1
|
Shi Q, Ren B, Lu X, Zhang L, Wu L, Hu L, Zhang YQ. Neural mechanisms underlying reduced nocifensive sensitivity in autism-associated Shank3 mutant dogs. Mol Psychiatry 2025:10.1038/s41380-025-02952-y. [PMID: 40097608 DOI: 10.1038/s41380-025-02952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
Autistic individuals carrying mutations in SHANK3 (encoding a synaptic scaffolding protein) have been consistently reported to exhibit reduced pain sensitivity. However, the neural mechanisms underlying impaired pain processing remain unclear. To investigate the role of SHANK3 in pain processing, we conducted behavioral, electrophysiological, and pharmacological tests upon nociceptive stimulation in a Shank3 mutant dog model. Behaviorally, Shank3 mutant dogs showed reduced nocifensive sensitivity compared to wild-type (WT) dogs. Electrophysiologically, Shank3 mutant dogs exhibited reduced neural responses elicited by the activations of both Aδ- and C-fiber nociceptors. Additionally, Shank3 mutants showed a lower level of aperiodic exponents, which serve as a marker for the excitatory-inhibitory balance of neural activity. The aperiodic exponents mediated the relationship between genotype and nocifensive sensitivity as well as between genotype and neural responses elicited by nociceptive stimuli. Pharmacologically, the reduced nocifensive sensitivity and atypical excitatory-inhibitory balance were rescued by a GABAAR antagonist pentylenetetrazole. These findings highlight the critical role of Shank3 in pain processing and suggest that an impaired excitatory-inhibitory balance may be responsible for the reduced nocifensive reactivity in autism.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Baolong Ren
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejing Lu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- School of Life Sciences, Hubei University, Wuhan, 430415, China.
| |
Collapse
|
2
|
Yue L, Bao C, Zhang L, Zhang F, Zhou W, Iannetti GD, Hu L. Neuronal mechanisms of nociceptive-evoked gamma-band oscillations in rodents. Neuron 2025; 113:769-784.e6. [PMID: 39809278 DOI: 10.1016/j.neuron.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/02/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
Gamma-band oscillations (GBOs) in the primary somatosensory cortex (S1) play key roles in nociceptive processing. Yet, one crucial question remains unaddressed: what neuronal mechanisms underlie nociceptive-evoked GBOs? Here, we addressed this question using a range of somatosensory stimuli (nociceptive and non-nociceptive), neural recording techniques (electroencephalography in humans and silicon probes and calcium imaging in rodents), and optogenetics (alone or simultaneously with electrophysiology in mice). We found that (1) GBOs encoded pain intensity independent of stimulus intensity in humans, (2) GBOs in S1 encoded pain intensity and were triggered by spiking of S1 interneurons, (3) parvalbumin (PV)-positive interneurons preferentially tracked pain intensity, and critically, (4) PV S1 interneurons causally modulated GBOs and pain-related behaviors for both thermal and mechanical pain. These findings provide causal evidence that nociceptive-evoked GBOs preferentially encoding pain intensity are generated by PV interneurons in S1, thereby laying a solid foundation for developing GBO-based targeted pain therapies.
