1
|
Fitzgerald M. On the relation of injury to pain-an infant perspective. Pain 2024; 165:S33-S38. [PMID: 39560413 DOI: 10.1097/j.pain.0000000000003366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Forty-five years ago, Patrick Wall published his John J Bonica lecture "On the relation of injury to pain."90 In this lecture, he argued that pain is better classified as an awareness of a need-state than as a sensation. This need state, he argued, serves more to promote healing than to avoid injury. Here I reframe Wall's prescient proposal to pain in early life and propose a set of different need states that are triggered when injury occurs in infancy. This paper, and my own accompanying Bonica lecture, is dedicated to his memory and to his unique contribution to the neuroscience of pain. The IASP definition of pain includes a key statement, "through their life experiences, individuals learn the concept of pain."69 But the relation between injury and pain is not fixed from birth. In early life, the links between nociception (the sense) and pain (the need state) are very different from those of adults, although no less important. I propose that injury evokes three pain need states in infancy, all of which depend on the state of maturity of the central nervous system: (1) the need to attract maternal help; (2) the need to learn the concept of pain; and (3) the need to maintain healthy activity dependent brain development.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharamcology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Fitzgerald M. The Bayliss-Starling Prize Lecture: The developmental physiology of spinal cord and cortical nociceptive circuits. J Physiol 2024; 602:1003-1016. [PMID: 38426221 DOI: 10.1113/jp283994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
When do we first experience pain? To address this question, we need to know how the developing nervous system processes potential or real tissue-damaging stimuli in early life. In the newborn, nociception preserves life through reflex avoidance of tissue damage and engagement of parental help. Importantly, nociception also forms the starting point for experiencing and learning about pain and for setting the level of adult pain sensitivity. This review, which arose from the Bayliss-Starling Prize Lecture, focuses on the basic developmental neurophysiology of early nociceptive circuits in the spinal cord, brainstem and cortex that form the building blocks of our first pain experience.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| |
Collapse
|
3
|
Vogel A, Ueberbach T, Wilken-Schmitz A, Hahnefeld L, Franck L, Weyer MP, Jungenitz T, Schmid T, Buchmann G, Freudenberg F, Brandes RP, Gurke R, Schwarzacher SW, Geisslinger G, Mittmann T, Tegeder I. Repetitive and compulsive behavior after Early-Life-Pain associated with reduced long-chain sphingolipid species. Cell Biosci 2023; 13:155. [PMID: 37635256 PMCID: PMC10463951 DOI: 10.1186/s13578-023-01106-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Pain in early life may impact on development and risk of chronic pain. We developed an optogenetic Cre/loxP mouse model of "early-life-pain" (ELP) using mice with transgenic expression of channelrhodopsin-2 (ChR2) under control of the Advillin (Avil) promoter, which drives expression of transgenes predominantly in isolectin B4 positive non-peptidergic nociceptors in postnatal mice. Avil-ChR2 (Cre +) and ChR2-flfl control mice were exposed to blue light in a chamber once daily from P1-P5 together with their Cre-negative mother. RESULTS ELP caused cortical hyperexcitability at P8-9 as assessed via multi-electrode array recordings that coincided with reduced expression of synaptic genes (RNAseq) including Grin2b, neurexins, piccolo and voltage gated calcium and sodium channels. Young adult (8-16 wks) Avil-ChR2 mice presented with nociceptive hypersensitivity upon heat or mechanical stimulation, which did not resolve up until one year of age. The persistent hypersensitivy to nociceptive stimuli was reflected by increased calcium fluxes in primary sensory neurons of aged mice (1 year) upon capsaicin stimulation. Avil-ChR2 mice behaved like controls in maze tests of anxiety, social interaction, and spatial memory but IntelliCage behavioral studies revealed repetitive nosepokes and corner visits and compulsive lickings. Compulsiveness at the behavioral level was associated with a reduction of sphingomyelin species in brain and plasma lipidomic studies. Behavioral studies were done with female mice. CONCLUSION The results suggest that ELP may predispose to chronic "pain" and compulsive psychopathology in part mediated by alterations of sphingolipid metabolism, which have been previously described in the context of addiction and psychiatric diseases.
