1
|
Luo L, Cheng Y, Wang H, Li L, Niu H, Yang Y, Zhou Q, He J, Xu J. Lidocaine-A Promising Candidate for the Treatment of Cancer-Induced Bone Pain: A Narrative Review. Adv Ther 2025:10.1007/s12325-025-03192-w. [PMID: 40232625 DOI: 10.1007/s12325-025-03192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025]
Abstract
Pain is one of the most common symptoms in patients with cancer, with cancer-induced bone pain (CIBP) significantly affecting their quality of life. Opioids are commonly used as first-line treatments for cancer pain, but their use requires caution due to non-mechanistic analgesia and significant side effects. As a result, there is a need for new non-opioid drugs that target cancer pain through specific mechanisms. Recent studies on the anticancer effects of lidocaine have highlighted its potential benefits in both treating cancer and alleviating cancer-induced pain. This article discusses the mechanism of action and clinical applications of lidocaine in cancer pain management, and suggests new treatment approaches for patients with CIBP.
Collapse
Affiliation(s)
- Lihan Luo
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yuqi Cheng
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Hanxi Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Li Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Hanyun Niu
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yuzhu Yang
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qianqian Zhou
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiannan He
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Jianhong Xu
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
2
|
Park SH, Tsuzuki S, Contino KF, Ollodart J, Eber MR, Yu Y, Steele LR, Inaba H, Kamata Y, Kimura T, Coleman I, Nelson PS, Muñoz-Islas E, Jiménez-Andrade JM, Martin TJ, Mackenzie KD, Stratton JR, Hsu FC, Peters CM, Shiozawa Y. Crosstalk between bone metastatic cancer cells and sensory nerves in bone metastatic progression. Life Sci Alliance 2024; 7:e202302041. [PMID: 39266299 PMCID: PMC11393574 DOI: 10.26508/lsa.202302041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Although the role of peripheral nerves in cancer progression has been appreciated, little is known regarding cancer/sensory nerve crosstalk and its contribution to bone metastasis and associated pain. In this study, we revealed that the cancer/sensory nerve crosstalk plays a crucial role in bone metastatic progression. We found that (i) periosteal sensory nerves expressing calcitonin gene-related peptide (CGRP) are enriched in mice with bone metastasis; (ii) cancer patients with bone metastasis have elevated CGRP serum levels; (iii) bone metastatic patient tumor samples express elevated calcitonin receptor-like receptor (CRLR, a CGRP receptor component); (iv) higher CRLR levels in cancer patients are negatively correlated with recurrence-free survival; (v) CGRP induces cancer cell proliferation through the CRLR/p38/HSP27 pathway; and (vi) blocking sensory neuron-derived CGRP reduces cancer cell proliferation in vitro and bone metastatic progression in vivo. This suggests that CGRP-expressing sensory nerves are involved in bone metastatic progression and that the CGRP/CRLR axis may serve as a potential therapeutic target for bone metastasis.
Collapse
Affiliation(s)
- Sun H Park
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shunsuke Tsuzuki
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Kelly F Contino
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jenna Ollodart
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Matthew R Eber
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yang Yu
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laiton R Steele
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hiroyuki Inaba
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Department of Oncology, Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Enriqueta Muñoz-Islas
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Mexico
| | | | - Thomas J Martin
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Fang-Chi Hsu
- Department of Biostatistics and Data Science Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
3
|
Chen Y, Wu M. Piperine attenuates cancer-associated pain induced by microglial activation via increasing miR-150-50p. Aging (Albany NY) 2024; 16:13288-13303. [PMID: 39641645 PMCID: PMC11719110 DOI: 10.18632/aging.205908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/22/2023] [Indexed: 12/07/2024]
Abstract
AIM Severe painful neuropathy often occurs in cancer patients receiving chemotherapy. Emerging evidence has demonstrated that microglia contribute to the occurrence and development of cancer-associated pain. This study aimed to investigate the mechanisms by which piperine influences cancer-associated pain induced by microglia activation. METHODS The tumor cell implantation (TCI) model was adopted as the cancer-associated pain model in mice. Behavioral tests were done to confirm that model mice were sensitive to acute mechanical and thermal pain. Western blot (WB) and immunofluorescence (IF) were conducted to quantify expression level of microglia marker protein Iba1 in mice spinal cord tissues. The expression of miR-150-5p and CXCL12 in the mice spinal cord was evaluated by Quantitative real-time Polymerase Chain Reaction (qRT-PCR) and fluorescence in situ hybridization (FISH). Primary microglia from mice were treated with lipopolysaccharide (LPS) to investigate neuroinflammation. RESULTS The modeled mice showed high susceptibility to acute mechanical hyperalgesia and thermal hyperalgesia. The expression of microglia marker protein Iba1 in the model group was increased in vitro and in vivo. Treatment with piperine effectively relieved the cancer-associated pain in mice. The results of FISH and qRT-PCR showed that piperine significantly increased the expression of miR-150-5p and reduced the expression of CXCL12 in the spinal cord of mice. Furthermore, it inhibited the microglia-induced cancer-associated pain. CONCLUSIONS Piperine upregulates miR-150-50p levels, inhibits CXCL12 expression, and reduces microglia levels at the lesion site. Therefore, piperine may be a potential drug candidate for the treatment of cancer-associated pain.
Collapse
Affiliation(s)
- Yunlong Chen
- Department of Oncology, Rudong County Hospital of Traditional Chinese Medicine, Rudong County 226400, Jiangsu, China
| | - Mianhua Wu
- Institute of Oncology, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
4
|
Jaffal S, Khalil R. Targeting nerve growth factor for pain relief: pros and cons. Korean J Pain 2024; 37:288-298. [PMID: 39322310 PMCID: PMC11450303 DOI: 10.3344/kjp.24235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Nerve growth factor (NGF) is a neurotrophic protein that has crucial roles in survival, growth and differentiation. It is expressed in neuronal and non-neuronal tissues. NGF exerts its effects via two types of receptors including the high affinity receptor, tropomyosin receptor kinase A and the low affinity receptor p75 neurotrophin receptor highlighting the complex signaling pathways that underlie the roles of NGF. In pain perception and transmission, multiple studies shed light on the effects of NGF on different types of pain including inflammatory, neuropathic, cancer and visceral pain. Also, the binding of NGF to its receptors increases the availability of many nociceptive receptors such as transient receptor potential vanilloid 1, transient receptor potential ankyrin 1, N-methyl-D-aspartic acid, and P2X purinoceptor 3 as well as nociceptive transmitters such as substance P and calcitonin gene-related peptide. The role of NGF in pain has been documented in pre-clinical and clinical studies. This review aims to shed light on the role of NGF and its signaling in different types of pain.