Collapse
Affiliation(s)
- Lupeng Yue
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chongyu Bao
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Libo Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fengrui Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqian Zhou
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome, Italy; Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Li Hu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Kobayashi S, Osaki H, Kato S, Kobayashi K, Kobayashi M. Regulation of nociception by long-term potentiation of inhibitory postsynaptic currents from insular cortical parvalbumin-immunopositive neurons to pyramidal neurons. Pain 2025:00006396-990000000-00803. [PMID: 39841043 DOI: 10.1097/j.pain.0000000000003518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025]
Abstract
ABSTRACT The insular cortex (IC) processes various sensory information, including nociception, from the trigeminal region. Repetitive nociceptive inputs from the orofacial area induce plastic changes in the IC. Parvalbumin-immunopositive neurons (PVNs) project to excitatory neurons (pyramidal neurons [PNs]), whose inputs strongly suppress the activities of PNs. This study investigated how PVNs in the IC modulate pain-related behaviors using optogenetics. To evaluate the effect of PVN activation on pain-related behavior, we applied nociceptive heat stimulation to the whisker pads of PV-Cre rats that received an injection of adeno-associated virus-Flex-channelrhodopsin-2-mCherry into the IC. Exposure to nociceptive heat stimulation significantly increased the amount of pain-related escape behavior, and PVN activation by optogenetics did not significantly decrease pain-related behavior. We next examined the possibility that long-term potentiation (LTP) of PVN→PN synapses suppresses pain-related behaviors. We recorded light-evoked inhibitory postsynaptic currents (IPSCs) from PNs in the IC slice preparation to examine whether optogenetic activation of PVNs can induce LTP. Repetitive optogenetic stimulation (ROS) of PVNs in a manner analogous to theta burst stimulation increased the amplitude of IPSCs for at least 50 minutes. Long-term potentiation was induced by either the -45 or -60 mV membrane potential of PNs. Then, the IC received ROS to induce LTP of IPSCs from PVNs to PNs, and we evaluated pain-related behaviors. Compared to those before ROS, the pain-related behaviors were further reduced after ROS. These results suggest that LTP induction of PVN→PN synapses in the IC could be a possible treatment for abnormal pain in the orofacial area.
Collapse
Affiliation(s)
- Satomi Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
- Department of Biology, Nihon University School of Dentistry, Tokyo, Japan
| | - Hironobu Osaki
- Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
4
|
Li Z, Zhang L, Zhang F, Yue L, Hu L. Deciphering Authentic Nociceptive Thalamic Responses in Rats. RESEARCH (WASHINGTON, D.C.) 2024; 7:0348. [PMID: 38617991 PMCID: PMC11014087 DOI: 10.34133/research.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
The thalamus and its cortical connections play a pivotal role in pain information processing, yet the exploration of its electrophysiological responses to nociceptive stimuli has been limited. Here, in 2 experiments we recorded neural responses to nociceptive laser stimuli in the thalamic (ventral posterior lateral nucleus and medial dorsal nucleus) and cortical regions (primary somatosensory cortex [S1] and anterior cingulate cortex) within the lateral and medial pain pathways. We found remarkable similarities in laser-evoked brain responses that encoded pain intensity within thalamic and cortical regions. Contrary to the expected temporal sequence of ascending information flow, the recorded thalamic response (N1) was temporally later than its cortical counterparts, suggesting that it may not be a genuine thalamus-generated response. Importantly, we also identified a distinctive component in the thalamus, i.e., the early negativity (EN) occurring around 100 ms after the onset of nociceptive stimuli. This EN component represents an authentic nociceptive thalamic response and closely synchronizes with the directional information flow from the thalamus to the cortex. These findings underscore the importance of isolating genuine thalamic neural responses, thereby contributing to a more comprehensive understanding of the thalamic function in pain processing. Additionally, these findings hold potential clinical implications, particularly in the advancement of closed-loop neuromodulation treatments for neurological diseases targeting this vital brain region.
Collapse
Affiliation(s)
- Zhenjiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fengrui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology,
Chinese Academy of Sciences, 100101 Beijing, China
- Department of Psychology,
University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
5
|
Tu Y, Li Z, Zhang L, Zhang H, Bi Y, Yue L, Hu L. Pain-preferential thalamocortical neural dynamics across species. Nat Hum Behav 2024; 8:149-163. [PMID: 37813996 DOI: 10.1038/s41562-023-01714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/01/2023] [Indexed: 10/11/2023]
Abstract
Searching for pain-preferential neural activity is essential for understanding and managing pain. Here, we investigated the preferential role of thalamocortical neural dynamics in encoding pain using human neuroimaging and rat electrophysiology across three studies. In study 1, we found that painful stimuli preferentially activated the medial-dorsal (MD) thalamic nucleus and its functional connectivity with the dorsal anterior cingulate cortex (dACC) and insula in two human functional magnetic resonance imaging (fMRI) datasets (n = 399 and n = 25). In study 2, human fMRI and electroencephalography fusion analyses (n = 220) revealed that pain-preferential MD responses were identified 89-295 ms after painful stimuli. In study 3, rat electrophysiology further showed that painful stimuli preferentially activated MD neurons and MD-ACC connectivity. These converging cross-species findings provided evidence for pain-preferential thalamocortical neural dynamics, which could guide future pain evaluation and management strategies.
