1
|
Feng Q, Li Y, Wen X, Li H, Qi C, Wang N, Zhu G, Fu Y, Liu C, Liu D, Zhang Z, Yang F, Zhou Z, Song J, Liang J, Chen Y, Zhou X, Liu Y, Song Y. TAT-T407 Mitigates Apoptosis and Cognitive Impairments Following Cerebral Ischemia Through Disruption of TRPV1-CDK5 Interaction. Mol Neurobiol 2025:10.1007/s12035-025-04926-1. [PMID: 40317415 DOI: 10.1007/s12035-025-04926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/05/2025] [Indexed: 05/07/2025]
Abstract
Cerebral ischemia/reperfusion (I/R) injury manifests as progressive motor and cognitive dysfunction, primarily attributed to neuronal apoptosis. However, there is a lack of neuroprotective drugs targeting neuronal apoptosis in ischemic stroke. In this study, utilizing bioinformatics analysis, we hypothesized that TRPV1 could serve as a novel molecular target implicated in neuronal apoptosis during cerebral ischemia/reperfusion (I/R) injury. To validate our hypothesis in vivo, we employed mouse models of I/R injury induced by transient middle cerebral artery occlusion (tMCAO). Importantly, pre-injecting capsazepine (CPZ), a TRPV1 antagonist, significantly suppressed apoptotic pathway activity in neurons. Additionally, we investigated the regulatory role of CDK5, a well-known neuronal-specific kinase, in modulating the internalization and functionality of TRPV1 ion channels. Our findings revealed an augmented interaction between TRPV1 and CDK5 during cerebral ischemia/reperfusion (I/R) injury. The administration of the TAT-T407 interference peptide, derived from the phosphorylation site of TRPV1 for CDK5, resulted in a reduction of neuronal apoptosis within ischemic regions following cerebral ischemia/reperfusion (I/R) injury. This intervention significantly diminished cerebral infarct volume and improved neurological function. In summary, disrupting the TRPV1/CDK5 interaction through TAT-T407 peptides provides protection against neuronal apoptosis and cognitive decline, suggesting an innovative therapeutic strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Qian Feng
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Xuzhou Key Laboratory of Clinical and Experimental Pathology, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Clinical Laboratory, Xuzhou Medical University Affiliated Hospital, Xuzhou, Jiangsu, 221002, China
| | - Ying Li
- Clinical Laboratory, Xuzhou Medical University Affiliated Hospital, Xuzhou, Jiangsu, 221002, China
| | - Xiangru Wen
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Xuzhou Key Laboratory of Clinical and Experimental Pathology, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Hui Li
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Chengyu Qi
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Nan Wang
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Xuzhou Key Laboratory of Clinical and Experimental Pathology, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Yanyan Fu
- Department of Neurobiology and Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Changdong Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Dan Liu
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Zhen Zhang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Fan Yang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Zhongyuan Zhou
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jinjin Song
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jia Liang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yuling Chen
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Xiaoyan Zhou
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Xuzhou Key Laboratory of Clinical and Experimental Pathology, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Yan Liu
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Xuzhou Key Laboratory of Clinical and Experimental Pathology, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Yuanjian Song
- Jiangsu Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Engineering Center for Precision Diagnosis and Treatment Research of Polygenic Diseases, Xuzhou Key Laboratory of Clinical and Experimental Pathology, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
2
|
Chu CC, Hu YH, Li GZ, Chen J, Zhang NN, Gu YX, Wu SY, Zhang HF, Xu YY, Guo HL, Tian X, Chen F. Unveiling the significance of AKAP79/150 in the nervous system disorders: An emerging opportunity for future therapies? Neurobiol Dis 2025; 206:106812. [PMID: 39864527 DOI: 10.1016/j.nbd.2025.106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025] Open
Abstract
A-kinase anchoring protein 79/150 (AKAP79/150) is a crucial scaffolding protein that positions various proteins at specific synaptic sites to modulate excitatory synaptic intensity. As our understanding of AKAP79/150's biology deepens, along with its significant role in the pathophysiology of various human disorders, there is growing evidence that reveals new opportunities for therapeutic interventions. In this review, we examine the fundamental structure and primary functions of AKAP79/150, emphasizing its pathophysiological mechanisms in different nervous system disorders, particularly inflammatory pain, epilepsy, depression, and Alzheimer's disease. We also discuss its potential therapeutic implications for patients suffering from these conditions.
