxious than innocuous stimuli. U-69,593 increased the responses of CeA and spinal neurons to innocuous and noxious mechanical stimulation of peripheral tissues. The facilitatory effect of the agonist was blocked by optical silencing of CRF-CeA neurons though light activation of halorhodopsin expressed in these neurons by viral-vector. The CRF system in the amygdala has been implicated in aversiveness and pain modulation. The results suggest that the amygdala can modulate spinal nociceptive processing in a positive direction through CRF-CeA neurons and that KOR activation in the amygdala (CeA) has pro-nociceptive effects.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
25
|
Shi Y, Yuan S, Tang SJ. Reactive Oxygen Species (ROS) are Critical for Morphine Exacerbation of HIV-1 gp120-Induced Pain. J Neuroimmune Pharmacol 2020; 16:581-591. [PMID: 32827051 DOI: 10.1007/s11481-020-09951-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Many HIV patients develop chronic pain and use opioid-derived medicine as primary analgesics. Emerging clinical evidence suggests that chronic use of opioid analgesics paradoxically heightens pain states in patients. This side effect of opioid analgesics has a significant negative impact on clinical practice, but the underlying pathogenic mechanism remains elusive. Using a mouse model of HIV-associated pain, we simulated the development of morphine exacerbation on pain and investigated potential underlying cellular and molecular pathways. We found that repeated morphine treatment promoted astrocyte activation in the spinal dorsal horn (SDH) and up-regulation of pro-inflammatory cytokines IL-1β and TNF-α. Furthermore, we observed that morphine administration potentiated mitochondrial reactive oxygen species (ROS) in the SDH of the HIV pain model, especially on astrocytes. Systemic application of the ROS scavenger phenyl-N-t-butyl nitrone (PBN) not only blocked the enhancement of gp120-induced hyperalgesia by morphine but also astrocytic activation and cytokine up-regulation. These findings suggest a critical role of ROS in mediating the exacerbation of gp120-induced pain by morphine. Graphical abstract.
Collapse
Affiliation(s)
- Yuqiang Shi
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Subo Yuan
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
26
|
Ntogwa M, Imai S, Hiraiwa R, Koyanagi M, Matsumoto M, Ogihara T, Nakagawa S, Omura T, Yonezawa A, Nakagawa T, Matsubara K. Schwann cell-derived CXCL1 contributes to human immunodeficiency virus type 1 gp120-induced neuropathic pain by modulating macrophage infiltration in mice. Brain Behav Immun 2020; 88:325-339. [PMID: 32229220 DOI: 10.1016/j.bbi.2020.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 01/28/2023] Open
Abstract
The neuroinflammatory responses to human immunodeficiency virus type 1 (HIV-1) coat proteins, such as glycoprotein 120 (gp120), are considered to be responsible for the HIV-associated distal sensory neuropathy. Accumulating evidences suggest that T-cell line tropic X4 gp120 increases macrophage infiltration into the peripheral nerves, and thereby induces neuroinflammation leading to pain. However, the mechanisms underlying X4 gp120-induced macrophage recruitment to the peripheral nervous systems remain unclear. Here, we demonstrated that perineural application of X4 gp120 from HIV-1 strains IIIB and MN elicited mechanical hypersensitivity and spontaneous pain-like behaviors in mice. Furthermore, flow cytometry and immunohistochemical studies revealed increased infiltration of bone marrow-derived macrophages into the parenchyma of sciatic nerves and dorsal root ganglia (DRG) 7 days after gp120 IIIB or MN application. Chemical deletion of circulating macrophages using clodronate liposomes markedly suppressed gp120 IIIB-induced pain-like behaviors. In in vitro cell infiltration analysis, RAW 264.7 cell (a murine macrophage cell line) was chemoattracted to conditioned medium from gp120 IIIB- or MN-treated cultured Schwann cells, but not to conditioned medium from these gp120-treated DRG neurons, suggesting possible involvement of Schwann cell-derived soluble factors in macrophage infiltration. We identified using a gene expression array that CXCL1, a chemoattractant of macrophages and neutrophils, was increased in gp120 IIIB-treated cultured Schwann cells. Similar to gp120 IIIB or MN, perineural application of recombinant CXCL1 elicited pain-like behaviors accompanied by macrophage infiltration to the peripheral nerves. Furthermore, the repeated injection of CXCR2 (receptor for CXCL1) antagonist or CXCL1 neutralizing antibody prevented both pain-like behaviors and macrophage infiltration in gp120 IIIB-treated mice. Thus, the present study newly defines that Schwann cell-derived CXCL1, secreted in response to X4 gp120 exposure, is responsible for macrophage infiltration into peripheral nerves, and is thereby associated with pain-like behaviors in mice. We propose herein that communication between Schwann cells and macrophages may play a prominent role in the induction of X4 HIV-1-associated pain.