Collapse
Affiliation(s)
- Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhenjiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huijuan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Osaki H, Kanaya M, Ueta Y, Miyata M. Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex. Nat Commun 2022; 13:3622. [PMID: 35768422 PMCID: PMC9243138 DOI: 10.1038/s41467-022-31272-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nociception, a somatic discriminative aspect of pain, is, like touch, represented in the primary somatosensory cortex (S1), but the separation and interaction of the two modalities within S1 remain unclear. Here, we show spatially distinct tactile and nociceptive processing in the granular barrel field (BF) and adjacent dysgranular region (Dys) in mouse S1. Simultaneous recordings of the multiunit activity across subregions revealed that Dys neurons are more responsive to noxious input, whereas BF neurons prefer tactile input. At the single neuron level, nociceptive information is represented separately from the tactile information in Dys layer 2/3. In contrast, both modalities seem to converge on individual layer 5 neurons of each region, but to a different extent. Overall, these findings show layer-specific processing of nociceptive and tactile information between Dys and BF. We further demonstrated that Dys activity, but not BF activity, is critically involved in pain-like behavior. These findings provide new insights into the role of pain processing in S1. The processing of nociception in the somatosensory cortex (S1) has yet to be fully understood. Here, the authors demonstrate that the dysgranular region in S1 has an affinity for nociception and is critically involved in pain-like behavior.
Collapse
Affiliation(s)
- Hironobu Osaki
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan. .,Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan.
| | - Moeko Kanaya
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| |
Collapse
|
7
|
Wang Z, Zhang F, Yue L, Hu L, Li X, Xu B, Liang Z. Cortical Complexity and Connectivity during Isoflurane-induced General Anesthesia: A Rat Study. J Neural Eng 2022; 19. [PMID: 35472693 DOI: 10.1088/1741-2552/ac6a7b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/25/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The investigation of neurophysiologic mechanisms of anesthetic drug-induced loss of consciousness (LOC) by using the entropy, complexity, and information integration theories at the mesoscopic level has been a hot topic in recent years. However, systematic research is still lacking. APPROACH We analyzed electrocorticography (ECoG) data recorded from nine rats during isoflurane-induced unconsciousness. To characterize the complexity and connectivity changes, we investigated ECoG power, symbolic dynamic-based entropy (i.e., permutation entropy (PE)), complexity (i.e., permutation Lempel-Ziv complexity (PLZC)), information integration (i.e., permutation cross mutual information (PCMI)), and PCMI-based cortical brain networks in the frontal, parietal, and occipital cortical regions. MAIN RESULTS Firstly, LOC was accompanied by a raised power in the ECoG beta (12-30 Hz) but a decreased power in the high gamma (55-95 Hz) frequency band in all three brain regions. Secondly, PE and PLZC showed similar change trends in the lower frequency band (0.1-45 Hz), declining after LOC (p<0.05) and increasing after recovery of consciousness (p<0.001). Thirdly, intra-frontal and inter-frontal-parietal PCMI declined after LOC, in both lower (0.1-45Hz) and higher frequency bands (55-95Hz) (p<0.001). Finally, the local network parameters of the nodal clustering coefficient and nodal efficiency in the frontal region decreased after LOC, in both the lower and higher frequency bands (p<0.05). Moreover, global network parameters of the normalized average clustering coefficient and small world index increased slightly after LOC in the lower frequency band. However, this increase was not statistically significant. SIGNIFICANCE The PE, PLZC, PCMI and PCMI-based brain networks are effective metrics for qualifying the effects of isoflurane.