Collapse
Affiliation(s)
- Chen-Chao Chu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Gui-Zhou Li
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ning-Ning Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yi-Xue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Shi-Yu Wu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Feng Zhang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang-Yang Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Chivers SB, Andrade MA, Hammack RJ, Shannonhouse J, Gomez R, Zhang Y, Nguyen B, Shah P, Kim YS, Toney GM, Jeske NA. Peripheral macrophages contribute to nociceptor priming in mice with chronic intermittent hypoxia. Sci Signal 2024; 17:eadn8936. [PMID: 39078919 PMCID: PMC11412124 DOI: 10.1126/scisignal.adn8936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/13/2024] [Indexed: 09/21/2024]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with increased incidence of chronic musculoskeletal pain. We investigated the mechanism of this association in a mouse model of chronic intermittent hypoxia (CIH) that mimics the repetitive hypoxemias of OSA. After 14 days of CIH, both male and female mice exhibited behaviors indicative of persistent pain, with biochemical markers in the spinal cord dorsal horn and sensory neurons of the dorsal root ganglia consistent with hyperalgesic priming. CIH, but not sleep fragmentation alone, induced an increase in macrophage recruitment to peripheral sensory tissues (sciatic nerve and dorsal root ganglia), an increase in inflammatory cytokines in the circulation, and nociceptor sensitization. Peripheral macrophage ablation blocked CIH-induced hyperalgesic priming. The findings suggest that correcting the hypoxia or targeting macrophage signaling might suppress persistent pain in patients with OSA.
Collapse
Affiliation(s)
- Samuel B. Chivers
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mary Ann Andrade
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert J. Hammack
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Brian Nguyen
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Pankil Shah
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Glenn M. Toney
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Zhang Y, Jeske NA. A-kinase anchoring protein 79/150 coordinates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor sensitization in sensory neurons. Mol Pain 2023; 19:17448069231222406. [PMID: 38073552 PMCID: PMC10722943 DOI: 10.1177/17448069231222406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Changes in sensory afferent activity contribute to the transition from acute to chronic pain. However, it is unlikely that a single sensory receptor is entirely responsible for persistent pain. It is more probable that extended changes to multiple receptor proteins expressed by afferent neurons support persistent pain. A-Kinase Anchoring Protein 79/150 (AKAP) is an intracellular scaffolding protein expressed in sensory neurons that spatially and temporally coordinates signaling events. Since AKAP scaffolds biochemical modifications of multiple TRP receptors linked to pain phenotypes, we probed for other ionotropic receptors that may be mediated by AKAP and contribute to persistent pain. Here, we identify a role for AKAP modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor (AMPA-R) functionality in sensory neurons. Pharmacological manipulation of distinct AMPA-R subunits significantly reduces persistent mechanical hypersensitivity observed during hyperalgesic priming. Stimulation of both protein kinases C and A (PKC, PKA, respectively) modulate AMPA-R subunit GluR1 and GluR2 phosphorylation and surface expression in an AKAP-dependent manner in primary cultures of DRG neurons. Furthermore, AKAP knock out reduces sensitized AMPA-R responsivity in DRG neurons. Collectively, these data indicate that AKAP scaffolds AMPA-R subunit organization in DRG neurons that may contribute to the transition from acute-to-chronic pain.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nathaniel A Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
5
|
Donald GR, de Carvalho PR, Fernandes PD, Boylan F. Antinociceptive activity of puberulin and choisyine from ethanol extract of Choisya ternata Kunth var. Sundance. Biomed Pharmacother 2021; 141:111926. [PMID: 34323696 DOI: 10.1016/j.biopha.2021.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022] Open
Abstract
Choisya ternata Kunth variety Sundance (CTS) is a plant used in traditional medicine in North America, especially in Mexico. The present study evaluated the antinociceptive activity of the crude ethanolic extract of CTS leaves and tested its isolated compounds puberulin (Pu) and choisyine (Ch). An antinociceptive effect was observed after treatment with CTS extract and the isolated compounds Pu and Ch. Mice orally pre-treated with CTS extract (10, 30 or 100 mg/kg), Pu or Ch (0.3, 1 or 3 mg/kg) were less sensitive to chemical and thermal algesic agents in different animal models (formalin-, glutamate- and capsaicin-induced licking response tests and hot plate test). In addition, an antagonist of the opioid receptor was able to reverse the antinociceptive effect observed for the CTS extract and the isolated substance Ch, but it did not inhibit the effect of Pu. The cholinergic pathway was found to be involved in this antinociceptive effect for the CTS extract and Ch but has no participation in the Pu antinociceptive activity.