Collapse
Affiliation(s)
- Mpumelelo Ntogwa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Ren Hiraiwa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Madoka Koyanagi
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mayuna Matsumoto
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takashi Ogihara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
27
|
Spinal Wnt5a Plays a Key Role in Spinal Dendritic Spine Remodeling in Neuropathic and Inflammatory Pain Models and in the Proalgesic Effects of Peripheral Wnt3a. J Neurosci 2020; 40:6664-6677. [PMID: 32616667 DOI: 10.1523/jneurosci.2942-19.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
Wnt signaling represents a highly versatile signaling system, which plays critical roles in developmental morphogenesis as well as synaptic physiology in adult life and is implicated in a variety of neural disorders. Recently, we demonstrated that Wnt3a is able to recruit multiple noncanonical signaling pathways to alter peripheral sensory neuron function in a nociceptive modality-specific manner. Furthermore, several studies recently reported an important role for Wnt5a acting via canonical and noncanonical signaling in spinal processing of nociception in a number of pathologic pain disorders. Here, using diverse molecular, genetic, and behavioral approaches in mouse models of pain in vivo, we report a novel role for Wnt5a signaling in nociceptive modulation at the structural level. In models of chronic pain, using male and female mice, we found that Wnt5a is released spinally from peripheral sensory neurons, where it recruits the tyrosine kinase receptors Ror2 and Ryk to modulate dendritic spine rearrangement. Blocking the Wnt5a-Ryk/Ror2 axis in spinal dorsal horn neurons prevented activity-dependent dendritic spine remodeling and significantly reduced mechanical hypersensitivity induced by peripheral injury as well as inflammation. Moreover, we observed that peripheral Wnt3a signaling triggers the release of Wnt5a in the spinal cord, and inhibition of spinal Wnt5a signaling attenuates the functional impact of peripheral Wnt3a on nociceptive sensitivity. In conclusion, this study reports a novel role for the Wnt signaling axis in coordinating peripheral and spinal sensitization and shows that targeting Wnt5a-Ryk/ROR2 signaling alleviates both structural and functional mechanisms of nociceptive hypersensitivity in models of chronic pain in vivo SIGNIFICANCE STATEMENT There is a major need to elucidate molecular mechanisms underlying chronic pain disorders to develop novel therapeutic approaches. Wnt signaling represents a highly versatile signaling system, which plays critical roles during development and adult physiology, and it was implicated in several diseases, including chronic pain conditions. Using mouse models, our study identifies a novel role for Wnt5a signaling in nociceptive modulation at the spinal cord level. We observed that Wnt5a recruits Ror2 and Ryk receptors to enhance dendritic spine density, leading to nociceptive sensitization. Blocking the Wnt5a-Ryk/Ror2 interaction in the spinal dorsal horn prevented spine remodeling and significantly reduced inflammatory and neuropathic hypersensitivity. These findings provide proof-of-concept for targeting spinal Wnt signaling for alleviating nociceptive hypersensitivity in vivo.
Collapse
|
28
|
Shi Y, Yuan S, Tang SJ. Morphine and HIV-1 gp120 cooperatively promote pathogenesis in the spinal pain neural circuit. Mol Pain 2020; 15:1744806919868380. [PMID: 31368399 PMCID: PMC6676262 DOI: 10.1177/1744806919868380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Opioids are common analgesics for pain relief in HIV patients. Ironically, emerging clinical data indicate that repeated use of opioid analgesics in fact leads to a heightened chronic pain state. To understand the underlying pathogenic mechanism, we generated a mouse model to study the interactive effect of morphine and HIV-1 gp120 on pain pathogenesis. We simulated chronic pain in the model by showing that repeated morphine administrations potentiated HIV-1 intrathecal gp120-induced pain. Several spinal cellular and molecular pathologies that are implicated in the development of HIV-associated pain are exacerbated by morphine, including astroglial activation, pro-inflammatory cytokine expression and Wnt5a signaling. We further demonstrated that inhibition of Wnt5a not only reversed the glial activation and cytokine upregulation but also the exacerbation of gp120-induced pain. These studies establish a mouse model for the opioid exacerbation of HIV-associated pain and reveal potential cellular and molecular mechanisms by which morphine enhances the pain.