Collapse
Affiliation(s)
- Zhijie Wang
- Yanshan University, Yanshan University, Qinhuangdao 066004, China., Qinhuangdao, 066004, CHINA
| | - Fengrui Zhang
- Department of Psychology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China., Beijing, 100049, CHINA
| | - Lupeng Yue
- Department of Psychology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China., Beijing, 100049, CHINA
| | - Li Hu
- Department of Psychology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China, Beijing, 100049, CHINA
| | - Xiaoli Li
- Department of Psychology, Beijing Normal University, Beijing Normal University, Beijing 100875, China., Beijing, Beijing, 100875, CHINA
| | - Bo Xu
- PLA General Hospital of Southern Theatre Command, Guangzhou 510010, China., Guangzhou, Guangdong, 510010, CHINA
| | - Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Yanshan University, Qinhuangdao 066004, China., Qinhuangdao, 066004, CHINA
| |
Collapse
|
8
|
Teng G, Zhang F, Li Z, Zhang C, Zhang L, Chen L, Zhou T, Yue L, Zhang J. Quantitative Electrophysiological Evaluation of the Analgesic Efficacy of Two Lappaconitine Derivatives: A Window into Antinociceptive Drug Mechanisms. Neurosci Bull 2021; 37:1555-1569. [PMID: 34550562 DOI: 10.1007/s12264-021-00774-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022] Open
Abstract
Quantitative evaluation of analgesic efficacy improves understanding of the antinociceptive mechanisms of new analgesics and provides important guidance for their development. Lappaconitine (LA), a potent analgesic drug extracted from the root of natural Aconitum species, has been clinically used for years because of its effective analgesic and non-addictive properties. However, being limited to ethological experiments, previous studies have mainly investigated the analgesic effect of LA at the behavioral level, and the associated antinociceptive mechanisms are still unclear. In this study, electrocorticogram (ECoG) technology was used to investigate the analgesic effects of two homologous derivatives of LA, Lappaconitine hydrobromide (LAH) and Lappaconitine trifluoroacetate (LAF), on Sprague-Dawley rats subjected to nociceptive laser stimuli, and to further explore their antinociceptive mechanisms. We found that both LAH and LAF were effective in reducing pain, as manifested in the remarkable reduction of nocifensive behaviors and laser-evoked potentials (LEPs) amplitudes (N2 and P2 waves, and gamma-band oscillations), and significantly prolonged latencies of the LEP-N2/P2. These changes in LEPs reflect the similar antinociceptive mechanism of LAF and LAH, i.e., inhibition of the fast signaling pathways. In addition, there were no changes in the auditory-evoked potential (AEP-N1 component) before and after LAF or LAH treatment, suggesting that neither drug had a central anesthetic effect. Importantly, compared with LAH, LAF was superior in its effects on the magnitudes of gamma-band oscillations and the resting-state spectra, which may be associated with their differences in the octanol/water partition coefficient, degree of dissociation, toxicity, and glycine receptor regulation. Altogether, jointly applying nociceptive laser stimuli and ECoG recordings in rats, we provide solid neural evidence for the analgesic efficacy and antinociceptive mechanisms of derivatives of LA.
Collapse
Affiliation(s)
- Guixiang Teng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.,The Rural Development Academy, Northwest Normal University, Lanzhou, 730070, China
| | - Fengrui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenjiang Li
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China
| | - Chun Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Chen
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.,The Rural Development Academy, Northwest Normal University, Lanzhou, 730070, China
| | - Tao Zhou
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.,The Rural Development Academy, Northwest Normal University, Lanzhou, 730070, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China. .,The Rural Development Academy, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
9
|
Bi Y, Hou X, Zhong J, Hu L. Test-retest reliability of laser evoked pain perception and fMRI BOLD responses. Sci Rep 2021; 11:1322. [PMID: 33446726 PMCID: PMC7809116 DOI: 10.1038/s41598-020-79196-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022] Open
Abstract
Pain perception is a subjective experience and highly variable across time. Brain responses evoked by nociceptive stimuli are highly associated with pain perception and also showed considerable variability. To date, the test–retest reliability of laser-evoked pain perception and its associated brain responses across sessions remain unclear. Here, an experiment with a within-subject repeated-measures design was performed in 22 healthy volunteers. Radiant-heat laser stimuli were delivered on subjects’ left-hand dorsum in two sessions separated by 1–5 days. We observed that laser-evoked pain perception was significantly declined across sessions, coupled with decreased brain responses in the bilateral primary somatosensory cortex (S1), right primary motor cortex, supplementary motor area, and middle cingulate cortex. Intraclass correlation coefficients between the two sessions showed “fair” to “moderate” test–retest reliability for pain perception and brain responses. Additionally, we observed lower resting-state brain activity in the right S1 and lower resting-state functional connectivity between right S1 and dorsolateral prefrontal cortex in the second session than the first session. Altogether, being possibly influenced by changes of baseline mental state, laser-evoked pain perception and brain responses showed considerable across-session variability. This phenomenon should be considered when designing experiments for laboratory studies and evaluating pain abnormalities in clinical practice.