Collapse
Affiliation(s)
- Sahar Jaffal
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University, Amman, Jordan
| | - Raida Khalil
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University, Amman, Jordan
| |
Collapse
|
5
|
Flippen A, Khasabova IA, Simone DA, Khasabov SG. Systemic administration of Resolvin D1 reduces cancer-induced bone pain in mice: Lack of sex dependency in pain development and analgesia. Cancer Med 2024; 13:e70077. [PMID: 39101490 PMCID: PMC11299078 DOI: 10.1002/cam4.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
AIMS Bone cancer produces severe pain that is treated with opioids, but serious side effects limit opioid utilization. There is therefore a need to develop effective and safe non-opioid alternatives. The lipid mediator, Resolvin D1 (RvD1), could be a prospective candidate for cancer pain treatment. To assess RvD1 and other potential candidates, appropriate animal models that recapitulate clinical features must be used. Although several preclinical models of cancer pain have been developed, the influence of sex on the development of cancer pain and the effectiveness of RvD1 have not been studied. RESULTS Using a mouse model of fibrosarcoma growth in and around the calcaneus bone, we demonstrated that the mechanical hyperalgesia in the tumor-bearing hind paw develops independently of sex, except that it developed a little sooner in female mice. A single intravenous injection of RvD1 (0.001-10 μg/kg) decreased hyperalgesia in both sexes with similar potency (ED50 = 0.0015 μg/kg) and efficacy. Repeated daily administration of 10 μg/kg RvD1 prolonged the analgesic effect and completely abolished hyperalgesia. This was also independent of sex. CONCLUSION In this preclinical mouse model of bone cancer pain, the development of pain and the analgesic effectiveness of RvD1 are not influenced by sex.
Collapse
Affiliation(s)
- Alyssa Flippen
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Iryna A. Khasabova
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Donald A. Simone
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Sergey G. Khasabov
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
6
|
Bencze N, Scheich B, Szőke É, Wilhelm I, Körmöndi S, Botz B, Helyes Z. Osteosarcoma-Induced Pain Is Mediated by Glial Cell Activation in the Spinal Dorsal Horn, but Not Capsaicin-Sensitive Nociceptive Neurons: A Complex Functional and Morphological Characterization in Mice. Cancers (Basel) 2024; 16:1788. [PMID: 38791867 PMCID: PMC11120600 DOI: 10.3390/cancers16101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Bone cancer and its related chronic pain are huge clinical problems since the available drugs are often ineffective or cannot be used long term due to a broad range of side effects. The mechanisms, mediators and targets need to be identified to determine potential novel therapies. Here, we characterize a mouse bone cancer model induced by intratibial injection of K7M2 osteosarcoma cells using an integrative approach and investigate the role of capsaicin-sensitive peptidergic sensory nerves. The mechanical pain threshold was assessed by dynamic plantar aesthesiometry, limb loading by dynamic weight bearing, spontaneous pain-related behaviors via observation, knee diameter with a digital caliper, and structural changes by micro-CT and glia cell activation by immunohistochemistry in BALB/c mice of both sexes. Capsaicin-sensitive peptidergic sensory neurons were defunctionalized by systemic pretreatment with a high dose of the transient receptor potential vanilloid 1 (TRPV1) agonist resiniferatoxin (RTX). During the 14- and 28-day experiments, weight bearing on the affected limb and the paw mechanonociceptive thresholds significantly decreased, demonstrating secondary mechanical hyperalgesia. Signs of spontaneous pain and osteoplastic bone remodeling were detected both in male and female mice without any sex differences. Microglia activation was shown by the increased ionized calcium-binding adapter molecule 1 (Iba1) immunopositivity on day 14 and astrocyte activation by the enhanced glial fibrillary acidic protein (GFAP)-positive cell density on day 28 in the ipsilateral spinal dorsal horn. Interestingly, defunctionalization of the capsaicin-sensitive afferents representing approximately 2/3 of the nociceptive fibers did not alter any functional parameters. Here, we provide the first complex functional and morphological characterization of the K7M2 mouse osteosarcoma model. Bone-cancer-related chronic pain and hyperalgesia are likely to be mediated by central sensitization involving neuroinflammation via glial cell activation in the spinal dorsal horn, but not the capsaicin-sensitive sensory neuronal system.
Collapse
Affiliation(s)
- Noémi Bencze
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary;
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN-PTE), 7624 Pécs, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
| | - Sándor Körmöndi
- Department of Traumatology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- Department of Medical Imaging, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN-PTE), 7624 Pécs, Hungary
- PharmInVivo Ltd., Szondy György Str. 10, 7629 Pécs, Hungary
| |
Collapse
|
7
|
Fan W, Liu C, Chen D, Xu C, Qi X, Zhang A, Zhu X, Liu Y, Wang L, Hao L, Liu WT, Hu L. Ozone alleviates MSU-induced acute gout pain via upregulating AMPK/GAS6/MerTK/SOCS3 signaling pathway. J Transl Med 2023; 21:890. [PMID: 38066599 PMCID: PMC10704676 DOI: 10.1186/s12967-023-04769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Gout pain seriously affects the quality of patients' life. There is still no effective treatment. The inflammatory response is the main mechanism of gout. Here, we found that ozone can reduce the inflammatory reaction in the joints of gouty mice and relieve gout pain, and we further explore its protective mechanism. METHODS MSU was used to establish the gouty mice model. Nociception was assessed by Von Frey hairs. Cell signaling assays were performed by western blotting and immunohistochemistry. The mouse leukemia cells of monocyte macrophage line RAW264.7 were cultured to investigate the effects of ozone administration on macrophage. RESULTS Ozone reduced inflammation, relieved gout pain and improved the paw mean intensity and duty cycle of the gouty mice. Ozone increased the phosphorylation of AMP-activated protein kinase (AMPK), induced suppressor of cytokine signaling 3 (SOCS3) expression and inhibited metallopeptidase 9 (MMP9) expression. In vivo, ozone activated AMPK to induce Gas6 release, and upregulated MerTK/SOCS3 signaling pathway to reduce inflammation in mouse macrophage line RAW264.7. Inhibitors of AMPK and MerTK, respectively abolished the analgesic and anti-inflammatory effects of ozone in vivo and in vitro. Gas6 knockout cancelled the protectively effects of ozone on gout pain and the paw mean intensity and duty cycle of gouty mice. Additionally, the level of Gas6 and protein S in plasma of patients with hyperuricemia was significantly higher than that of healthy contrast group. CONCLUSION Ozone reduces inflammation and alleviates gout pain by activating AMPK to up-regulate Gas6/MerTK/SOCS3 signaling pathway.
Collapse
Affiliation(s)
- Wen Fan
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Chong Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Dacai Chen
- The Fourth Affiliated Hospital of Nantong University, Jiangsu, China
- Yancheng Ruikang Hospital, Jiangsu, 224000, China
| | - Chenjie Xu
- Department of Anesthesiology and Pain, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Xiuting Qi
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Ailin Zhang
- Nanjing University of Chinese Medicine Institute of Literature in Chinese Medicine, Jiangsu, 224000, China
| | - Xuexian Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yujie Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Lanxiang Hao
- The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Jiangsu, 224005, China.