Collapse
Affiliation(s)
- Yuqiang Shi
- 1 Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Subo Yuan
- 1 Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shao-Jun Tang
- 1 Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
29
|
Kanao-Kanda M, Kanda H, Liu S, Roy S, Toborek M, Hao S. Viral Vector-Mediated Gene Transfer of Glutamic Acid Decarboxylase for Chronic Pain Treatment: A Literature Review. Hum Gene Ther 2020; 31:405-414. [PMID: 32041431 DOI: 10.1089/hum.2019.359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic pain is long-lasting nociceptive state, impairing the patient's quality of life. Existing analgesics are generally not effective in the treatment of chronic pain, some of which such as opioids have the risk of tolerance/dependence and overdose death with higher daily opioid doses for increasing analgesic effect. Opioid use disorders have already reached an epidemic level in the United States; therefore, nonopioid analgesic approach and/or use of nonpharmacologic interventions will be employed with increasing frequency. Viral vector-mediated gene therapy is promising in clinical trials in the nervous system diseases. Glutamic acid decarboxylase (GAD) enzyme, a key enzyme in biosynthesis of γ-aminobutyric acid (GABA), plays an important role in analgesic mechanism. In the literature review, we used PubMed and bioRxiv to search the studies, and the eligible criteria include (1) article written in English, (2) use of viral vectors expressing GAD67 or GAD65, and (3) preclinical pain models. We identified 13 eligible original research articles, in which the pain models include nerve injury, HIV-related pain, painful diabetic neuropathy, and formalin test. GAD expressed by the viral vectors from all the reports produced antinociceptive effects. Restoring GABA systems is a promising therapeutic strategy for chronic pain, which provides evidence for the clinical trial of gene therapy for pain in the near future.
Collapse
Affiliation(s)
- Megumi Kanao-Kanda
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Hirotsugu Kanda
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shue Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Sabita Roy
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Michal Toborek
- Department of Anesthesiology & Critical Care Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
30
|
Crocin Alleviates Pain Hyperalgesia in AIA Rats by Inhibiting the Spinal Wnt5a/ β-Catenin Signaling Pathway and Glial Activation. Neural Plast 2020; 2020:4297483. [PMID: 32399022 PMCID: PMC7201501 DOI: 10.1155/2020/4297483] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
At present, most of the drugs have little effect on the pathological process of rheumatoid arthritis (RA). Analgesia is an important measure in the treatment of RA and is also one of the criteria to determine the therapeutic effects of the disease. Some studies have found that crocin, a kind of Chinese medicine, can effectively alleviate pain sensitization in pain model rats, but the mechanism is not clear. Emerging evidence indicates that crocin may inhibit the metastasis of lung and liver cancer cells from the breast by inhibiting Wnt/β-catenin and the Wnt signaling pathway is closely related to RA. Wnt5a belongs to the Wnt protein family and was previously thought to be involved only in nonclassical Wnt signaling pathways. Recent studies have shown that Wnt5a has both stimulatory and inhibitory effects on the classical Wnt signaling pathway, and so, Wnt5a has attracted increasing attention. This study demonstrated that crocin significantly increased the mechanical thresholds of adjuvant-induced arthritis (AIA) rats, suggesting that crocin can alleviate neuropathic pain. Crocin significantly decreased the levels of pain-related factors and glial activation. Foxy5, activator of Wnt5a, inhibited the above effects of crocin in AIA rats. In addition, intrathecal injection of a Wnt5a inhibitor significantly decreased hyperalgesia in AIA rats. This research shows that crocin may alleviate neuropathic pain in AIA rats by inhibiting the expression of pain-related molecules through the Wnt5a/β-catenin pathway, elucidating the mechanism by which crocin relieves neuropathic pain and provides a new way of thinking for the treatment of AIA pain.