Collapse
Affiliation(s)
- Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Hou
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiahui Zhong
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Somervail R, Zhang F, Novembre G, Bufacchi RJ, Guo Y, Crepaldi M, Hu L, Iannetti GD. Waves of Change: Brain Sensitivity to Differential, not Absolute, Stimulus Intensity is Conserved Across Humans and Rats. Cereb Cortex 2021; 31:949-960. [PMID: 33026425 PMCID: PMC7786352 DOI: 10.1093/cercor/bhaa267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022] Open
Abstract
Living in rapidly changing environments has shaped the mammalian brain toward high sensitivity to abrupt and intense sensory events-often signaling threats or affordances requiring swift reactions. Unsurprisingly, such events elicit a widespread electrocortical response (the vertex potential, VP), likely related to the preparation of appropriate behavioral reactions. Although the VP magnitude is largely determined by stimulus intensity, the relative contribution of the differential and absolute components of intensity remains unknown. Here, we dissociated the effects of these two components. We systematically varied the size of abrupt intensity increases embedded within continuous stimulation at different absolute intensities, while recording brain activity in humans (with scalp electroencephalography) and rats (with epidural electrocorticography). We obtained three main results. 1) VP magnitude largely depends on differential, and not absolute, stimulus intensity. This result held true, 2) for both auditory and somatosensory stimuli, indicating that sensitivity to differential intensity is supramodal, and 3) in both humans and rats, suggesting that sensitivity to abrupt intensity differentials is phylogenetically well-conserved. Altogether, the current results show that these large electrocortical responses are most sensitive to the detection of sensory changes that more likely signal the sudden appearance of novel objects or events in the environment.
Collapse
Affiliation(s)
- R Somervail
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - F Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101 Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - G Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Y Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - M Crepaldi
- Electronic Design Laboratory, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - L Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101 Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - G D Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| |
Collapse
|
11
|
Yue L, Iannetti GD, Hu L. The Neural Origin of Nociceptive-Induced Gamma-Band Oscillations. J Neurosci 2020; 40:3478-3490. [PMID: 32241836 PMCID: PMC7178916 DOI: 10.1523/jneurosci.0255-20.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 01/28/2023] Open
Abstract
Gamma-band oscillations (GBOs) elicited by transient nociceptive stimuli are one of the most promising biomarkers of pain across species. Still, whether these GBOs reflect stimulus encoding in the primary somatosensory cortex (S1) or nocifensive behavior in the primary motor cortex (M1) is debated. Here we recorded neural activity simultaneously from the brain surface as well as at different depths of the bilateral S1/M1 in freely-moving male rats receiving nociceptive stimulation. GBOs measured from superficial layers of S1 contralateral to the stimulated paw not only had the largest magnitude, but also showed the strongest temporal and phase coupling with epidural GBOs. Also, spiking of superficial S1 interneurons had the strongest phase coherence with epidural GBOs. These results provide the first direct demonstration that scalp GBOs, one of the most promising pain biomarkers, reflect neural activity strongly coupled with the fast spiking of interneurons in the superficial layers of the S1 contralateral to the stimulated side.SIGNIFICANCE STATEMENT Nociceptive-induced gamma-band oscillations (GBOs) measured at population level are one of the most promising biomarkers of pain perception. Our results provide the direct demonstration that these GBOs reflect neural activity coupled with the spike firing of interneurons in the superficial layers of the primary somatosensory cortex (S1) contralateral to the side of nociceptive stimulation. These results address the ongoing debate about whether nociceptive-induced GBOs recorded with scalp EEG or epidurally reflect stimulus encoding in the S1 or nocifensive behavior in the primary motor cortex (M1), and will therefore influence how experiments in pain neuroscience will be designed and interpreted.