Collapse
Affiliation(s)
- Alexandra Vogel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Timo Ueberbach
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Luisa Franck
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Tassilo Jungenitz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Partner Site Frankfurt, German Cancer Consortium (DKTK), Frankfurt, Germany
| | - Giulia Buchmann
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University Hospital, Frankfurt, Germany
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
4
|
de Almeida LS, Cunha-Rodrigues MC, Araujo PC, de Almeida OM, Barradas PC. Effects of prenatal hypoxia-ischemia on male rat periaqueductal gray matter: Hyperalgesia, astrogliosis and nitrergic system impairment. Neurochem Int 2023; 164:105500. [PMID: 36731728 DOI: 10.1016/j.neuint.2023.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Prenatal hypoxic-ischemic insult (HI) may lead to a variety of neurological consequences that may persist throughout adulthood. In the most severe cases, HI is known to increase pain sensitivity which profoundly impacts quality of life. Periaqueductal gray matter (PAG) is a relevant region of the descending pain pathway and its function may be modulated by a complex network that includes nitrergic neurons and glial response, among other factors. Astrocytes, central players in pain modulation, are known to respond to HI by inducing hyperplasia, hypertrophy and increasing the number of their processes and the staining of glial fibrillary acidic protein (GFAP). In this work we investigated the effects of prenatal HI on touch and pain sensitivity, besides the distribution of the neuronal isoform of Nitric Oxide Synthase (nNOS) and GFAP in the PAG of young and adult male rats. At 18 days of gestation, rats had their uterine arteries clamped for 45 min (HI group). SHAM-operated animals were also generated (SHAM group). At post-natal day 30 (P30) or 90 (P90), the offspring was submitted to the behavioral tests of Von Frey and formalin or histological processing to perform immunohistochemistry for nNOS and GFAP. Although there was no significant difference between the groups concerning touch sensitivity, we observed an increase in pain sensitivity in HI P30 and HI P90. The number of nNOS + cells was reduced in HI adult animals in dlPAG and vlPAG. GFAP immunostaining was increased in HI P90 in dlPAG and dmPAG. Our results demonstrated for the first time an increase in pain sensitivity as a consequence of prenatal HI in an animal model. It reinforces the relevance of this model to mimic the effects of prenatal HI, as hyperalgesia.
Collapse
Affiliation(s)
- L S de Almeida
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - M C Cunha-Rodrigues
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - P C Araujo
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - O M de Almeida
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - P C Barradas
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Talluri B, Hoelzel F, Medda BK, Terashvili M, Sanvanson P, Shaker R, Banerjee A, Sengupta JN, Banerjee B. Identification and characterization of rostral ventromedial medulla neurons synaptically connected to the urinary bladder afferents in female rats with or without neonatal cystitis. J Comp Neurol 2022; 530:1129-1147. [PMID: 34628661 PMCID: PMC8967775 DOI: 10.1002/cne.25260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/06/2022]
Abstract
The neurons in the rostral ventromedial medulla (RVM) play a major role in pain modulation. We have previously shown that early-life noxious bladder stimuli in rats resulted in an overall spinal GABAergic disinhibition and a long-lasting bladder/colon sensitization when tested in adulthood. However, the neuromolecular alterations within RVM neurons in the pathophysiology of early life bladder inflammation have not been elucidated. In this study, we have identified and characterized RVM neurons that are synaptically linked to the bladder and colon and examined the effect of neonatal bladder inflammation on molecular expressions of these neurons. A transient bladder inflammation was induced by intravesicular instillation of protamine sulfate and zymosan during postnatal days 14 through 16 (P14-16) followed by pseudorabies virus PRV-152 and PRV-614 injections into the bladder and colon, respectively, on postnatal day P60. Tissues were examined 96 h postinoculation for serotonergic, GABAergic, and enkephalinergic expressions using in situ hybridization and/or immunohistochemistry techniques. The results revealed that > 50% of RVM neurons that are synaptically connected to the bladder (i.e., PRV-152+) were GABAergic, 40% enkephalinergic, and about 14% expressing serotonergic marker tryptophan hydroxylase 2 (TpH2). Neonatal cystitis resulted in a significant increase in converging neurons in RVM receiving dual synaptic inputs from the bladder and colon. In addition, neonatal cystitis significantly downregulated vesicular GABA transporter (VGAT) with a concomitant increase in TpH2 expression in bladder-linked RVM neurons, suggesting an alteration in supraspinal signaling. These alterations of synaptic connectivity and GABAergic/serotonergic expressions in RVM neurons may contribute to bladder pain modulation and cross-organ visceral sensitivity.
Collapse
Affiliation(s)
- Bhavana Talluri
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Faith Hoelzel
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bidyut K. Medda
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Maia Terashvili
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Patrick Sanvanson
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Reza Shaker
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anjishnu Banerjee
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jyoti N. Sengupta
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Banani Banerjee
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
6
|
de Kort AR, Joosten EAJ, Patijn J, Tibboel D, van den Hoogen NJ. The development of descending serotonergic modulation of the spinal nociceptive network: a life span perspective. Pediatr Res 2022; 91:1361-1369. [PMID: 34257402 DOI: 10.1038/s41390-021-01638-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The nociceptive network, responsible for transmission of nociceptive signals that generate the pain experience, is not fully developed at birth. Descending serotonergic modulation of spinal nociception, an important part of the pain network, undergoes substantial postnatal maturation and is suggested to be involved in the altered pain response observed in human newborns. This review summarizes preclinical data of the development of descending serotonergic modulation of the spinal nociceptive network across the life span, providing a comprehensive background to understand human newborn pain experience and treatment. Sprouting of descending serotonergic axons, originating from the rostroventral medulla, as well as changes in receptor function and expression take place in the first postnatal weeks of rodents, corresponding to human neonates in early infancy. Descending serotonergic modulation switches from facilitation in early life to bimodal control in adulthood, masking an already functional 5-HT inhibitory system at early ages. Specifically the 5-HT3 and 5-HT7 receptors seem distinctly important for pain facilitation at neonatal and early infancy, while the 5-HT1a, 5-HT1b, and 5-HT2 receptors mediate inhibitory effects at all ages. Analgesic therapy that considers the neurodevelopmental phase is likely to result in a more targeted treatment of neonatal pain and may improve both short- and long-term effects. IMPACT: The descending serotonergic system undergoes anatomical changes from birth to early infancy, as its sprouts and descending projections increase and the dorsal horn innervation pattern changes. Descending serotonergic modulation from the rostral ventral medulla switches from facilitation in early life via the 5-HT3 and 5-HT7 receptors to bimodal control in adulthood. A functional inhibitory serotonergic system mainly via 5-HT1a, 5-HT1b, and 5-HT2a receptors at the spinal level exists already at the neonatal phase but is masked by descending facilitation.