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Liang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
8
|
Jimenez-Andrade JM, Ramírez-Rosas MB, Hee Park S, Parker R, Eber MR, Cain R, Newland M, Hsu FC, Kittel CA, Martin TJ, Muñoz-Islas E, Shiozawa Y, Peters CM. Evaluation of pain related behaviors and disease related outcomes in an immunocompetent mouse model of prostate cancer induced bone pain. J Bone Oncol 2023; 43:100510. [PMID: 38075938 PMCID: PMC10701434 DOI: 10.1016/j.jbo.2023.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024] Open
Abstract
Cancer-induced bone pain (CIBP) is the most common and devastating symptom of bone metastatic cancer that substantially disrupts patients' quality of life. Currently, there are few effective analgesic treatments for CIBP other than opioids which come with severe side effects. In order to better understand the factors and mechanisms responsible for CIBP it is essential to have clinically relevant animal models that mirror pain-related symptoms and disease progression observed in patients with bone metastatic cancer. In the current study, we characterize a syngeneic mouse model of prostate cancer induced bone pain. We transfected a prostate cancer cell line (RM1) with green fluorescent protein (GFP) and luciferase reporters in order to visualize tumor growth longitudinally in vivo and to assess the relationship between sensory neurons and tumor cells within the bone microenvironment. Following intra-femoral injection of the RM1 prostate cancer cell line into male C57BL/6 mice, we observed a progressive increase in spontaneous guarding of the inoculated limb between 12 and 21 days post inoculation in tumor bearing compared to sham operated mice. Daily running wheel performance was evaluated as a measure of functional impairment and potentially movement evoked pain. We observed a progressive reduction in the distance traveled and percentage of time at optimal velocity between 12 and 21 days post inoculation in tumor bearing compared to sham operated mice. We utilized histological, radiographic and μCT analysis to examine tumor induced bone remodeling and observed osteolytic lesions as well as extra-periosteal aberrant bone formation in the tumor bearing femur, similar to clinical findings in patients with bone metastatic prostate cancer. Within the tumor bearing femur, we observed reorganization of blood vessels, macrophage and nerve fibers within the intramedullary space and periosteum adjacent to tumor cells. Tumor bearing mice displayed significant increases in the injury marker ATF3 and upregulation of the neuropeptides SP and CGRP in the ipsilateral DRG as well as increased measures of central sensitization and glial activation in the ipsilateral spinal cord. This immunocompetent mouse model will be useful when combined with cell type selective transgenic mice to examine tumor, immune cell and sensory neuron interactions in the bone microenvironment and their role in pain and disease progression associated with bone metastatic prostate cancer.
Collapse
Affiliation(s)
| | - Martha B. Ramírez-Rosas
- Universidad Autónoma de Tamaulipas, Campus Reynosa Aztlán, Reynosa, Tamaulipas, 88700 Mexico
| | - Sun Hee Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Renee Parker
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Matthew R. Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Rebecca Cain
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mary Newland
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Carol A. Kittel
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas J. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Enriqueta Muñoz-Islas
- Universidad Autónoma de Tamaulipas, Campus Reynosa Aztlán, Reynosa, Tamaulipas, 88700 Mexico
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Christopher M. Peters
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
9
|
Jing D, Zhao Q, Zhao Y, Lu X, Feng Y, Zhao B, Zhao X. Management of pain in patients with bone metastases. Front Oncol 2023; 13:1156618. [PMID: 37007073 PMCID: PMC10063159 DOI: 10.3389/fonc.2023.1156618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Cancer-induced bone pain (CIBP) has a considerable impact on patients’ quality of life as well as physical and mental health. At present, patients with CIBP are managed according to the three-step analgesic therapy algorithm proposed by the World Health Organization. Opioids are commonly used as the first-line treatment for moderate-to-severe cancer pain but are limited due to addiction, nausea, vomiting and other gastrointestinal side effects. Moreover, opioids have a limited analgesic effect in some patients. In order to optimize the management of CIBP, we must first identify the underlying mechanisms. In some patients, surgery, or surgery combined with radiotherapy or radiofrequency ablation is the first step in the management of CIBP. Various clinical studies have shown that anti-nerve growth factor (NGF) antibodies, bisphosphonates, or RANKL inhibitors can reduce the incidence and improve the management of cancer pain. Herein, we review the mechanisms of cancer pain and potential therapeutic strategies to provide insights for optimizing the management of CIBP.
Collapse
Affiliation(s)
- Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Zhao
- Department of Endocrine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yibo Zhao
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiangdong Lu
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Feng
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Bin Zhao, ; Xiaofeng Zhao,
| | - Xiaofeng Zhao
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Bin Zhao, ; Xiaofeng Zhao,
| |
Collapse
|
10
|
Tian SX, Xu T, Shi RY, Cai YQ, Wu MH, Zhen SJ, Wang W, Zhou Y, Du JY, Fang JF, Shao XM, Liu BY, Jiang YL, He XF, Fang JQ, Liang Y. Analgesic effect of electroacupuncture on bone cancer pain in rat model: the role of peripheral P2X3 receptor. Purinergic Signal 2023; 19:13-27. [PMID: 35478452 PMCID: PMC9984641 DOI: 10.1007/s11302-022-09861-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Upregulation of P2X3 receptor (P2X3R) has been strongly implicated in nociceptive signaling including bone cancer pain (BCP). The present study, using rat bone cancer model, aimed to explore the role of P2X3R in regulating rat pain behavior under the intervention of electroacupuncture (EA). The BCP model was successfully established by injection with MRMT-1 breast cancer cell into the medullary cavity of left tibia for 3 × 104 cells/3 μL PBS in rats as revealed by obvious bone destruction, decreased paw withdrawal thresholds (PWTs), and reduced paw withdrawal latencies (PWLs). Western blot analyses showed that P2X3R expression was significantly upregulated in ipsilateral lumbar 4-6 (L4-6) dorsal root ganglia (DRG), but the difference not seen in spinal cord dorsal horn (SCDH). With the in-depth study of P2X3R activation, we observed that intrathecal injection of P2X3R agonist α,β-meATP aggravated MRMT-1 induced BCP, while injection of P2X3R inhibitor A-317491 alleviated pain. Subsequently, we demonstrated that BCP induced mechanical allodynia and thermal hyperalgesia were attenuated after EA treatment. Under EA treatment, total P2X3R protein expression in ipsilateral DRGs was decreased, and it is worth mentioning that decreased expression of P2X3R membrane protein, which indicated that both the expression and membrane trafficking of P2X3R were inhibited by EA. The immunofluorescence assay showed that EA stimulation exerted functions by reducing the expression of P2X3R-positive cells in ipsilateral DRGs of BCP rats. Ca2+ imaging analysis revealed that the EA stimulation decreased the percentage of α,β-meATP responsive neurons in DRGs and inhibited calcium influx. Notably, the inhibitory effect of EA on mechanical allodynia and nociceptive flinches was abolished by intrathecal injection of α,β-meATP. These findings demonstrated EA stimulation ameliorated mechanical allodynia and thermal hyperalgesia in rat model of MRMT-1-induced BCP. EA exerts analgesic effect on BCP by reducing the overexpression and functional activity of P2X3R in ipsilateral DRGs of BCP rats. Our work first demonstrates the critical and overall role of P2X3R in EA's analgesia against peripheral sensitization of MRMT-1-induced BCP and further supports EA as a potential therapeutic option for cancer pain in clinic.