Collapse
|
31
|
Zhou X, Tao L, Zhao M, Wu S, Obeng E, Wang D, Zhang W. Wnt/ β-catenin signaling regulates brain-derived neurotrophic factor release from spinal microglia to mediate HIV 1 gp120-induced neuropathic pain. Mol Pain 2020; 16:1744806920922100. [PMID: 32354292 PMCID: PMC7227158 DOI: 10.1177/1744806920922100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
HIV-associated neuropathic pain (HNP) is a common complication for AIDS patients. The pathological mechanism governing HNP has not been elucidated, and HNP has no effective analgesic treatment. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family related to the plasticity of the central nervous system. BDNF dysregulation is involved in many neurological diseases, including neuropathic pain. However, to the best of our knowledge, the role and mechanism of BDNF in HNP have not been elucidated. In this study, we explored this condition in an HNP mouse model induced by intrathecal injection of gp120. We found that Wnt3a and β-catenin expression levels increased in the spinal cord of HNP mice, consequently regulating the expression of BDNF and affecting hypersensitivity. In addition, the blockade of Wing-Int/β-catenin signaling, BDNF/TrkB or the BDNF/p75NTR pathway alleviated mechanical allodynia. BDNF immunoreactivity was colocalized with spinal microglial cells, which were activated in HNP mice. Inhibition of spinal microglial cell activation by minocycline relieved mechanical allodynia in HNP mice. This study helped to elucidate the role of the Wing-Int/β-catenin/BDNF signaling axis in HNP and may establish a foundation for further research investigating the Wing-Int/β-catenin/BDNF signaling axis as a target for HNP treatment.
Collapse
Affiliation(s)
- Xinxin Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lei Tao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Mengru Zhao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shengjun Wu
- Clinical Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Enoch Obeng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
32
|
Zhang W, Shi Y, Peng Y, Zhong L, Zhu S, Zhang W, Tang SJ. Neuron activity-induced Wnt signaling up-regulates expression of brain-derived neurotrophic factor in the pain neural circuit. J Biol Chem 2018; 293:15641-15651. [PMID: 30139740 DOI: 10.1074/jbc.ra118.002840] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a master regulator of synaptic plasticity in various neural circuits of the mammalian central nervous system. Neuron activity-induced BDNF gene expression is regulated through the Ca2+/CREB pathway, but other regulatory factors may also be involved in controlling BDNF levels. We report here that Wnt/β-catenin signaling plays a key role in controlling neuron activity-regulated BDNF expression. Using primary cortical cultures, we show that blockade of Wnt/β-catenin signaling inhibits the BDNF up-regulation that is induced by activation of the N-methyl-d-aspartic acid (NMDA) receptor and that activation of the Wnt/β-catenin signaling pathway stimulates BDNF expression. In vivo, Wnt/β-catenin signaling activated BDNF expression and was required for peripheral pain-induced up-regulation of BDNF in the mouse spine. We also found that conditional deletion of one copy of either Wntless (Wls) or β-catenin by Nestin-Cre-mediated recombination is sufficient to inhibit the pain-induced up-regulation of BDNF. We further show that the Wnt/β-catenin/BDNF axis in the spinal neural circuit plays an important role in regulating capsaicin-induced pain. These results indicate that neuron activity-induced Wnt signaling stimulates BDNF expression in the pain neural circuits. We propose that pain-induced Wnt secretion may provide an additional mechanism for intercellular coordination of BDNF expression in the neural circuit.