Collapse
Affiliation(s)
- Anne R de Kort
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands. .,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacob Patijn
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Nynke J van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
de Kort AR, Joosten EA, Patijn J, Tibboel D, van den Hoogen NJ. Selective Targeting of Serotonin 5-HT1a and 5-HT3 Receptors Attenuates Acute and Long-Term Hypersensitivity Associated With Neonatal Procedural Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:872587. [PMID: 35571143 PMCID: PMC9091564 DOI: 10.3389/fpain.2022.872587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Neonatal painful procedures causes acute pain and trigger long-term changes in nociceptive processing and anxiety behavior, highlighting the need for adequate analgesia during this critical time. Spinal serotonergic receptors 5-HT1a and 5-HT3 play an important role in modulating incoming nociceptive signals in neonates. The current study aims to attenuate acute and long-term hypersensitivity associated with neonatal procedural pain using ondansetron (a 5-HT3 antagonist) and buspirone (a 5-HT1a agonist) in a well-established rat model of repetitive needle pricking. Sprague-Dawley rat pups of both sexes received ondansetron (3 mg/kg), buspirone (3 mg/kg) or saline prior to repetitive needle pricks into the left hind-paw from postnatal day 0-7. Control animals received tactile stimulation or were left undisturbed. Acute, long-term, and post-operative mechanical sensitivity as well as adult anxiety were assessed. Neonatal 5-HT1a receptor agonism completely reverses acute hypersensitivity from P0-7. The increased duration of postoperative hypersensitivity after re-injury in adulthood is abolished by 5-HT3 receptor antagonism during neonatal repetitive needle pricking, without affecting baseline sensitivity. Moreover, 5-HT1a and 5-HT3 receptor modulation decreases adult state anxiety. Altogether, our data suggests that targeted pharmacological treatment based on the modulation of spinal serotonergic network via the 5-HT1a and 5-HT3 receptors in neonates may be of use in treatment of neonatal procedural pain and its long-term consequences. This may result in a new mechanism-based therapeutic venue in treatment of procedural pain in human neonates.
Collapse
Affiliation(s)
- Anne R. de Kort
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Elbert A. Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jacob Patijn
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Nynke J. van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
de Kort AR, Joosten EA, Versantvoort EM, Patijn J, Tibboel D, van den Hoogen NJ. Anatomical changes in descending serotonergic projections from the rostral ventromedial medulla to the spinal dorsal horn following repetitive neonatal painful procedures. Int J Dev Neurosci 2022; 82:361-371. [PMID: 35393725 DOI: 10.1002/jdn.10185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 11/07/2022] Open
Abstract
Excessive noxious stimulation during the critical neonatal period impacts the nociceptive network lasting into adulthood. As descending serotonergic projections from the rostral ventromedial medulla (RVM) to the spinal dorsal horn develop postnatally, this study aims to investigate the long-term effect of repetitive neonatal procedural pain on the descending serotonergic RVM-spinal dorsal horn network. A well-established rat model of repetitive noxious procedures is used in which neonatal rats received four noxious needle pricks or tactile stimulation with a cotton swab per day in the left hind paw from day of birth to postnatal day 7. Control animals were left undisturbed. When animals reached adulthood, tissue was collected for quantitative immunohistochemical analysis of serotonin (5-hydroxytryptamine, 5-HT) in the RVM and spinal dorsal horn. Both repetitive noxious and tactile procedures in the neonate decreased the 5-HT staining intensity in the adult ipsilateral, but not contralateral spinal dorsal horn. Repetitive neonatal noxious procedures resulted in an increased area covered with 5-HT staining in the adult RVM ipsilateral to the side of injury, whereas repetitive neonatal tactile stimulation resulted in increased 5-HT staining intensity in both the ipsi- and contralateral RVM. The number of 5-HT cells in adult RVM is unaffected by neonatal conditions. This detailed anatomical study shows that not only neonatal noxious procedures, but also repetitive tactile procedures result in long-lasting anatomical changes of the descending serotonergic system within the RVM and spinal dorsal horn. Future studies should investigate whether these anatomical changes translate to functional differences in descending serotonergic modulation after neonatal adverse experiences.