Collapse
Affiliation(s)
- Shu-Xin Tian
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ting Xu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ren-Yi Shi
- Department of Acupuncture and Moxibustion, Sanya Traditional Chinese Medicine Hospital, Sanya, 572000, China
| | - Yang-Qian Cai
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ming-Hui Wu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Si-Jia Zhen
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Wen Wang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - You Zhou
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jun-Ying Du
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jun-Fan Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Xiao-Mei Shao
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Bo-Yi Liu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Yong-Liang Jiang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Xiao-Fen He
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jian-Qiao Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China.,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310005, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China. .,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
11
|
Haroun R, Wood JN, Sikandar S. Mechanisms of cancer pain. FRONTIERS IN PAIN RESEARCH 2023; 3:1030899. [PMID: 36688083 PMCID: PMC9845956 DOI: 10.3389/fpain.2022.1030899] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
Personalised and targeted interventions have revolutionised cancer treatment and dramatically improved survival rates in recent decades. Nonetheless, effective pain management remains a problem for patients diagnosed with cancer, who continue to suffer from the painful side effects of cancer itself, as well as treatments for the disease. This problem of cancer pain will continue to grow with an ageing population and the rapid advent of more effective therapeutics to treat the disease. Current pain management guidelines from the World Health Organisation are generalised for different pain severities, but fail to address the heterogeneity of mechanisms in patients with varying cancer types, stages of disease and treatment plans. Pain is the most common complaint leading to emergency unit visits by patients with cancer and over one-third of patients that have been diagnosed with cancer will experience under-treated pain. This review summarises preclinical models of cancer pain states, with a particular focus on cancer-induced bone pain and chemotherapy-associated pain. We provide an overview of how preclinical models can recapitulate aspects of pain and sensory dysfunction that is observed in patients with persistent cancer-induced bone pain or neuropathic pain following chemotherapy. Peripheral and central nervous system mechanisms of cancer pain are discussed, along with key cellular and molecular mediators that have been highlighted in animal models of cancer pain. These include interactions between neuronal cells, cancer cells and non-neuronal cells in the tumour microenvironment. Therapeutic targets beyond opioid-based management are reviewed for the treatment of cancer pain.
Collapse
Affiliation(s)
- Rayan Haroun
- Division of Medicine, Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - John N Wood
- Division of Medicine, Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
12
|
Meregalli C, Monza L, Jongen JLM. A mechanistic understanding of the relationship between skin innervation and chemotherapy-induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1066069. [PMID: 36582196 PMCID: PMC9792502 DOI: 10.3389/fpain.2022.1066069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.
Collapse
Affiliation(s)
- Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy,Correspondence: Cristina Meregalli
| | - Laura Monza
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Joost L. M. Jongen
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
13
|
Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG. Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 2022; 25:104936. [PMID: 36072549 PMCID: PMC9441333 DOI: 10.1016/j.isci.2022.104936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zhu-Lin Yuan
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Zi-Xian Zhang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Song Li
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| |
Collapse
|
14
|
Mechanisms of bone pain: Progress in research from bench to bedside. Bone Res 2022; 10:44. [PMID: 35668080 PMCID: PMC9170780 DOI: 10.1038/s41413-022-00217-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
AbstractThe field of research on pain originating from various bone diseases is expanding rapidly, with new mechanisms and targets asserting both peripheral and central sites of action. The scope of research is broadening from bone biology to neuroscience, neuroendocrinology, and immunology. In particular, the roles of primary sensory neurons and non-neuronal cells in the peripheral tissues as important targets for bone pain treatment are under extensive investigation in both pre-clinical and clinical settings. An understanding of the peripheral mechanisms underlying pain conditions associated with various bone diseases will aid in the appropriate application and development of optimal strategies for not only managing bone pain symptoms but also improving bone repairing and remodeling, which potentially cures the underlying etiology for long-term functional recovery. In this review, we focus on advances in important preclinical studies of significant bone pain conditions in the past 5 years that indicated new peripheral neuronal and non-neuronal mechanisms, novel targets for potential clinical interventions, and future directions of research.
Collapse
|
15
|
Effect and Mechanism of Endothelin Receptor A Inhibitor BQ-123 Combined with Electroacupuncture on Tibia Cancer Pain in Rats. DISEASE MARKERS 2022; 2022:8563202. [PMID: 35620269 PMCID: PMC9129989 DOI: 10.1155/2022/8563202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Objective To research the impact and mechanism of endothelin receptor A inhibitor BQ-123 combined with electroacupuncture on tibia cancer pain in rats. Methods Sprague-Dawley (SD) rats were randomly divided into sham group (SHAM group) and bone cancer pain model group (BCP group). The behavior of SD rats was measured. The histology of the right tibia was observed by hematoxylin-eosin (HE) staining. The remaining rats were randomly divided into model, BQ-123, electroacupuncture, and BQ-123+ electroacupuncture group. Behavioral tests were performed, and mechanical pain threshold (MWT) and thermal pain threshold (TWL) were measured. The expressions of α-smooth muscle actin (αSMA), ETAR (endothelin A receptor), ETB (End of Transmission Block), P-Phosphatidylinositol 3-kinase (PI3K), and P-Protein kinase B (Akt) were detected by real-time fluorescence quantitative PCR and western blot. Results In the BCP group, bone structure was severely damaged, local tissue swelling was obvious, bone trabecula was missing, and bone cortex was discontinuous. The optical density of Glial fibrillary acidic protein (GFAP) and CD11b immunoreactive signal in BCP group was significantly increased, and most of the ETAR of endothelin receptor was comapped with NeuN, and a small part of GFAP was comapped with CD11b, but no comapped with CD11b. The AS score of BQ-123+ electroacupuncture group was significantly lower than that of BQ-123 group and electroacupuncture group (P < 0.05), whereas the MWT and TWL values were significantly higher than that of the BQ-123 group and electroacupuncture group (P < 0.05). The mRNA expression of α-SMA and ETAR in BQ-123+ electroacupuncture group was lower than that in BQ-123 and electroacupuncture group, and the protein expression of P-PI3K and P-Akt in BQ-123+ electroacupuncture group was lower as well. Conclusion BQ-123 may inhibit the activation of PI3K/Akt signal path combined with electroacupuncture to alleviate the effects of tibia cancer pain in rats.