Collapse
Affiliation(s)
- Wenping Zhang
- From the Departments of Neuroscience and Cell Biology and.,the College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuqiang Shi
- From the Departments of Neuroscience and Cell Biology and
| | - Yanxi Peng
- the School of Pharmaceutical Sciences and Laboratory Animal Center of Sun Yat-Sen University, Guangzhou 510275, China.,the Basic Medical Department, Xiangnan University, Chenzhou 423000, China, and
| | - Ling Zhong
- the School of Pharmaceutical Sciences and Laboratory Animal Center of Sun Yat-Sen University, Guangzhou 510275, China.,the Shenzhen Center for ADR Monitoring, Shenzhen 518001, China
| | - Shuang Zhu
- Ophthalmology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Wenbo Zhang
- From the Departments of Neuroscience and Cell Biology and.,Ophthalmology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Shao-Jun Tang
- From the Departments of Neuroscience and Cell Biology and
| |
Collapse
|
33
|
Yuan S, Shi Y, Guo K, Tang SJ. Nucleoside Reverse Transcriptase Inhibitors (NRTIs) Induce Pathological Pain through Wnt5a-Mediated Neuroinflammation in Aging Mice. J Neuroimmune Pharmacol 2018; 13:230-236. [PMID: 29429030 DOI: 10.1007/s11481-018-9777-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 02/08/2023]
Abstract
Highly Active Antiretroviral Therapy (HAART) has significantly contributed to the increase of HIV-infected survivors over 50 years of age. Unfortunately, patients are required to stay on long-term HAART, which may be causally related to the development of neurological problems such as chronic pain. Little is known about the contribution of HAART or its therapeutic agents to the pathogenesis of pain during aging. In this study, we determined the effect of nucleoside reverse transcriptase inhibitors (NRTIs) on the development of mechanical allodynia and the potential underlying mechanism in aging mice (15.5 months). We found that systemic administration of individual NRTIs, including ddC (2'-3'-dideoxycytidine), ddI (didanosine), AZT (3'-azido-3'-deoxythymidine) and d4T (2', 3'-didehydro-2', 3'-dideoxythymidine), induced allodynia in similar magnitudes and temporal profiles. We used ddC as a representative to investigate cellular and molecular processes induced by NRTIs in the spinal cord that probably underlie the development of allodynia. The results showed that ddC caused evident neuroinflammation in the spinal cord, suggested by the up-regulation of proinflammatory cytokines TNF-α and IL-1β and the reactions of microglia and astrocytes. In addition, we found that Wnt5a, a critical regulator of neuroinflammation, was also up-regulated. Pharmacological inhibition of Wnt5a blocked ddC-induced up-regulation of TNF-α and astrocyte reaction, while activation of Wnt5a signaling potentiated these processes. Furthermore, our data showed that inhibition of Wnt5a significantly reversed ddC-induced mechanical allodynia in aging mice. The results collectively suggest that NRTIs may contribute to the development of chronic pain in aging patients by inducing Wnt5a-regulated neuroinflammation.
Collapse
Affiliation(s)
- Subo Yuan
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yuqiang Shi
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kaiwen Guo
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Department of Immunology, Medical College, Wuhan University of Science & Technology, Wuhan, 430065, People's Republic of China
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
34
|
Zhu A, Shen L, Xu L, Chen W, Huang Y. Wnt5a mediates chronic post-thoracotomy pain by regulating non-canonical pathways, nerve regeneration, and inflammation in rats. Cell Signal 2018; 44:51-61. [PMID: 29339085 DOI: 10.1016/j.cellsig.2018.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Abstract
As well-characterized ligands involved in neurogenesis, Wnts are emerging as promising targets in pain pathogenesis. Our previous pilot study showed that intrathecal inhibition of Wnt5a, but not Wnts, relieves chronic post-thoracotomy pain (CPTP) in rats. In the present study, we aimed to further explore the regulatory mechanism of Wnt5a in CPTP development. Increased protein levels of Wnt5a, transmembrane receptor Ror2, and activated non-canonical Wnt pathway members were found in the thoracic dorsal root ganglions from postoperative day (POD) 7 to POD 21. However, the levels of canonical Wnt pathway members showed no change by reverse transcriptase-PCR. In addition, elevated nerve regeneration, activated pro-inflammatory factors, and glial cells were detected from POD 7 to POD 21. Furthermore, intrathecal Wnt5a blockade during the early phase (POD 0 to POD 9) significantly increased the pain threshold, and intervention in the late phase (POD 14 to POD 16) alleviated pain; however, the analgesic response was not as effective as that in the early phase. Additionally, early but not late Wnt5a blockade significantly reversed CPTP-induced activation of the non-canonical Wnt pathways, nerve regeneration, and inflammation. In contrast, a Wnt5a agonist decreased the pain threshold in both naïve and painless rats. These results suggest that Wnt5a promotes the development of CPTP by activating non-canonical Wnt pathways, nerve regeneration, and inflammation. Therapeutic intervention by targeting Wnt5a may represent an effective strategy for preventing and treating CPTP.