Collapse
Affiliation(s)
- Graciela Rocha Donald
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro CEP 21941-901, Brazil.
| | - Patricia Ribeiro de Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro CEP 21941-901, Brazil.
| | - Patrícia Dias Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro CEP 21941-901, Brazil.
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Masuoka T, Yamashita Y, Yoshida J, Nakano K, Tawa M, Nishio M, Ishibashi T. Sensitization of glutamate receptor-mediated pain behaviour via nerve growth factor-dependent phosphorylation of transient receptor potential V1 under inflammatory conditions. Br J Pharmacol 2020; 177:4223-4241. [PMID: 32579702 DOI: 10.1111/bph.15176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/19/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Glutamate and metabotropic glutamate (mGlu) receptors on primary sensory neurons are crucial in modulating pain sensitivity. However, it is unclear how inflammation affects mGlu receptor-mediated nociceptive responses. We therefore investigated the effects of mGlu1/5 receptor agonists on pain-related behaviour during persistent inflammation and their underlying mechanisms. EXPERIMENTAL APPROACH Effects of a mGlu1/5 receptor agonist on pain-related behaviour during inflammation was assessed in mice. Intracellular calcium responses, membrane current responses, and protein expression in primary sensory neurons were examined using cultured dorsal root ganglion (DRG) neurons, dissociated from wild-type and gene knockout mice. KEY RESULTS Persistent inflammation induced by complete Freund's adjuvant increased the duration of mGlu1/5 receptor-mediated pain behaviour, which was antagonized by inhibition of nerve growth factor (NGF)-tropomyosin receptor kinase A (TrkA) signalling. Calcium imaging revealed that NGF treatment increased the number of cultured DRG neurons responding to mGlu1/5 receptor activation. Stimulation of mGlu1/5 receptors in NGF-treated DRG neurons induced inward currents through TRPV1 channels in association with PLC but not with IP3 receptors. NGF treatment also increased the number of neurons responding to a DAG analogue via TRPV1 channel activation. Furthermore, NGF up-regulated expression of TRPV1 and A-kinase anchoring protein 5 (AKAP5), resulting in increased AKAP5-dependent TRPV1 phosphorylation. AKAP5 knockout mice did not exhibit mGlu1/5 receptor-mediated excitation in NGF-treated DRG neurons or pain response facilitation under inflammatory conditions. CONCLUSIONS AND IMPLICATIONS NGF augments glutamate- and mGlu1/5 receptor-mediated excitation of nociceptive neurons by AKAP5-dependent phosphorylation of TRPV1 channels, potentiating hypersensitivity to glutamate in inflamed tissues.
Collapse
Affiliation(s)
- Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Yuka Yamashita
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Junko Yoshida
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Katsuya Nakano
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Masashi Tawa
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Matomo Nishio
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Takaharu Ishibashi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
7
|
Fu W, Nelson TS, Santos DF, Doolen S, Gutierrez JJ, Ye N, Zhou J, Taylor B. An NPY Y1 receptor antagonist unmasks latent sensitization and reveals the contribution of protein kinase A and Epac to chronic inflammatory pain. Pain 2019; 160:1754-1765. [PMID: 31335645 PMCID: PMC6903783 DOI: 10.1097/j.pain.0000000000001557] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peripheral inflammation produces a long-lasting latent sensitization of spinal nociceptive neurons, that is, masked by tonic inhibitory controls. We explored mechanisms of latent sensitization with an established four-step approach: (1) induction of inflammation; (2) allow pain hypersensitivity to resolve; (3) interrogate latent sensitization with a channel blocker, mutant mouse, or receptor antagonist; and (4) disrupt compensatory inhibition with a receptor antagonist so as to reinstate pain hypersensitivity. We found that the neuropeptide Y Y1 receptor antagonist BIBO3304 reinstated pain hypersensitivity, indicative of an unmasking of latent sensitization. BIBO3304-evoked reinstatement was not observed in AC1 knockout mice and was prevented with intrathecal co-administration of a pharmacological blocker to the N-methyl-D-aspartate receptor (NMDAR), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), transient receptor potential cation channel A1 (TRPA1), channel V1 (TRPV1), or exchange protein activated by cAMP (Epac1 or Epac2). A PKA activator evoked both pain reinstatement and touch-evoked pERK expression in dorsal horn; the former was prevented with intrathecal co-administration of a TRPA1 or TRPV1 blocker. An Epac activator also evoked pain reinstatement and pERK expression. We conclude that PKA and Epac are sufficient to maintain long-lasting latent sensitization of dorsal horn neurons that is kept in remission by the NPY-Y1 receptor system. Furthermore, we have identified and characterized 2 novel molecular signaling pathways in the dorsal horn that drive latent sensitization in the setting of chronic inflammatory pain: NMDAR→AC1→PKA→TRPA1/V1 and NMDAR→AC1→Epac1/2. New treatments for chronic inflammatory pain might either increase endogenous NPY analgesia or inhibit AC1, PKA, or Epac.