Collapse
|
16
|
Torres-Rodríguez HF, Graniel-Amador MA, Cruz-Camacho CJ, Cantú-Martínez AA, Martínez-Martínez A, Petricevich VL, Montes S, Castañeda-Corral G, Jiménez-Andrade JM. Characterization of pain-related behaviors, changes in bone microarchitecture and sensory innervation induced by chronic cadmium exposure in adult mice. Neurotoxicology 2022; 89:99-109. [PMID: 35065951 DOI: 10.1016/j.neuro.2022.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
|
17
|
Bimonte S, Cascella M, Forte CA, Esposito G, Cuomo A. The Role of Anti-Nerve Growth Factor Monoclonal Antibodies in the Control of Chronic Cancer and Non-Cancer Pain. J Pain Res 2021; 14:1959-1967. [PMID: 34234542 PMCID: PMC8253925 DOI: 10.2147/jpr.s302004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Nerve growth factor (NGF) belongs to the neurotrophin family and plays a fundamental role in the endurance of sensory and sympathetic neurons during embryogenesis. NGF, by interacting with tropomyosin receptor kinase A receptor (TrkA), modulates the pain pathway through the enhancement of the neurotrophic and nociceptor functions. Moreover, it has been demonstrated that NGF is upregulated in patients with chronic pain syndromes, which are difficult to treat. Thus, new non-pharmacological approaches, based on the use of different species-specific monoclonal antibodies (mAbs) targeting the NGF pathway, have been tested for the treatment of chronic pain in preclinical and clinical studies. With regard to preclinical investigations, anti-NGF mAbs have been used for the management of osteoarthritis (OA) and chronic low back pain animal models, with encouraging results. Moreover, anti-NGF mAb therapy is effective in animal models of neuropathic cancer pain. As regards patients with OA, although phase II and phase III clinical trials with tanezumab led to pain reduction, the safety was not observed in all these patients. Here, we review the preclinical and clinical studies on anti-NGF mAb therapy in chronic syndromes, dissect the role of NGF in pain transduction, and highlight the use of anti-NGF mAbs in humans.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Cira Antonietta Forte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Gennaro Esposito
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
18
|
Zhu YF, Linher-Melville K, Wu J, Fazzari J, Miladinovic T, Ungard R, Zhu KL, Singh G. Bone cancer-induced pain is associated with glutamate signalling in peripheral sensory neurons. Mol Pain 2021; 16:1744806920911536. [PMID: 32133928 PMCID: PMC7059229 DOI: 10.1177/1744806920911536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We previously identified that several cancer cell lines known to induce
nociception in mouse models release glutamate in vitro. Although the mechanisms
of glutamatergic signalling have been characterized primarily in the central
nervous system, its importance in the peripheral nervous system has been
recognized in various pathologies, including cancer pain. We therefore
investigated the effect of glutamate on intracellular electrophysiological
characteristics of peripheral sensory neurons in an immunocompetent rat model of
cancer-induced pain based on surgical implantation of mammary rat metastasis
tumour-1 cells into the distal epiphysis of the right femur. Behavioural
evidence of nociception was detected using von Frey tactile assessment. Activity
of sensory neurons was measured by intracellular electrophysiological recordings
in vivo. Glutamate receptor expression at the mRNA level in relevant dorsal root
ganglia was determined by reverse transcription polymerase chain reaction using
rat-specific primers. Nociceptive and non-nociceptive mechanoreceptor neurons
exhibiting changes in neural firing patterns associated with increased
nociception due to the presence of a bone tumour rapidly responded to
sulphasalazine injection, an agent that pharmacologically blocks non-vesicular
glutamate release by inhibiting the activity of the system
xC− antiporter. In addition, both types of
mechanoreceptor neurons demonstrated excitation in response to intramuscular
glutamate injection near the femoral head, which corresponds to the location of
cancer cell injection to induce the bone cancer-induced pain model. Therefore,
glutamatergic signalling contributes to cancer pain and may be a factor in
peripheral sensitization and induced tactile hypersensitivity associated with
bone cancer-induced pain.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Katja Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jennifer Fazzari
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Tanya Miladinovic
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Robert Ungard
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kan Lun Zhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Liu JP, Jing HB, Xi K, Zhang ZX, Jin ZR, Cai SQ, Tian Y, Cai J, Xing GG. Contribution of TRESK two-pore domain potassium channel to bone cancer-induced spontaneous pain and evoked cutaneous pain in rats. Mol Pain 2021; 17:17448069211023230. [PMID: 34102915 PMCID: PMC8193666 DOI: 10.1177/17448069211023230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023] Open
Abstract
Cancer-associated pain is debilitating. However, the mechanism underlying cancer-induced spontaneous pain and evoked pain remains unclear. Here, using behavioral tests with immunofluorescent staining, overexpression, and knockdown of TRESK methods, we found an extensive distribution of TRESK potassium channel on both CGRP+ and IB4+ nerve fibers in the hindpaw skin, on CGRP+ nerve fibers in the tibial periosteum which lacks IB4+ fibers innervation, and on CGRP+ and IB4+ dorsal root ganglion (DRG) neurons in rats. Moreover, we found a decreased expression of TRESK in the corresponding nerve fibers within the hindpaw skin, the tibial periosteum and the DRG neurons in bone cancer rats. Overexpression of TRESK in DRG neurons attenuated both cancer-induced spontaneous pain (partly reflect skeletal pain) and evoked pain (reflect cutaneous pain) in tumor-bearing rats, in which the relief of evoked pain is time delayed than spontaneous pain. In contrast, knockdown of TRESK in DRG neurons produced both spontaneous pain and evoked pain in naïve rats. These results suggested that the differential distribution and decreased expression of TRESK in the periosteum and skin, which is attributed to the lack of IB4+ fibers innervation within the periosteum of the tibia, probably contribute to the behavioral divergence of cancer-induced spontaneous pain and evoked pain in bone cancer rats. Thus, the assessment of spontaneous pain and evoked pain should be accomplished simultaneously when evaluating the effect of some novel analgesics in animal models. Also, this study provides solid evidence for the role of peripheral TRESK in both cancer-induced spontaneous pain and evoked cutaneous pain.
Collapse
Affiliation(s)
- Jiang-Ping Liu
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Ke Xi
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Zi-Xian Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Zi-Run Jin
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Si-Qing Cai
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Yue Tian
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| |
Collapse
|
20
|
de Clauser L, Luiz AP, Santana-Varela S, Wood JN, Sikandar S. Sensitization of Cutaneous Primary Afferents in Bone Cancer Revealed by In Vivo Calcium Imaging. Cancers (Basel) 2020; 12:cancers12123491. [PMID: 33255209 PMCID: PMC7760605 DOI: 10.3390/cancers12123491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer-induced bone pain severely impairs the quality of life of cancer patients, many of whom suffer from inadequate pain relief. The development of new analgesic therapies depends on the identification of the cells and mechanisms involved in cancer-induced bone pain. Bone marrow innervating sensory neurons have been proposed to contribute to this debilitating disease, but their role remains unexplored. Here we used in vivo calcium imaging to determine the functional role of bone innervating and skin innervating neurons in contributing to pain at an advanced stage of bone cancer. Our results indicate increased excitability of skin innervating neurons, while those innervating bone are unaffected. Our data suggests skin-innervating neurons become hyperexcitable in cancer-induced bone pain and are a potential target for pain relief. Abstract Cancer-induced bone pain (CIBP) is a complex condition, comprising components of inflammatory and neuropathic processes, but changes in the physiological response profiles of bone-innervating and cutaneous afferents remain poorly understood. We used a combination of retrograde labelling and in vivo calcium imaging of bone marrow-innervating dorsal root ganglia (DRG) neurons to determine the contribution of these cells in the maintenance of CIBP. We found a majority of femoral bone afferent cell bodies in L3 dorsal root ganglia (DRG) that also express the sodium channel subtype Nav1.8—a marker of nociceptive neurons—and lack expression of parvalbumin—a marker for proprioceptive primary afferents. Surprisingly, the response properties of bone marrow afferents to both increased intraosseous pressure and acid were unchanged by the presence of cancer. On the other hand, we found increased excitability and polymodality of cutaneous afferents innervating the ipsilateral paw in cancer bearing animals, as well as a behavioural phenotype that suggests changes at the level of the DRG contribute to secondary hypersensitivity. This study demonstrates that cutaneous afferents at distant sites from the tumour bearing tissue contribute to mechanical hypersensitivity, highlighting these cells as targets for analgesia.
Collapse
Affiliation(s)
- Larissa de Clauser
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; (L.d.C.); (A.P.L.); (S.S.-V.); (J.N.W.)
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE1 1UL, UK
| | - Ana P. Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; (L.d.C.); (A.P.L.); (S.S.-V.); (J.N.W.)
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; (L.d.C.); (A.P.L.); (S.S.-V.); (J.N.W.)
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; (L.d.C.); (A.P.L.); (S.S.-V.); (J.N.W.)
| | - Shafaq Sikandar
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; (L.d.C.); (A.P.L.); (S.S.-V.); (J.N.W.)