Collapse
Affiliation(s)
- Anne R de Kort
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Elbert A Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Eline M Versantvoort
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacob Patijn
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Nynke J van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Walker SM. Developmental Mechanisms of CPSP: Clinical Observations and Translational Laboratory Evaluations. Can J Pain 2021; 6:49-60. [PMID: 35910395 PMCID: PMC9331197 DOI: 10.1080/24740527.2021.1999796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Understanding mechanisms that underly the transition from acute to chronic pain and identifying potential targets for preventing or minimizing this progression have specific relevance for chronic postsurgical pain (CPSP). Though it is clear that multiple psychosocial, family, and environmental factors may influence CPSP, this review will focus on parallels between clinical observations and translational laboratory studies investigating the acute and long-term effects of surgical injury on nociceptive pathways. This includes data related to alterations in sensitivity at different points along nociceptive pathways from the periphery to the brain; age- and sex-dependent mechanisms underlying the transition from acute to persistent pain; potential targets for preventive interventions; and the impact of prior surgical injury. Ongoing preclinical studies evaluating age- and sex-dependent mechanisms will also inform comparative efficacy and preclinical safety assessments of potential preventive pharmacological interventions aimed at reducing the risk of CPSP. In future clinical studies, more detailed and longitudinal peri-operative phenotyping with patient- and parent-reported chronic pain core outcomes, alongside more specialized evaluations of somatosensory function, modulation, and circuitry, may enhance understanding of individual variability in postsurgical pain trajectories and improve recognition and management of CPSP.
Collapse
Affiliation(s)
- Suellen M. Walker
- Clinical Neurosciences (Pain Research), Developmental Neurosciences, UCL GOS Institute of Child Health, London, UK; Department of Paediatric Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Vicente-Baz J, Lopez-Garcia JA, Rivera-Arconada I. Central sensitization of dorsal root potentials and dorsal root reflexes: An in vitro study in the mouse spinal cord. Eur J Pain 2021; 26:356-369. [PMID: 34587321 DOI: 10.1002/ejp.1864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Axo-axonic contacts onto central terminals of primary afferents modulate sensory inputs to the spinal cord. These contacts produce primary afferent depolarization (PAD), which serves as a mechanism for presynaptic inhibition, and also produce dorsal root reflexes (DRRs), which may regulate the excitability of peripheral terminals and second order neurons. We aimed to identify changes in these responses as a consequence of peripheral inflammation. METHODS In vitro spinal cord recordings of spontaneous activities in dorsal and ventral roots were performed in control mice and following paw inflammation. We also used pharmacological assays to define the neurotransmitter systems implicated in such responses. RESULTS Paw inflammation increased the frequency and amplitude of spontaneous dorsal root depolarizations, the occurrence of DRRs and the amplitude of ventral roots depolarizations. PAD was classified in two different patterns based on their relation to ventral activity: time-locked and independent events. Both patterns increased in amplitude after paw inflammation, and independent events also increased in frequency. The circuits that were responsible for this activity implicated both glutamatergic and GABAergic transmission. Adrenergic modulation differentially affected both types of PAD, and this modulation changed after paw inflammation. CONCLUSIONS Our findings suggest the existence of independent spinal circuits at the origin of PAD and DRRs. Inflammation modulates these circuits differentially, unveiling varied mechanisms of spinal sensitization. This in vitro approach provides an isolated model for the study of the mechanisms of central sensitization and for the performance of pharmacological assays with the purpose of identifying and testing novel antinociceptive targets. SIGNIFICANCE Spinal circuits modulate activity of primary afferents acting on central terminals. Under in vitro conditions, dorsal roots show spontaneous activity in the form of depolarizations and action potentials. Our findings are consistent with the existence of several independent generator circuits. Experimental paw inflammation reduced mechanical withdrawal threshold and significantly increased the spontaneous activity of dorsal roots, which may be secondary to an enhanced output of spinal generators. This can be considered as a novel sign of central sensitization.
Collapse
Affiliation(s)
- Jorge Vicente-Baz
- Department of Systems Biology (Physiology), Universidad de Alcala, Alcala de Henares, Madrid, Spain
| | | | - Ivan Rivera-Arconada
- Department of Systems Biology (Physiology), Universidad de Alcala, Alcala de Henares, Madrid, Spain
| |
Collapse
|
11
|
van den Hoogen NJ, Kwok CHT, Trang T. Identifying the Neurodevelopmental Differences of Opioid Withdrawal. Cell Mol Neurobiol 2021; 41:1145-1155. [PMID: 33432504 PMCID: PMC11448592 DOI: 10.1007/s10571-020-01035-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/28/2020] [Indexed: 01/01/2023]
Abstract
Stopping opioid medications can result in a debilitating withdrawal syndrome in chronic users. Opioid withdrawal can occur at all ages, but mechanistic understanding of this condition is predominantly derived from adult studies. Here, we examined whether there are age-dependent differences in the behavioural phenotype and cellular indices of opioid withdrawal. We tested this by assessing the behavioural and cFos response (a surrogate marker for neuronal activation) to morphine withdrawal in C57BL/6J mice across key developmental stages-neonatal, adolescent, and adulthood. Mice in all age groups received escalating doses of morphine (10-50 mg/kg) over 5 days and withdrawal was precipitated by a single injection of the opioid receptor antagonist naloxone (2 mg/kg) two hours after the last morphine dose. In adult and adolescent mice, withdrawal behaviours were robust, with age-related differences in autonomic and somatic signs. In both groups, cFos expression was increased in spinally projecting neurons within the Periaqueductal Grey (PAG), Rostro-ventromedial Medulla (RVM), and Locus Coeruleus. Neonatal animals displayed both a distinct behavioural withdrawal and cFos expression profile. Notably, in young animals cFos expression was increased within the PAG and LC, but decreased in the RVM. In summary, naloxone challenge precipitated robust opioid withdrawal behaviours across all developmental stages with neonatal animals displaying differences in withdrawal behaviours and unique neuronal activation patterns within key brainstem regions.