Collapse
Affiliation(s)
- Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
| | - Tyler S. Nelson
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Diogo F. Santos
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Suzanne Doolen
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Javier J.P. Gutierrez
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Na Ye
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bradley Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
8
|
Serum response factor mediates nociceptor inflammatory pain plasticity. Pain Rep 2018; 3:e658. [PMID: 29922747 PMCID: PMC5999410 DOI: 10.1097/pr9.0000000000000658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 01/09/2023] Open
Abstract
Supplemental Digital Content is Available in the Text. Serum response factor upregulates A-Kinase Anchoring Protein 79/150 expression in afferent sensory neurons through metabotropic glutamate receptor signaling. Introduction: Chronic metabotropic glutamate receptor activation in nociceptive afferents may upregulate A-Kinase Anchoring Protein 150 (AKAP150) expression and/or function. Objectives: To quantify transcriptional changes in AKAP150 expression and/or function after long-term mGluR5 agonist exposure, and identify transcriptional elements responsible. Methods: Dorsal root ganglia (DRG) were dissected from Sprague-Dawley rats and cultured for biochemical analysis of AKAP150 expression after prolonged mGluR5 agonist exposure. Serum response factor (SRF) expression was knocked down through siRNA in cultures to demonstrate significance to AKAP150 upregulation. Serum response factor was also knocked down in vivo through intrathecal injections of specifically targeted oligonucleotides to demonstrate significance to hyperalgesic priming behavior in persistent mechanical hypersensitivity. Results: Serum response factor and AKAP150 are coexpressed in TRPV1(+) DRG neurons in intact DRG. Prolonged mGluR5 agonist exposure increases SRF-dependent transcription and AKAP150 expression in a manner sensitive to protein kinase C inhibition and SRF knock down. Serum response factor in vivo knock down reduces mechanical hyperalgesic priming. Conclusion: Serum response factor transcription plays an important role in transcriptional upregulation of AKAP and hyperalgesic priming behavior, and may contribute to the increased role of AKAP150 in the transition from acute to chronic pain.
Collapse
|
9
|
Sensitization of TRPV1 and TRPA1 via peripheral mGluR5 signaling contributes to thermal and mechanical hypersensitivity. Pain 2018. [PMID: 28621704 DOI: 10.1097/j.pain.0000000000000973] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peripheral tissue inflammation or injury causes glutamate release from nociceptive axons, keratinocytes, and Schwann cells, resulting in thermal hypersensitivity. However, the detailed molecular mechanisms underlying glutamate-induced thermal hypersensitivity are unknown. The aim of this study was to clarify the involvement of peripheral transient receptor potential (TRP) TRP vanilloid 1 (TRPV1), TRP ankyrin 1 (TRPA1), and protein kinase C epsilon (PKCε) in glutamate-induced pain hypersensitivity. The amount of glutamate in the facial tissue was significantly increased 3 days after facial Complete Freund's adjuvant injection. The head-withdrawal reflex threshold to heat, cold, or mechanical stimulation was significantly decreased on day 7 after continuous glutamate or metabotropic glutamate receptor 5 (mGluR5) agonist (CHPG) injection into the facial skin compared with vehicle-injected rats, and glutamate-induced hypersensitivity was significantly recovered by mGluR5 antagonist MTEP, TRPA1 antagonist HC-030031, TRPV1 antagonist SB366791, or PKCε translocation inhibitor administration into the facial skin. TRPV1 and TRPA1 were expressed in mGluR5-immunoreactive (IR) trigeminal ganglion (TG) neurons innervating the facial skin, and mGluR5-IR TG neurons expressed PKCε. There was no significant difference in the number of GluR5-IR TG neurons among glutamate-injected, saline-injected, and naive rats, whereas that of TRPV1- or TRPA1-IR TG neurons was significantly increased 7 days after continuous glutamate injection into the facial skin compared with vehicle injection. PKCε phosphorylation in TG was significantly enhanced following glutamate injection into the facial skin. Moreover, neuronal activity of TG neurons was significantly increased following facial glutamate treatment. The present findings suggest that sensitization of TRPA1 and/or TRPV1 through mGluR5 signaling via PKCε is involved in facial thermal and mechanical hypersensitivity.