Collapse
Affiliation(s)
- Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, 00161, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
12
|
Peng WW, Tang ZY, Zhang FR, Li H, Kong YZ, Iannetti GD, Hu L. Neurobiological mechanisms of TENS-induced analgesia. Neuroimage 2019; 195:396-408. [PMID: 30946953 PMCID: PMC6547049 DOI: 10.1016/j.neuroimage.2019.03.077] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/12/2019] [Accepted: 03/30/2019] [Indexed: 12/30/2022] Open
Abstract
Pain inhibition by additional somatosensory input is the rationale for the widespread use of Transcutaneous Electrical Nerve Stimulation (TENS) to relieve pain. Two main types of TENS produce analgesia in animal models: high-frequency (∼50-100 Hz) and low-intensity 'conventional' TENS, and low-frequency (∼2-4 Hz) and high-intensity 'acupuncture-like' TENS. However, TENS efficacy in human participants is debated, raising the question of whether the analgesic mechanisms identified in animal models are valid in humans. Here, we used a sham-controlled experimental design to clarify the efficacy and the neurobiological effects of 'conventional' and 'acupuncture-like' TENS in 80 human volunteers. To test the analgesic effect of TENS we recorded the perceptual and brain responses elicited by radiant heat laser pulses that activate selectively Aδ and C cutaneous nociceptors. To test whether TENS has a long-lasting effect on brain state we recorded spontaneous electrocortical oscillations. The analgesic effect of 'conventional' TENS was maximal when nociceptive stimuli were delivered homotopically, to the same hand that received the TENS. In contrast, 'acupuncture-like' TENS produced a spatially-diffuse analgesic effect, coupled with long-lasting changes both in the state of the primary sensorimotor cortex (S1/M1) and in the functional connectivity between S1/M1 and the medial prefrontal cortex, a core region in the descending pain inhibitory system. These results demonstrate that 'conventional' and 'acupuncture-like' TENS have different analgesic effects, which are mediated by different neurobiological mechanisms.
Collapse
Affiliation(s)
- W W Peng
- College of Psychology and Sociology, Shenzhen University, Shenzhen, China
| | - Z Y Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - F R Zhang
- Research Center of Brain Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - H Li
- College of Psychology and Sociology, Shenzhen University, Shenzhen, China
| | - Y Z Kong
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - L Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Zhang F, Wang F, Yue L, Zhang H, Peng W, Hu L. Cross-Species Investigation on Resting State Electroencephalogram. Brain Topogr 2019; 32:808-824. [DOI: 10.1007/s10548-019-00723-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023]
|
14
|
Abstract
Supplemental Digital Content is Available in the Text. We comprehensively characterized the physiological properties of pain-related brain oscillations in freely moving rats and provided a foundation for the animal-to-human translation of experimental findings. Recording oscillatory brain activity holds great promise in pain research. However, experimental results are variable and often difficult to reconcile. Some of these inconsistencies arise from the use of hypothesis-driven analysis approaches that (1) do not assess the consistency of the observed responses within and across individuals, and (2) do not fully exploit information sampled across the entire cortex. Here, we address these issues by recording the electrocorticogram directly from the brain surface of 12 freely moving rats. Using a hypothesis-free approach, we isolated brain oscillations induced by graded nociceptive stimuli and characterized their relation to pain-related behavior. We isolated 4 responses, one phase-locked event-related potential, 2 non–phase-locked event-related synchronizations, and one non–phase-locked event-related desynchronization (ERD), in different frequency bands (δ/θ-ERD, θ/α–event-related synchronization, and gamma-band event-related synchronization). All responses except the δ/θ-ERD correlated with pain-related behavior at within-subject level. Notably, the gamma-band event-related synchronization was the only response that reliably correlated with pain-related behavior between subjects. These results comprehensively characterize the physiological properties of the brain oscillations elicited by nociceptive stimuli in freely moving rodents and provide a foundational work to improve the translation of experimental animal findings to human physiology and pathophysiology.