Collapse
Affiliation(s)
- Nynke J van den Hoogen
- Comparative Biology and Experimental Medicine, Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Charlie H T Kwok
- Comparative Biology and Experimental Medicine, Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tuan Trang
- Comparative Biology and Experimental Medicine, Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
12
|
Melchior M, Kuhn P, Poisbeau P. The burden of early life stress on the nociceptive system development and pain responses. Eur J Neurosci 2021; 55:2216-2241. [PMID: 33615576 DOI: 10.1111/ejn.15153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
For a long time, the capacity of the newborn infant to feel pain was denied. Today it is clear that the nociceptive system, even if still immature, is functional enough in the newborn infant to elicit pain responses. Unfortunately, pain is often present in the neonatal period, in particular in the case of premature infants which are subjected to a high number of painful procedures during care. These are accompanied by a variety of environmental stressors, which could impact the maturation of the nociceptive system. Therefore, the question of the long-term consequences of early life stress is a critical question. Early stressful experience, both painful and non-painful, can imprint the nociceptive system and induce long-term alteration in brain function and nociceptive behavior, often leading to an increase sensitivity and higher susceptibility to chronic pain. Different animal models have been developed to understand the mechanisms underlying the long-term effects of different early life stressful procedures, including pain and maternal separation. This review will focus on the clinical and preclinical data about early life stress and its consequence on the nociceptive system.
Collapse
Affiliation(s)
- Meggane Melchior
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Kuhn
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.,Service de Médecine et Réanimation du Nouveau-né, Hôpital de Hautepierre, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Pierrick Poisbeau
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
13
|
Distinct Age-Dependent C Fiber-Driven Oscillatory Activity in the Rat Somatosensory Cortex. eNeuro 2020; 7:ENEURO.0036-20.2020. [PMID: 32759177 PMCID: PMC7545434 DOI: 10.1523/eneuro.0036-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
When skin afferents are activated, the sensory signals are transmitted to the spinal cord and eventually reach the primary somatosensory cortex (S1), initiating the encoding of the sensory percept in the brain. While subsets of primary afferents mediate specific somatosensory information from an early age, the subcortical pathways that transmit this information undergo striking changes over the first weeks of life, reflected in the gradual emergence of specific sensory behaviors. We therefore hypothesized that this period is associated with differential changes in the encoding of incoming afferent volleys in S1. To test this, we compared S1 responses to A fiber skin afferent stimulation and A + C skin afferent fiber stimulation in lightly anaesthetized male rats at postnatal day (P)7, P14, P21, and P30. Differences in S1 activity following A and A + C fiber stimulation changed dramatically over this period. At P30, A + C fiber stimulation evoked significantly larger γ, β, and α energy increases compared with A fiber stimulation alone. At younger ages, the changes in S1 oscillatory activity evoked by the two afferent volleys were not significantly different. Silencing TRPV1+ C fibers with QX-314 significantly reduced the γ and β S1 oscillatory energy increases evoked by A + C fibers, at P30 and P21, but not at younger ages. Thus, C fibers differentially modulate S1 oscillatory activity only from the third postnatal week, well after the functional maturation of the somatosensory cortex. This age-related change in afferent evoked S1 oscillatory activity may underpin the maturation of sensory discrimination in the developing brain.
Collapse
|
14
|
Segelcke D, Reichl S, Neuffer S, Zapp S, Rüther T, Evers D, Zahn PK, Pogatzki-Zahn EM. The role of the spinal cyclooxygenase (COX) for incisional pain in rats at different developmental stages. Eur J Pain 2019; 24:312-324. [PMID: 31566273 DOI: 10.1002/ejp.1487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cyclooxygenase enzymes (COX)-1 and COX-2 are important targets for pain relief after surgery, but the spinal contribution of both isoforms is still unclear, e.g., from a developmental point of view. Here, we studied changes of spinal COX-1 and COX-2 expression and their functional relevance in rats of different ages for pain-related behaviour after incision. METHODS Mechanical paw withdrawal thresholds (PWT) were assessed before and after incision and after intrathecal administration (IT) of SC-560 (COX-1 inhibitor) or NS-398 (COX-2 inhibitor) in rats aged 5, 14 and 28 days (P5, P14, P28). Furthermore, spinal expressions of COX m-RNA and proteins were investigated. RESULTS In P5 rats, only IT-administered NS-398 but not SC-560 significantly reversed the decreased PWT after incision. In P14 rats, none of the substance modified PWT, and in P28 rats, only SC-560 increased PWT. Spinal COX-2 mRNA and protein were increased in P5 but not in P14 and P28 rats after incision. Whereas COX-2 is located in spinal neurons, COX-1 is mainly found in spinal microglia cells. CONCLUSION Our results demonstrate a possible developmental transition from COX-2 to COX-1 activation. Whereas in adult rats spinal COX-1 but not COX-2 is involved in pain-related behaviour after incision, it seems opposite in P5 rats. Interestingly, in P14, neither COX-1 nor COX-2 seems to play a role. This switch may relate to altered neuronal/microglia activation. Our findings indicate specific mechanisms to pain after incision that are age-dependent and may guide further research improving paediatric pain management. SIGNIFICANCE Postoperative pain in pediatric patients after surgery is still poorly controlled; this might contribute to long-lasting alteration in the nociceptive system and prolonged chronic pain. Here we show a possible developmental switch in the COX-dependent pathway for nociceptive spinal transmission that may explain why pain management in young children needs to be related to age-dependent mechanisms.