Collapse
|
10
|
Fazzari J, Linher-Melville K, Singh G. Tumour-Derived Glutamate: Linking Aberrant Cancer Cell Metabolism to Peripheral Sensory Pain Pathways. Curr Neuropharmacol 2018; 15:620-636. [PMID: 27157265 PMCID: PMC5543678 DOI: 10.2174/1570159x14666160509123042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/16/2016] [Accepted: 04/17/2016] [Indexed: 01/22/2023] Open
Abstract
Background Chronic pain is a major symptom that develops in cancer patients, most commonly emerging during advanced stages of the disease. The nature of cancer-induced pain is complex, and the efficacy of current therapeutic interventions is restricted by the dose-limiting side-effects that accompany common centrally targeted analgesics. Methods This review focuses on how up-regulated glutamate production and export by the tumour converge at peripheral afferent nerve terminals to transmit nociceptive signals through the transient receptor cation channel, TRPV1, thereby initiating central sensitization in response to peripheral disease-mediated stimuli. Results Cancer cells undergo numerous metabolic changes that include increased glutamine catabolism and over-expression of enzymes involved in glutaminolysis, including glutaminase. This mitochondrial enzyme mediates glutaminolysis, producing large pools of intracellular glutamate. Up-regulation of the plasma membrane cystine/glutamate antiporter, system xc-, promotes aberrant glutamate release from cancer cells. Increased levels of extracellular glutamate have been associated with the progression of cancer-induced pain and we discuss how this can be mediated by activation of TRPV1. Conclusion With a growing population of patients receiving inadequate treatment for intractable pain, new targets need to be considered to better address this largely unmet clinical need for improving their quality of life. A better understanding of the mechanisms that underlie the unique qualities of cancer pain will help to identify novel targets that are able to limit the initiation of pain from a peripheral source–the tumour.
Collapse
Affiliation(s)
| | | | - Gurmit Singh
- Department of Pathology and Molecular Medicine; Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON. Canada
| |
Collapse
|
11
|
Kartbaeva EB, Donald GR, Sakipova ZB, Ibragimova LN, Bekbolatova EN, Ternynko II, Fernandes PD, Boylan F. Antinociceptive activity of Cistanche salsa stolons, growing in the Republic of Kazakhstan. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
A-Kinase Anchoring Protein 79/150 Scaffolds Transient Receptor Potential A 1 Phosphorylation and Sensitization by Metabotropic Glutamate Receptor Activation. Sci Rep 2017; 7:1842. [PMID: 28500286 PMCID: PMC5431798 DOI: 10.1038/s41598-017-01999-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/05/2017] [Indexed: 01/20/2023] Open
Abstract
Mechanical pain serves as a base clinical symptom for many of the world’s most debilitating syndromes. Ion channels expressed by peripheral sensory neurons largely contribute to mechanical hypersensitivity. Transient Receptor Potential A 1 (TRPA1) is a ligand-gated ion channel that contributes to inflammatory mechanical hypersensitivity, yet little is known as to the post-translational mechanism behind its somatosensitization. Here, we utilize biochemical, electrophysiological, and behavioral measures to demonstrate that metabotropic glutamate receptor-induced sensitization of TRPA1 nociceptors stimulates targeted modification of the receptor. Type 1 mGluR5 activation increases TRPA1 receptor agonist sensitivity in an AKA-dependent manner. As a scaffolding protein for Protein Kinases A and C (PKA and PKC, respectively), AKAP facilitates phosphorylation and sensitization of TRPA1 in ex vivo sensory neuronal preparations. Furthermore, hyperalgesic priming of mechanical hypersensitivity requires both TRPA1 and AKAP. Collectively, these results identify a novel AKAP-mediated biochemical mechanism that increases TRPA1 sensitivity in peripheral sensory neurons, and likely contributes to persistent mechanical hypersensitivity.