Collapse
|
15
|
Abstract
While several features of brain activity can be used to predict the variability of painful percepts within a given individual, it is much more difficult to predict pain variability across individuals. Here, we used electrophysiology to sample brain activity of humans and rodents, and demonstrated that laser-induced gamma oscillations sampled by central electrodes predict pain sensitivity across individuals both reliably and selectively: reliably, because they consistently predict between-subject pain intensity in both humans and rodents; selectively, because they do not track the between-subject reported intensity of nonpainful but equally salient auditory, visual, and nonnociceptive somatosensory stimuli. This discovery indicates that variability in an individual’s pain sensitivity is, at least partly, explained by variability in the amplitude of gamma oscillations of that individual. Individuals exhibit considerable and unpredictable variability in painful percepts in response to the same nociceptive stimulus. Previous work has found neural responses that, while not necessarily responsible for the painful percepts themselves, can still correlate well with intensity of pain perception within a given individual. However, there is no reliable neural response reflecting the variability in pain perception across individuals. Here, we use an electrophysiological approach in humans and rodents to demonstrate that brain oscillations in the gamma band [gamma-band event-related synchronization (γ-ERS)] sampled by central electrodes reliably predict pain sensitivity across individuals. We observed a clear dissociation between the large number of neural measures that reflected subjective pain ratings at within-subject level but not across individuals, and γ-ERS, which reliably distinguished subjective ratings within the same individual but also coded pain sensitivity across different individuals. Importantly, the ability of γ-ERS to track pain sensitivity across individuals was selective because it did not track the between-subject reported intensity of nonpainful but equally salient auditory, visual, and nonnociceptive somatosensory stimuli. These results also demonstrate that graded neural activity related to within-subject variability should be minimized to accurately investigate the relationship between nociceptive-evoked neural activities and pain sensitivity across individuals.
Collapse
|
16
|
Somatotopic Representation of Second Pain in the Primary Somatosensory Cortex of Humans and Rodents. J Neurosci 2018; 38:5538-5550. [PMID: 29899034 PMCID: PMC6001037 DOI: 10.1523/jneurosci.3654-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/26/2018] [Accepted: 04/07/2018] [Indexed: 12/29/2022] Open
Abstract
There is now compelling evidence that selective stimulation of Aδ nociceptors eliciting first pain evokes robust responses in the primary somatosensory cortex (S1). In contrast, whether the C-fiber nociceptive input eliciting second pain has an organized projection to S1 remains an open question. Here, we recorded the electrocortical responses elicited by nociceptive-specific laser stimulation of the four limbs in 202 humans (both males and females, using EEG) and 12 freely moving rats (all males, using ECoG). Topographical analysis and source modeling revealed in both species, a clear gross somatotopy of the unmyelinated C-fiber input within the S1 contralateral to the stimulated side. In the human EEG, S1 activity could be isolated as an early-latency negative deflection (C-N1 wave peaking at 710–730 ms) after hand stimulation, but not after foot stimulation because of the spatiotemporal overlap with the subsequent large-amplitude supramodal vertex waves (C-N2/P2). In contrast, because of the across-species difference in the representation of the body surface within S1, S1 activity could be isolated in rat ECoG as a C-N1 after both forepaw and hindpaw stimulation. Finally, we observed a functional dissociation between the generators of the somatosensory-specific lateralized waves (C-N1) and those of the supramodal vertex waves (C-N2/P2), indicating that C-fiber unmyelinated input is processed in functionally distinct somatosensory and multimodal cortical areas. These findings demonstrated that C-fiber input conveys information about the spatial location of noxious stimulation across the body surface, a prerequisite for deploying an appropriate defensive motor repertoire. SIGNIFICANCE STATEMENT Unmyelinated C-fibers are the evolutionarily oldest peripheral afferents responding to noxious environmental stimuli. Whether C-fiber input conveys information about the spatial location of the noxious stimulation to the primary somatosensory cortex (S1) remains an open issue. In this study, C-fibers were activated by radiant heat stimuli delivered to different parts of the body in both humans and rodents while electrical brain activity was recorded. In both species, the C-fiber peripheral input projects to different parts of the contralateral S1, coherently with the representation of the body surface within this brain region. These findings demonstrate that C-fiber input conveys information about the spatial location of noxious stimulation across the body surface, a prerequisite for deploying an appropriate defensive motor repertoire.