Collapse
Affiliation(s)
- Daniel Segelcke
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Sylvia Reichl
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Simon Neuffer
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Sebastian Zapp
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Theresa Rüther
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Dagmar Evers
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Peter K Zahn
- Department of Anaesthesiology, Intensive Care Medicine, Palliative Care and Pain Medicine, Medical Faculty of Ruhr-University, BG-Universitätsklinikum Bergmannsheil gGmbH, Bochum, Germany
| | - Esther M Pogatzki-Zahn
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
15
|
Battell EE, Lillywhite A, Hathway GJ. The changing role of descending control of spinal nociception over postnatal development. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
van den Hoogen NJ, de Kort AR, Allegaert KM, Joosten EA, Simons SHP, Tibboel D, van den Bosch GE. Developmental neurobiology as a guide for pharmacological management of pain in neonates. Semin Fetal Neonatal Med 2019; 24:101012. [PMID: 31221544 DOI: 10.1016/j.siny.2019.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pain in newborn children should be prevented due to negative short- and long-term consequences. A good understanding of the development of the nociceptive system in newborns is necessary to enable optimal pain assessment, and most importantly to treat and prevent pain adequately in neonates. So far, preclinical juvenile animal studies have led to a tremendous amount of information regarding the development of the nociceptive system. In addition, they have made clear that the developmental stage of the nociceptive system may influence the mechanism of action of different classes of analgesics. Age specific analgesic therapy, based on post-menstrual age, should therefore be considered by incorporating information on the developmental stages of the nociceptive system in combination with knowledge from pharmacokinetic and -dynamic studies in neonates.
Collapse
Affiliation(s)
- Nynke J van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Anne R de Kort
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Karel M Allegaert
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Development and Regeneration, KU, Leuven, Leuven, Belgium
| | - Elbert A Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Sinno H P Simons
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Gerbrich E van den Bosch
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
17
|
Repeated touch and needle-prick stimulation in the neonatal period increases the baseline mechanical sensitivity and postinjury hypersensitivity of adult spinal sensory neurons. Pain 2019. [PMID: 29528964 PMCID: PMC5959002 DOI: 10.1097/j.pain.0000000000001201] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neonatal abnormal noxious and tactile stimulations facilitate the activity of spinal neurons, which leads to an altered somatosensory and pain phenotype in adulthood. Noxious stimulation at critical stages of development has long-term consequences on somatosensory processing in later life, but it is not known whether this developmental plasticity is restricted to nociceptive pathways. Here, we investigate the effect of repeated neonatal noxious or innocuous hind paw stimulation on adult spinal dorsal horn cutaneous mechanical sensitivity. Neonatal Sprague-Dawley rats of both sexes received 4 unilateral left hind paw needle pricks (NPs, n = 13) or 4 tactile (cotton swab touch) stimuli, per day (TC, n = 11) for the first 7 days of life. Control pups were left undisturbed (n = 17). When adult (6-8 weeks), lumbar wide-dynamic-range neuron activity in laminae III-V was recorded using in vivo extracellular single-unit electrophysiology. Spike activity evoked by cutaneous dynamic tactile (brush), pinch and punctate (von Frey hair) stimulation, and plantar receptive field areas were recorded, at baseline and 2 and 5 days after left plantar hind paw incision. Baseline brush receptive fields, von Frey hair, and pinch sensitivity were significantly enhanced in adult NP and TC animals compared with undisturbed controls, although effects were greatest in NP rats. After incision, injury sensitivity of adult wide-dynamic-range neurons to both noxious and dynamic tactile hypersensitivity was significantly greater in NP animals compared with TC and undisturbed controls. We conclude that both repeated touch and needle-prick stimulation in the neonatal period can alter adult spinal sensory neuron sensitivity to both innocuous and noxious mechanical stimulation. Thus, spinal sensory circuits underlying touch and pain processing are shaped by a range of early-life somatosensory experiences.