Collapse
|
13
|
Masuoka T, Kudo M, Yamashita Y, Yoshida J, Imaizumi N, Muramatsu I, Nishio M, Ishibashi T. TRPA1 Channels Modify TRPV1-Mediated Current Responses in Dorsal Root Ganglion Neurons. Front Physiol 2017; 8:272. [PMID: 28515697 PMCID: PMC5413491 DOI: 10.3389/fphys.2017.00272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/13/2017] [Indexed: 01/21/2023] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel is highly expressed in a subset of sensory neurons in the dorsal root ganglia (DRG) and trigeminal ganglia of experimental animals, responsible for nociception. Many researches have revealed that some TRPV1-positive neurons co-express the transient receptor potential ankyrin 1 (TRPA1) channel whose activities are closely modulated by TRPV1 channel. However, it is less investigated whether the activities of TRPV1 channel are modulated by the presence of TRPA1 channel in primary sensory neurons. This study clarified the difference in electrophysiological responses induced by TRPV1 channel activation between TRPA1-positive and TRPA1-negative DRG. TRPV1 and TRPA1 channel activations were evoked by capsaicin (1 μM), a TRPV1 agonist, and allyl isothiocyanate (AITC; 500 μM), a TRPA1 agonist, respectively. Capsaicin perfusion for 15 s caused a large inward current without a desensitization phase at a membrane potential of −70 mV in AITC-insensitive DRG (current density; 29.6 ± 5.6 pA/pF, time constant of decay; 12.8 ± 1.8 s). The capsaicin-induced currents in AITC-sensitive DRG had a small current density (12.7 ± 2.9 pA/pF) with a large time constant of decay (24.3 ± 5.4 s). In calcium imaging with Fura-2, the peak response by capsaicin was small and duration reaching the peak response was long in AITC-sensitive neurons. These electrophysiological differences were completely eliminated by HC-030031, a TRPA1 antagonist, in an extracellular solution or 10 mM EGTA, a Ca2+ chelator, in an internal solution. Capsaicin perfusion for 120 s desensitized the inward currents after a transient peak. The decay during capsaicin perfusion was notably slow in AITC-sensitive DRG; ratio of capsaicin-induced current 60 s after the treatment per the peak current in AITC-sensitive neurons (78 ± 9%) was larger than that in AITC-insensitive neurons (48 ± 5%). The capsaicin-induced current in the desensitization phase was attenuated by HC-030031 in AITC-insensitive DRG. These results indicate that (1) TRPV1-mediated currents in TRPA1-positive neurons characterize small current densities with slow decay, which is caused by TRPA1 channel activities and intracellular Ca2+ mobilization and (2) desensitization of TRPV1-mediated current in TRPA1-positive neurons is apparently slow, due to appending TRPA1-mediated current.
Collapse
Affiliation(s)
- Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical UniversityUchinada, Japan
| | - Makiko Kudo
- Department of Pharmacology, School of Medicine, Kanazawa Medical UniversityUchinada, Japan
| | - Yuka Yamashita
- Department of Pharmacology, School of Medicine, Kanazawa Medical UniversityUchinada, Japan
| | - Junko Yoshida
- Department of Pharmacology, School of Medicine, Kanazawa Medical UniversityUchinada, Japan
| | - Noriko Imaizumi
- Department of Pharmacology, School of Medicine, Kanazawa Medical UniversityUchinada, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical UniversityUchinada, Japan
| | - Matomo Nishio
- Department of Pharmacology, School of Medicine, Kanazawa Medical UniversityUchinada, Japan
| | - Takaharu Ishibashi
- Department of Pharmacology, School of Medicine, Kanazawa Medical UniversityUchinada, Japan
| |
Collapse
|
14
|
Gan X, Wu J, Ren C, Qiu CY, Li YK, Hu WP. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling. Pharmacol Res 2016; 107:19-26. [PMID: 26946972 DOI: 10.1016/j.phrs.2016.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/08/2016] [Accepted: 02/15/2016] [Indexed: 01/15/2023]
Abstract
Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia.
Collapse
Affiliation(s)
- Xiong Gan
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Jing Wu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Cuixia Ren
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Chun-Yu Qiu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Yan-Kun Li
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Wang-Ping Hu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China.
| |
Collapse
|
15
|
Chiechio S. Modulation of Chronic Pain by Metabotropic Glutamate Receptors. PHARMACOLOGICAL MECHANISMS AND THE MODULATION OF PAIN 2016; 75:63-89. [DOI: 10.1016/bs.apha.2015.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|