- William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Correspondence:
| |
Collapse
|
21
|
Abboud C, Duveau A, Bouali-Benazzouz R, Massé K, Mattar J, Brochoire L, Fossat P, Boué-Grabot E, Hleihel W, Landry M. Animal models of pain: Diversity and benefits. J Neurosci Methods 2020; 348:108997. [PMID: 33188801 DOI: 10.1016/j.jneumeth.2020.108997] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Chronic pain is a maladaptive neurological disease that remains a major health problem. A deepening of our knowledge on mechanisms that cause pain is a prerequisite to developing novel treatments. A large variety of animal models of pain has been developed that recapitulate the diverse symptoms of different pain pathologies. These models reproduce different pain phenotypes and remain necessary to examine the multidimensional aspects of pain and understand the cellular and molecular basis underlying pain conditions. In this review, we propose an overview of animal models, from simple organisms to rodents and non-human primates and the specific traits of pain pathologies they model. We present the main behavioral tests for assessing pain and investing the underpinning mechanisms of chronic pathological pain. The validity of animal models is analysed based on their ability to mimic human clinical diseases and to predict treatment outcomes. Refine characterization of pathological phenotypes also requires to consider pain globally using specific procedures dedicated to study emotional comorbidities of pain. We discuss the limitations of pain models when research findings fail to be translated from animal models to human clinics. But we also point to some recent successes in analgesic drug development that highlight strategies for improving the predictive validity of animal models of pain. Finally, we emphasize the importance of using assortments of preclinical pain models to identify pain subtype mechanisms, and to foster the development of better analgesics.
Collapse
Affiliation(s)
- Cynthia Abboud
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Alexia Duveau
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Karine Massé
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Joseph Mattar
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Louison Brochoire
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Walid Hleihel
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Marc Landry
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
22
|
Zhang WJ, Luo C, Pu FQ, Zhu JF, Zhu Z. The role and pharmacological characteristics of ATP-gated ionotropic receptor P2X in cancer pain. Pharmacol Res 2020; 161:105106. [DOI: 10.1016/j.phrs.2020.105106] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
|
23
|
McVeigh LG, Perugini AJ, Fehrenbacher JC, White FA, Kacena MA. Assessment, Quantification, and Management of Fracture Pain: from Animals to the Clinic. Curr Osteoporos Rep 2020; 18:460-470. [PMID: 32827293 PMCID: PMC7541703 DOI: 10.1007/s11914-020-00617-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Fractures are painful and disabling injuries that can occur due to trauma, especially when compounded with pathologic conditions, such as osteoporosis in older adults. It is well documented that acute pain management plays an integral role in the treatment of orthopedic patients. There is no current therapy available to completely control post-fracture pain that does not interfere with bone healing or have major adverse effects. In this review, we focus on recent advances in the understanding of pain behaviors post-fracture. RECENT FINDINGS We review animal models of bone fracture and the assays that have been developed to assess and quantify spontaneous and evoked pain behaviors, including the two most commonly used assays: dynamic weight bearing and von Frey testing to assess withdrawal from a cutaneous (hindpaw) stimulus. Additionally, we discuss the assessment and quantification of fracture pain in the clinical setting, including the use of numeric pain rating scales, satisfaction with pain relief, and other biopsychosocial factor measurements. We review how pain behaviors in animal models and clinical cases can change with the use of current pain management therapies. We conclude by discussing the use of pain behavioral analyses in assessing potential therapeutic treatment options for addressing acute and chronic fracture pain without compromising fracture healing. There currently is a lack of effective treatment options for fracture pain that reliably relieve pain without potentially interfering with bone healing. Continued development and verification of reliable measurements of fracture pain in both pre-clinical and clinical settings is an essential aspect of continued research into novel analgesic treatments for fracture pain.
Collapse
Affiliation(s)
- Luke G McVeigh
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, 46202, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
24
|
He JJ, Wang X, Liang C, Yao X, Zhang ZS, Yang RH, Fang D. Wnt5b/Ryk-mediated membrane trafficking of P2X3 receptors contributes to bone cancer pain. Exp Neurol 2020; 334:113482. [PMID: 32979370 DOI: 10.1016/j.expneurol.2020.113482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/23/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Wnt5b, a member of Wnt family, plays multiple roles in tumor progression and metastasis. However, whether Wnt5b contributes to the sensitization of dorsal root ganglia (DRG) neurons and pathogenesis of bone cancer pain still remains unclear. Here, we found that the protein expression of Wnt5b and its atypical tyrosine protein kinase receptor Ryk was upregulated in ipsilateral DRGs in tumor-bearing mice. Application of Wnt5b evoked an increased discharge frequency in isolated DRG neurons and pain hypersensitivity in naïve mice which were almost completely prevented by anti-Ryk antibody. Moreover, intrathecal injection of anti-Ryk antibody to tumor-bearing mice significantly inhibited bone cancer-induced mechanic allodynia and thermal hyperalgesia. Subsequently, we also demonstrated that application of Wnt5b to cultured DRG neurons could enhance membrane P2X3 receptors and α,β-meATP-induced currents. Intrathecal injection of calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 or P2X3 receptors antagonist A317491 almost completely abolished Wnt5b-induced mechanical allodynia and thermal hyperalgesia in mice. Meanwhile, pretreatment with anti-Ryk antibody or CaMKII inhibitor KN93 can attenuate bone-cancer induced the upregulation of P2X3 membrane protein as well as pain hypersensitivity. These findings suggested that Wnt5b/Ryk promoted the trafficking of P2X3 receptors to the membrane via the activation of CaMKII in primary sensory neurons, resulting in peripheral sensitization and bone cancer-induced pain. Our results may offer a potential therapeutic strategy for bone cancer pain.
Collapse
Affiliation(s)
- Jin-Jin He
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng, Henan, China; Department of Pharmacology, School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xiao Wang
- Department of Pharmacology, School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Chao Liang
- Department of Pharmacology, School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xin Yao
- Department of Pharmacology, School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Zhan-Sheng Zhang
- Department of Pharmacology, School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Ruo-Han Yang
- Department of Pharmacology, School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Dong Fang
- Department of Pharmacology, School of Pharmacy, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
25
|
de Clauser L, Santana-Varela S, Wood JN, Sikandar S. Physiologic osteoclasts are not sufficient to induce skeletal pain in mice. Eur J Pain 2020; 25:199-212. [PMID: 32955748 PMCID: PMC8436750 DOI: 10.1002/ejp.1662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022]
Abstract
Background Increased bone resorption is driven by augmented osteoclast activity in pathological states of the bone, including osteoporosis, fracture and metastatic bone cancer. Pain is a frequent co‐morbidity in bone pathologies and adequate pain management is necessary for symptomatic relief. Bone cancer is associated with severe skeletal pain and dysregulated bone remodelling, while increased osteoclast activity and bone pain are also observed in osteoporosis and during fracture repair. However, the effects of altered osteoclast activity and bone resorption on nociceptive processing of bone afferents remain unclear. Methods This study investigates whether physiologic osteoclasts and resulting changes in bone resorption can induce skeletal pain. We first assessed correlation between changes in bone microarchitecture (through µCT) and skeletal pain using standardized behavioural phenotyping assays in a mouse model of metastatic bone cancer. We then investigated whether increased activity of physiologic osteoclasts, and the associated bone resorption, is sufficient to induce skeletal pain using mouse models of localized and widespread bone resorption following administration of exogenous receptor activator of nuclear factor kappa‐B ligand (RANKL). Results Our data demonstrates that mice with bone cancer exhibit progressive pain behaviours that correlate with increased bone resorption at the tumour site. Systemic RANKL injections enhance osteoclast activity and associated bone resorption, without producing any changes in motor function or pain behaviours at both early and late timepoints. Conclusion These findings suggest that activation of homeostatic osteoclasts alone is not sufficient to induce skeletal pain in mice. Significance statement The role of osteoclasts in peripheral sensitization of sensory neurones is not fully understood. This study reports on the direct link between oestrogen‐independent osteoclast activation and skeletal pain. Administration of exogenous receptor activator of nuclear factor kappa‐B ligand (RANKL) increases bone resorption, but does not produce pro‐nociceptive changes in behavioural pain thresholds. Our data demonstrates that physiologic osteoclasts are not essential for skeletal pain behaviours.