Collapse
|
18
|
Gainfully employing descending controls in acute and chronic pain management. Vet J 2018; 237:16-25. [DOI: 10.1016/j.tvjl.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022]
|
19
|
Abstract
Supplemental Digital Content is Available in the Text. Endocannabinoid signalling within brainstem centres that control top-down pain control changes significantly in early life in both rodents and humans. Significant age- and experience-dependent remodelling of spinal and supraspinal neural networks occur, resulting in altered pain responses in early life. In adults, endogenous opioid peptide and endocannabinoid (ECs) pain control systems exist which modify pain responses, but the role they play in acute responses to pain and postnatal neurodevelopment is unknown. Here, we have studied the changing role of the ECs in the brainstem nuclei essential for the control of nociception from birth to adulthood in both rats and humans. Using in vivo electrophysiology, we show that substantial functional changes occur in the effect of microinjection of ECs receptor agonists and antagonists in the periaqueductal grey (PAG) and rostroventral medulla (RVM), both of which play central roles in the supraspinal control of pain and the maintenance of chronic pain states in adulthood. We show that in immature PAG and RVM, the orphan receptor, GPR55, is able to mediate profound analgesia which is absent in adults. We show that tissue levels of endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol, within the PAG and RVM are developmentally regulated (using mass spectrometry). The expression patterns and levels of ECs enzymes and receptors were assessed using quantitative PCR and immunohistochemistry. In human brainstem, we show age-related alterations in the expression of key enzymes and receptors involved in ECs function using PCR and in situ hybridisation. These data reveal that significant changes on ECs that to this point have been unknown and which shed new light into the complex neurochemical changes that permit normal, mature responses to pain.
Collapse
|
20
|
Jones L, Fabrizi L, Laudiano-Dray M, Whitehead K, Meek J, Verriotis M, Fitzgerald M. Nociceptive Cortical Activity Is Dissociated from Nociceptive Behavior in Newborn Human Infants under Stress. Curr Biol 2017; 27:3846-3851.e3. [PMID: 29199079 PMCID: PMC5742634 DOI: 10.1016/j.cub.2017.10.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/20/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022]
Abstract
Newborn infants display strong nociceptive behavior in response to tissue damaging stimuli, and this is accompanied by nociceptive activity generated in subcortical and cortical areas of the brain [1, 2]. In the absence of verbal report, these nociceptive responses are used as measures of pain sensation in newborn humans, as they are in animals [3, 4]. However, many infants are raised in a physiologically stressful environment, and little is known about the effect of background levels of stress upon their pain responses. In adults, acute physiological stress causes hyperalgesia [5, 6, 7], and increased background stress increases pain [8, 9, 10], but these data cannot necessarily be extrapolated to infants. Here we have simultaneously measured nociceptive behavior, brain activity, and levels of physiological stress in a sample of 56 newborn human infants aged 36–42 weeks. Salivary cortisol (hypothalamic pituitary axis), heart rate variability (sympathetic adrenal medullary system), EEG event-related potentials (nociceptive cortical activity), and facial expression (behavior) were acquired in individual infants following a clinically required heel lance. We show that infants with higher levels of stress exhibit larger amplitude cortical nociceptive responses, but this is not reflected in their behavior. Furthermore, while nociceptive behavior and cortical activity are normally correlated, this relationship is disrupted in infants with high levels of physiological stress. Brain activity evoked by noxious stimulation is therefore enhanced by stress, but this cannot be deduced from observation of pain behavior. This may be important in the prevention of adverse effects of early repetitive pain on brain development. Infant pain behavior and nociceptive brain activity are generally correlated Stress disrupts the relationship between infant pain brain activity and behavior Stress is associated with increased nociceptive brain activity, but not behavior Stress is an important factor when assessing infant pain experience
Collapse
Affiliation(s)
- Laura Jones
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Maria Laudiano-Dray
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Kimberley Whitehead
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London WC1E6DB, UK
| | - Madeleine Verriotis
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK.
| |
Collapse
|
21
|
The developmental emergence of differential brainstem serotonergic control of the sensory spinal cord. Sci Rep 2017; 7:2215. [PMID: 28533557 PMCID: PMC5440407 DOI: 10.1038/s41598-017-02509-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2017] [Indexed: 12/29/2022] Open
Abstract
Descending connections from brainstem nuclei are known to exert powerful control of spinal nociception and pain behaviours in adult mammals. Here we present evidence that descending serotonergic fibres not only inhibit nociceptive activity, but also facilitate non-noxious tactile activity in the healthy adult rat spinal dorsal horn via activation of spinal 5-HT3 receptors (5-HT3Rs). We further show that this differential serotonergic control in the adult emerges from a non-modality selective system in young rats. Serotonergic fibres exert background 5-HT3R mediated facilitation of both tactile and nociceptive spinal activity in the first three postnatal weeks. Thus, differential descending serotonergic control of spinal touch and pain processing emerges in late postnatal life to allow flexible and context-dependent brain control of somatosensation.