Collapse
Affiliation(s)
- Afang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Shen
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weiyun Chen
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
35
|
Zhu A, Shen L, Xu L, Chen W, Huang Y. Suppression of Wnt5a, but not Wnts, relieves chronic post-thoracotomy pain via anti-inflammatory modulation in rats. Biochem Biophys Res Commun 2017; 493:474-480. [PMID: 28870803 DOI: 10.1016/j.bbrc.2017.08.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 01/01/2023]
Abstract
With regard to post-surgical pain, the incidence of chronic post-thoracotomy pain (CPTP) is second only to that caused by amputation and the underlying mechanism remains elusive. The emerging role of Wnts has been confirmed in the pathogenesis of neuropathic and inflammatory pain, both of which are known components of CPTP. We investigated whether Wnt3a and Wnt5a were involved in the development of CPTP, concerning their regulation of inflammatory responses in a previously established rat model. We observed up regulated protein levels of Wnt3a, Wnt5a, β-catenin, and TLR4, along with activated astrocytes and pro-inflammatory cytokines, in both dorsal root ganglia and the spinal cord dorsal horn. Furthermore, intrathecal inhibition of Wnt5a but not Wnts relieved mechanical hyperalgesia, down regulated expression of TLR4, and inactivated astrocytes and pro-inflammatory cytokines. These results suggest Wnt5a, but not Wnts, contributes to the development of CPTP, possibly by regulating the inflammatory response.
Collapse
Affiliation(s)
- Afang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Shen
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weiyun Chen
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
36
|
Nucleoside reverse transcriptase inhibitors (NRTIs) induce proinflammatory cytokines in the CNS via Wnt5a signaling. Sci Rep 2017. [PMID: 28646196 PMCID: PMC5482870 DOI: 10.1038/s41598-017-03446-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HAART is very effective in suppressing HIV-1 replication in patients. However, patients staying on long-term HAART still develop various HIV-associated neurological disorders, even when the viral load is low. The underlying pathogenic mechanisms are largely unknown. Emerging evidence implicated that persistent neuroinflammation plays an important role in NeuroAIDS. Although residual virus or viral proteins are commonly thought as the causal factors, we are interested in the alternative possibility that HAART critically contributes to the neuroinflammation in the central nervous system (CNS). To test this hypothesis, we have determined the effect of NRTIs on the expression of proinflammatory cytokines in the various CNS regions. Mice (C57Bl/6) were administered with AZT (Zidovudine 100 mg/kg/day), 3TC (Lamivudine 50 mg/kg/day) or D4T (Stavudine 10 mg/kg/day) for 5 days, and cortices, hippocampi and spinal cords were collected for immunoblotting. Our results showed that NRTI administration up-regulated cytokines, including IL-1β, TNF-α and IL-6 in various CNS regions. In addition, we found that NRTIs also up-regulated Wnt5a protein. Importantly, BOX5 attenuated NRTI-induced cytokine up-regulation. These results together suggest that NRTIs up-regulate proinflammatory cytokines via a Wnt5a signaling-dependent mechanism. Our findings may help understand the potential pathogenic mechanisms of HAART-associated NeuroAIDS and design effective adjuvants.
Collapse
|
37
|
Shi Y, Shu J, Liang Z, Yuan S, Tang SJ. EXPRESS: Oligodendrocytes in HIV-associated pain pathogenesis. Mol Pain 2016; 12:12/0/1744806916656845. [PMID: 27306410 PMCID: PMC4956145 DOI: 10.1177/1744806916656845] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Although the contributions of microglia and astrocytes to chronic pain pathogenesis have been a focal point of investigation in recent years, the potential role of oligodendrocytes, another major type of glial cells in the CNS that generates myelin, remains largely unknown. Results We report here that cell markers of the oligodendrocyte lineage, including NG2, PDGFRα, and Olig2, are significantly increased in the spinal dorsal horn of HIV patients who developed chronic pain. The levels of myelin proteins myelin basic protein and proteolipid protein are also aberrant in the spinal dorsal horn of “pain-positive” HIV patients. Similarly, the oligodendrocyte and myelin markers are up-regulated in the spinal dorsal horn of a mouse model of HIV-1 gp120-induced pain. Surprisingly, the expression of gp120-induced mechanical allodynia appears intact up to 4 h after myelin basic protein is knocked down or knocked out. Conclusion These findings suggest that oligodendrocytes are reactive during the pathogenesis of HIV-associated pain. However, interfering with myelination does not alter the induction of gp120-induced pain.