Collapse
Affiliation(s)
- Larissa de Clauser
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK.,Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Shafaq Sikandar
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK.,William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Mary University of London, London, UK
| |
Collapse
|
26
|
Bechakra M, Nieuwenhoff MD, Rosmalen JV, Groeneveld GJ, J P M Huygen F, Zeeuw CID, Doorn PAV, Jongen JLM. Pain-related changes in cutaneous innervation of patients suffering from bortezomib-induced, diabetic or chronic idiopathic axonal polyneuropathy. Brain Res 2020; 1730:146621. [PMID: 31926911 DOI: 10.1016/j.brainres.2019.146621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/03/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Consistent associations between the severity of neuropathic pain and cutaneous innervation have not been described. We collected demographic and clinical data, McGill Pain Questionnaires (MPQ) and skin biopsies processed for PGP9.5 and CGRP immunohistochemistry from patients with bortezomib-induced peripheral neuropathy (BiPN; n = 22), painful diabetic neuropathy (PDN; n = 16), chronic idiopathic axonal polyneuropathy (CIAP; n = 16) and 17 age-matched healthy volunteers. Duration of neuropathic symptoms was significantly shorter in patients with BiPN in comparison with PDN and CIAP patients. BiPN was characterized by a significant increase in epidermal axonal swellings and upper dermis nerve fiber densities (UDNFD) and a decrease in subepidermal nerve fiber densities (SENFD) of PGP9.5-positive fibers and of PGP9.5 containing structures that did not show CGRP labeling, presumably non-peptidergic fibers. In PDN and CIAP patients, intraepidermal nerve fiber densities (IENFD) and SENFD of PGP9.5-positive and of non-peptidergic fibers were decreased in comparison with healthy volunteers. Significant unadjusted associations between IENFD and SENFD of CGRP-positive, i.e. peptidergic, fibers and the MPQ sensory-discriminative, as well as between UDNFD of PGP9.5-positive fibers and the MPQ evaluative/affective component of neuropathic pain, were found in BiPN and CIAP patients. No significant associations were found in PDN patients. Cutaneous innervation changes in BiPN confirm characteristic features of early, whereas those in CIAP and PDN are in line with late forms of neuropathic pathology. Our results allude to a distinct role for non-peptidergic nociceptors in BiPN and CIAP patients. The lack of significant associations in PDN may be caused by mixed ischemic and purely neuropathic pain pathology.
Collapse
Affiliation(s)
- Malik Bechakra
- Dept. of Neurology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands; Dept. of Neuroscience, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, the Netherlands
| | - Mariska D Nieuwenhoff
- Dept. of Anesthesiology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Joost van Rosmalen
- Dept. of Biostatistics, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | | | - Frank J P M Huygen
- Dept. of Anesthesiology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Chris I de Zeeuw
- Dept. of Neuroscience, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Pieter A van Doorn
- Dept. of Neurology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Joost L M Jongen
- Dept. of Neurology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands.
| |
Collapse
|
27
|
Diaz-delCastillo M, Kamstrup D, Olsen RB, Hansen RB, Pembridge T, Simanskaite B, Jimenez-Andrade JM, Lawson MA, Heegaard AM. Differential Pain-Related Behaviors and Bone Disease in Immunocompetent Mouse Models of Myeloma. JBMR Plus 2019; 4:e10252. [PMID: 32083236 PMCID: PMC7017884 DOI: 10.1002/jbm4.10252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/09/2019] [Accepted: 11/03/2019] [Indexed: 12/26/2022] Open
Abstract
Bone pain is a serious and debilitating symptom of multiple myeloma (MM) that impairs the quality of life of patients. The underlying mechanisms of the pain are unknown and understudied, and there is a need for immunocompetent preclinical models of myeloma-induced bone pain. The aim of this study was to provide the first in-depth behavioral characterization of an immunocompetent mouse model of MM presenting the clinical disease features: osteolytic bone disease and bone pain. We hypothesized that a widely used syngeneic model of MM, established by systemic inoculation of green fluorescent protein-tagged myeloma cells (5TGM1-GFP) in immunocompetent C57Bl/KaLwRijHsd (BKAL) mice, would present pain-related behaviors. Disease phenotype was confirmed by splenomegaly, high serum paraprotein, and tumor infiltration in the bone marrow of the hind limbs; however, myeloma-bearing mice did not present pain-related behaviors or substantial bone disease. Thus, we investigated an alternative model in which 5TGM1-GFP cells were directly inoculated into the intrafemoral medullary cavity. This localized myeloma model presented the hallmarks of the disease, including high serum paraprotein, tumor growth, and osteolytic bone lesions. Compared with control mice, myeloma-bearing mice presented myeloma-induced pain-related behaviors, a phenotype that was reversed by systemic morphine treatment. Micro-computed tomography analyses of the myeloma-inoculated femurs showed bone disease in cortical and trabecular bone. Repeated systemic bisphosphonate treatment induced an amelioration of the nociceptive phenotype, but did not completely reverse it. Furthermore, intrafemorally injected mice presented a profound denervation of the myeloma-bearing bones, a previously unknown feature of the disease. This study reports the intrafemoral inoculation of 5TGM1-GFP cells as a robust immunocompetent model of myeloma-induced bone pain, with consistent bone loss. Moreover, the data suggest that myeloma-induced bone pain is caused by a combinatorial mechanism including osteolysis and bone marrow denervation. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marta Diaz-delCastillo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Danna Kamstrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Rikke Brix Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Rie Bager Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Thomas Pembridge
- Department of Oncology & Metabolism University of Sheffield Sheffield UK.,Mellanby Centre for Bone Research University of Sheffield Sheffield UK
| | - Brigita Simanskaite
- Department of Oncology & Metabolism University of Sheffield Sheffield UK.,Mellanby Centre for Bone Research University of Sheffield Sheffield UK
| | - Juan Miguel Jimenez-Andrade
- Department of Unidad Académica Multidisciplinaria Reynosa Aztlan Universidad Autónoma de Tamaulipas Reynosa, Tamaulipas Mexico
| | - Michelle A Lawson
- Department of Oncology & Metabolism University of Sheffield Sheffield UK.,Mellanby Centre for Bone Research University of Sheffield Sheffield UK
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
28
|
Olechnowicz SWZ, Weivoda MM, Lwin ST, Leung SK, Gooding S, Nador G, Javaid MK, Ramasamy K, Rao SR, Edwards JR, Edwards CM. Multiple myeloma increases nerve growth factor and other pain-related markers through interactions with the bone microenvironment. Sci Rep 2019; 9:14189. [PMID: 31578352 PMCID: PMC6775275 DOI: 10.1038/s41598-019-50591-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/15/2019] [Indexed: 12/30/2022] Open
Abstract
Interactions between multiple myeloma (MM) and bone marrow (BM) are well documented to support tumour growth, yet the cellular mechanisms underlying pain in MM are poorly understood. We have used in vivo murine models of MM to show significant induction of nerve growth factor (NGF) by the tumour-bearing bone microenvironment, alongside other known pain-related characteristics such as spinal glial cell activation and reduced locomotion. NGF was not expressed by MM cells, yet bone stromal cells such as osteoblasts expressed and upregulated NGF when cultured with MM cells, or MM-related factors such as TNF-α. Adiponectin is a known MM-suppressive BM-derived factor, and we show that TNF-α-mediated NGF induction is suppressed by adiponectin-directed therapeutics such as AdipoRON and L-4F, as well as NF-κB signalling inhibitor BMS-345541. Our study reveals a further mechanism by which cellular interactions within the tumour-bone microenvironment contribute to disease, by promoting pain-related properties, and suggests a novel direction for analgesic development.