Collapse
|
22
|
|
23
|
Chang P, Fabrizi L, Olhede S, Fitzgerald M. The Development of Nociceptive Network Activity in the Somatosensory Cortex of Freely Moving Rat Pups. Cereb Cortex 2016; 26:4513-4523. [PMID: 27797835 PMCID: PMC5193146 DOI: 10.1093/cercor/bhw330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/02/2016] [Indexed: 12/13/2022] Open
Abstract
Cortical perception of noxious stimulation is an essential component of pain experience but it is not known how cortical nociceptive activity emerges during brain development. Here we use continuous telemetric electrocorticogram (ECoG) recording from the primary somatosensory cortex (S1) of awake active rat pups to map functional nociceptive processing in the developing brain over the first 4 weeks of life. Cross-sectional and longitudinal recordings show that baseline S1 ECoG energy increases steadily with age, with a distinctive beta component replaced by a distinctive theta component in week 3. Event-related potentials were evoked by brief noxious hindpaw skin stimulation at all ages tested, confirming the presence of functional nociceptive spinothalamic inputs in S1. However, hindpaw incision, which increases pain sensitivity at all ages, did not increase S1 ECoG energy until week 3. A significant increase in gamma (20–50 Hz) energy occurred in the presence of skin incision at week 3 accompanied by a longer-lasting increase in theta (4–8 Hz) energy at week 4. Continuous ECoG recording demonstrates specific postnatal functional stages in the maturation of S1 cortical nociception. Somatosensory cortical coding of an ongoing pain “state” in awake rat pups becomes apparent between 2 and 4 weeks of age.
Collapse
Affiliation(s)
- P Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E6BT, UK.,Current address: Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London WC1N 3BG, UK
| | - L Fabrizi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E6BT, UK
| | - S Olhede
- Department of Statistical Science, University College London, London WC1E6BT, UK
| | - M Fitzgerald
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E6BT, UK
| |
Collapse
|
24
|
Fitzgerald M. What do we really know about newborn infant pain? Exp Physiol 2016; 100:1451-7. [PMID: 26446174 DOI: 10.1113/ep085134] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/05/2015] [Indexed: 02/03/2023]
Abstract
NEW FINDINGS What is the topic of this review? Pain in infancy. What advances does it highlight? New neurophysiological research on pain processing in the human infant brain. Increased awareness of pain in the newborn has led to the development of numerous assessment tools for use in neonatal intensive care units. Here, I argue that we still know too little about the neurophysiological basis for infant pain to interpret data from clinical observational measures. With increased understanding of how the neural activity and CNS connections that underlie pain behaviour and perception develop in the newborn will come better measurement and treatment of their pain. This review focuses upon two interconnected nociceptive circuits, the spinal cord dorsal horn and the somatosensory cortex in the brain, to highlight what we know and what we do not know about infant pain. The effectiveness of oral sucrose, widely used in clinical practice to relieve infant pain, is discussed as a specific example of what we do not know. This 'hot topic review' highlights the importance of new laboratory-based neurophysiological research for the treatment of newborn infant pain.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
25
|
Hartley C, Moultrie F, Gursul D, Hoskin A, Adams E, Rogers R, Slater R. Changing Balance of Spinal Cord Excitability and Nociceptive Brain Activity in Early Human Development. Curr Biol 2016; 26:1998-2002. [PMID: 27374336 PMCID: PMC4985558 DOI: 10.1016/j.cub.2016.05.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/25/2016] [Accepted: 05/24/2016] [Indexed: 01/28/2023]
Abstract
In adults, nociceptive reflexes and behavioral responses are modulated by a network of brain regions via descending projections to the spinal dorsal horn [1]. Coordinated responses to noxious inputs manifest from a balance of descending facilitation and inhibition. In contrast, young infants display exaggerated and uncoordinated limb reflexes [2]. Our understanding of nociceptive processing in the infant brain has been advanced by the use of electrophysiological and hemodynamic imaging [3, 4, 5, 6]. From approximately 35 weeks’ gestation, nociceptive-specific patterns of brain activity emerge [7], whereas prior to this, non-specific bursts of activity occur in response to noxious, tactile, visual, and auditory stimulation [7, 8, 9, 10]. During the preterm period, refinement of spinal cord excitability is also observed: reflex duration shortens, response threshold increases, and improved discrimination between tactile and noxious events occurs [2, 11, 12]. However, the development of descending modulation in human infants remains relatively unexplored. In 40 infants aged 28–42 weeks’ gestation, we examined the relationship between nociceptive brain activity and spinal reflex withdrawal activity in response to a clinically essential noxious procedure. Nociceptive-specific brain activity increases in magnitude with gestational age, whereas reflex withdrawal activity decreases in magnitude, duration, and latency across the same developmental period. By recording brain and spinal cord activity in the same infants, we demonstrate that the maturation of nociceptive brain activity is concomitant with the refinement of noxious-evoked limb reflexes. We postulate that, consistent with studies in animals, infant reflexes are influenced by the development of top-down inhibitory modulation from maturing subcortical and cortical brain networks. Noxious-evoked brain activity increases in magnitude across the preterm period Maturation of nociceptive brain activity coincides with reflex activity refinement This may relate to the emergence of top-down inhibition in human infants
Collapse
Affiliation(s)
- Caroline Hartley
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Fiona Moultrie
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Deniz Gursul
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Amy Hoskin
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Eleri Adams
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Richard Rogers
- Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|