Collapse
|
17
|
Wang J, Wang J, Xing GG, Li X, Wan Y. Enhanced Gamma Oscillatory Activity in Rats with Chronic Inflammatory Pain. Front Neurosci 2016; 10:489. [PMID: 27847461 PMCID: PMC5088183 DOI: 10.3389/fnins.2016.00489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022] Open
Abstract
It has been reported that oscillatory gamma activity participates in brief acute pain and tonic ongoing pain. It is of great interest to determine whether the gamma activity is involved in chronic pain since chronic pain is a more severe pathological condition characterized by pain persistency. To investigate the oscillatory gamma activity in chronic pain, in the present study, we recorded spontaneous electrocorticogram (ECoG) signals during chronic pain development in rats with chronic inflammatory pain induced by monoarthritis. Power spectrum analysis of ECoG data showed that gamma power increased significantly at the late stage of chronic inflammatory pain. The increased gamma activity occurred mainly at electrodes over primary somatosensory cortices. In rats with chronic pain, the gamma power was positively correlated with the hyperalgesia measured by laser energy that elicited hindpaw withdrawal response. Furthermore, an increased coupling between the amplitude of gamma power and the phase of theta oscillations was observed in chronic inflammatory pain condition. These results indicate an enhanced spontaneous gamma activity in chronic pain and suggest a potential biomarker for the severity of chronic pain.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences/Beijing Institute for Brain Disorders, Capital Medical University Beijing, China
| | - Jing Wang
- Neuroscience Research Institute, Peking UniversityBeijing, China; Peking University Sixth Hospital/National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health (Peking University)Beijing, China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - You Wan
- Neuroscience Research Institute, Peking UniversityBeijing, China; Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking UniversityBeijing, China
| |
Collapse
|
18
|
Importance of knowing your stimulation paradigm: methodological considerations on laser-evoked pain responses in rats and humans. Pain 2016; 156:2404-2405. [PMID: 26584419 DOI: 10.1097/j.pain.0000000000000370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Xia XL, Peng WW, Iannetti GD, Hu L. Laser-evoked cortical responses in freely-moving rats reflect the activation of C-fibre afferent pathways. Neuroimage 2016; 128:209-217. [PMID: 26747747 PMCID: PMC4767222 DOI: 10.1016/j.neuroimage.2015.12.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/16/2015] [Accepted: 12/23/2015] [Indexed: 12/29/2022] Open
Abstract
The limited success of translating basic animal findings into effective clinical treatments of pain can be partly ascribed to the use of sub-optimal models. Murine models of pain often consist in recording (1) threshold responses (like the tail-flick reflex) elicited by (2) non-nociceptive specific inputs in (3) anaesthetized animals. The direct cortical recording of laser-evoked potentials (LEPs) elicited by stimuli of graded energies in freely-moving rodents avoids these three important pitfalls, and has thus the potential of improving such translation. Murine LEPs are classically reported to consist of two distinct components, reflecting the activity of Aδ- and C-fibre afferent pathways. However, we have recently demonstrated that the so-called "Aδ-LEPs" in fact reflect the activation of the auditory system by laser-generated ultrasounds. Here we used ongoing white noise to avoid the confound represented by the early auditory response, and thereby comprehensively characterized the physiological properties of C-fibre LEPs recorded directly from the exposed surface of the rat brain. Stimulus-response functions indicated that response amplitude is positively related to the stimulus energy, as well as to nocifensive behavioral score. When displayed using average reference, murine LEPs consist of three distinct deflections, whose polarity, order, and topography are surprisingly similar to human LEPs. The scalp topography of the early N1 wave is somatotopically-organized, likely reflecting the activity of the primary somatosensory cortex, while topographies of the later N2 and P2 waves are more centrally distributed. These results indicate that recording LEPs in freely-moving rats is a valid model to improve the translation of animal results to human physiology and pathophysiology.
Collapse
Affiliation(s)
- X L Xia
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, China
| | - W W Peng
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, China
| | - G D Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - L Hu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Neuroscience, Physiology and Pharmacology, University College London, UK; Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|