Collapse
Affiliation(s)
- Yuqiang Shi
- University of Texas Medical Branch at Galveston
| | | | - Zongsuo Liang
- University of Texas Medical Branch at GalvestonUniversity of Texas Medical Branch at GalvestonUniversity of Texas Medical Branch at Galveston
| | - Subo Yuan
- University of Texas Medical Branch at Galveston
| | - Shao-Jun Tang
- University of Texas Medical Branch at GalvestonUniversity of Texas Medical Branch at GalvestonUniversity of Texas Medical Branch at Galveston
| |
Collapse
|
38
|
Rebensburg S, Helfer M, Schneider M, Koppensteiner H, Eberle J, Schindler M, Gürtler L, Brack-Werner R. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins. Sci Rep 2016; 6:20394. [PMID: 26833261 PMCID: PMC4735868 DOI: 10.1038/srep20394] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022] Open
Abstract
Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming broad anti-HIV activity. Antiviral activity was highly selective for virus particles, preventing primary attachment of the virus to the cell surface and viral envelope proteins from binding to heparin. Bioassay-guided fractionation indicated that Ci extract contains numerous antiviral compounds and therefore has favorably low propensity to induce virus resistance. Indeed, no resistant viruses emerged during 24 weeks of continuous propagation of the virus in the presence of Ci extracts. Finally, Ci extracts also inhibited infection by virus particles pseudotyped with Ebola and Marburg virus envelope proteins, indicating that antiviral activity of Ci extract extends to emerging viral pathogens. These results demonstrate that Ci extracts show potent and broad in vitro antiviral activity against viruses that cause life-threatening diseases in humans and are promising sources of agents that target virus particles.
Collapse
Affiliation(s)
- Stephanie Rebensburg
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Markus Helfer
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Martha Schneider
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Herwig Koppensteiner
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Josef Eberle
- Ludwig Maximilian’s University, Max von Pettenkofer Institute, Munich
| | - Michael Schindler
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
- University Hospital of Tübingen, Department of Medical Virology and Epidemiology of Viral Diseases, Tübingen
| | - Lutz Gürtler
- Ludwig Maximilian’s University, Max von Pettenkofer Institute, Munich
| | - Ruth Brack-Werner
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
- German Center for Infection Research, partner site Munich, Germany
| |
Collapse
|
39
|
Kanda H, Kanao M, Liu S, Yi H, Iida T, Levitt RC, Candiotti KA, Lubarsky DA, Hao S. HSV vector-mediated GAD67 suppresses neuropathic pain induced by perineural HIV gp120 in rats through inhibition of ROS and Wnt5a. Gene Ther 2016; 23:340-8. [PMID: 26752351 PMCID: PMC4824655 DOI: 10.1038/gt.2016.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/22/2015] [Accepted: 12/31/2015] [Indexed: 12/19/2022]
Abstract
Human immunodeficiency virus (HIV)-related neuropathic pain is a debilitating chronic condition that is severe and unrelenting. Despite the extensive research, the exact neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments. Loss of GABAergic tone may play an important role in the neuropathic pain state. Glutamic acid decarboxylase 67 (GAD67) is one of isoforms that catalyze GABA synthesis. Here, we used recombinant herpes simplex virus (HSV-1) vectors that encode gad1 gene to evaluate the therapeutic potential of GAD67 in peripheral HIV gp120-induced neuropathic pain in rats. We found that 1) subcutaneous inoculation of the HSV vectors expressing GAD67 attenuated mechanical allodynia in the model of HIV gp120-induced neuropathic pain, 2) the anti-allodynic effect of GAD67 was reduced by GABA-A and-B receptors antagonists, 3) HSV vectors expressing GAD67 reversed the lowered GABA-IR expression, and 4) the HSV vectors expressing GAD67 suppressed the upregulated mitochondrial superoxide and Wnt5a in the spinal dorsal horn. Taken together, our studies support the concept that recovering GABAergic tone by the HSV vectors may reverse HIV-associated neuropathic pain through suppressing mitochondrial superoxide and Wnt5a. Our studies provide validation of HSV-mediated GAD67 gene therapy in the treatment of HIV-related neuropathic pain.
Collapse
Affiliation(s)
- H Kanda
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan
| | - M Kanao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan
| | - S Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - H Yi
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - T Iida
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan
| | - R C Levitt
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Veterans Affairs Medical Center, Miami, FL, USA
| | - K A Candiotti
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D A Lubarsky
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|