Collapse
Affiliation(s)
- Sam W Z Olechnowicz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Megan M Weivoda
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Seint T Lwin
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Szi K Leung
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Sarah Gooding
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre Blood Theme, Oxford, UK
| | - Guido Nador
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Muhammed Kassim Javaid
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Karthik Ramasamy
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre Blood Theme, Oxford, UK
| | - Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - James R Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK.
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre Blood Theme, Oxford, UK.
| |
Collapse
|
29
|
Abstract
Bone cancer metastasis is extremely painful and decreases the quality of life of the affected patients. Available pharmacological treatments are not able to sufficiently ameliorate the pain, and as patients with cancer are living longer, new treatments for pain management are needed. Decitabine (5-aza-2'-deoxycytidine), a DNA methyltransferases inhibitor, has analgesic properties in preclinical models of postsurgical and soft-tissue oral cancer pain by inducing an upregulation of endogenous opioids. In this study, we report that daily treatment with decitabine (2 µg/g, intraperitoneally) attenuated nociceptive behavior in the 4T1-luc2 mouse model of bone cancer pain. We hypothesized that the analgesic mechanism of decitabine involved activation of the endogenous opioid system through demethylation and reexpression of the transcriptionally silenced endothelin B receptor gene, Ednrb. Indeed, Ednrb was hypermethylated and transcriptionally silenced in the mouse model of bone cancer pain. We demonstrated that expression of Ednrb in the cancer cells lead to release of β-endorphin in the cell supernatant, which reduced the number of responsive dorsal root ganglia neurons in an opioid-dependent manner. Our study supports a role of demethylating drugs, such as decitabine, as unique pharmacological agents targeting the pain in the cancer microenvironment.
Collapse
|
30
|
Falk S, Appel CK, Bennedbæk HB, Al-Dihaissy T, Unger A, Dinkel K, Heegaard AM. Chronic high dose P2X7 receptor inhibition exacerbates cancer-induced bone pain. Eur J Pharmacol 2019; 845:48-55. [DOI: 10.1016/j.ejphar.2018.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
31
|
da Silva JT, Evangelista BG, Venega RA, Seminowicz DA, Chacur M. Anti-NGF treatment can reduce chronic neuropathic pain by changing peripheral mediators and brain activity in rats. Behav Pharmacol 2019; 30:79-88. [DOI: 10.1097/fbp.0000000000000422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Abstract
PURPOSE OF REVIEW The goal of this review is to provide a broad overview of the current understanding of mechanisms underlying bone and joint pain. RECENT FINDINGS Bone or joint pathology is generally accompanied by local release of pro-inflammatory cytokines, growth factors, and neurotransmitters that activate and sensitize sensory nerves resulting in an amplified pain signal. Modulation of the pain signal within the spinal cord and brain that result in net increased facilitation is proposed to contribute to the development of chronic pain. Great strides have been made in our understanding of mechanisms underlying bone and joint pain that will guide development of improved therapeutic options for these patients. Continued research is required for improved understanding of mechanistic differences driving different components of bone and/or joint pain such as movement related pain compared to persistent background pain. Advances will guide development of more individualized and comprehensive therapeutic options.
Collapse
Affiliation(s)
- Joshua Havelin
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04043, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Tamara King
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04043, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA.
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, 11 Hills Beach Rd., Biddeford, ME, 04005, USA.
| |
Collapse
|
33
|
Majuta LA, Mitchell SA, Kuskowski MA, Mantyh PW. Anti-nerve growth factor does not change physical activity in normal young or aging mice but does increase activity in mice with skeletal pain. Pain 2018; 159:2285-2295. [PMID: 29994990 PMCID: PMC6233725 DOI: 10.1097/j.pain.0000000000001330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-nerve growth factor (anti-NGF) therapy has shown significant promise in attenuating several types of skeletal pain. However, whether anti-NGF therapy changes the level of physical activity in individuals with or without skeletal pain is largely unknown. Here, automated day/night activity boxes monitored the effects of anti-NGF treatment on physical activity in normal young (3 months old) and aging (18-23 months old) mice and mice with bone fracture pain. Although aging mice were clearly less active and showed loss of bone mass compared with young mice, anti-NGF treatment had no effect on any measure of day/night activity in either the young or aging mice. By contrast, in mice with femoral fracture pain, anti-NGF treatment produced a clear increase (10%-27%) in horizontal activity, vertical rearing, and velocity of travel compared with the Fracture + Vehicle group. These results suggest, just as in humans, mice titrate their level of physical activity to their level of skeletal pain. The level of skeletal pain may in part be determined by the level of free NGF that seems to rise after injury but not normal aging of the skeleton. In terms of bone healing, animals that received anti-NGF showed an increase in the size of calcified callus but no increase in the number of displaced fractures or time to cortical union. As physical activity is the best nondrug treatment for many patients with skeletal pain, anti-NGF may be useful in reducing pain and promoting activity in these patients.
Collapse
Affiliation(s)
- Lisa A. Majuta
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | | | - Patrick W. Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
- Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
34
|
Zhu YF, Kwiecien JM, Dabrowski W, Ungard R, Zhu KL, Huizinga JD, Henry JL, Singh G. Cancer pain and neuropathic pain are associated with A β sensory neuronal plasticity in dorsal root ganglia and abnormal sprouting in lumbar spinal cord. Mol Pain 2018; 14:1744806918810099. [PMID: 30324862 PMCID: PMC6243409 DOI: 10.1177/1744806918810099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Evidence suggests that there are both nociceptive and neuropathic components of cancer-induced pain. We have observed that changes in intrinsic membrane properties and excitability of normally non-nociceptive Aβ sensory neurons are consistent in rat models of peripheral neuropathic pain and cancer-induced pain. This has prompted a comparative investigation of the intracellular electrophysiological characteristics of sensory neurons and of the ultrastructural morphology of the dorsal horn in rat models of neuropathic pain and cancer-induced pain. Neuropathic pain model rats were induced with a polyethylene cuff implanted around a sciatic nerve. Cancer-induced pain model rats were induced with mammary rat metastasis tumour-1 rat breast cancer or MATLyLu rat prostate cancer cells implanted into the distal epiphysis of a femur. Behavioural evidence of nociception was detected using von Frey tactile assessment. Aβ-fibre low threshold mechanoreceptor neurons in both cancer-induced pain and neuropathic pain models exhibited slower dynamics of action potential genesis, including a wider action potential duration and lower action potential amplitude compared to those in control animals. Enhanced excitability of Aβ-fibre low threshold mechanoreceptor neurons was also observed in cancer-induced pain and neuropathic pain models. Furthermore, both cancer-induced pain and neuropathic pain models showed abundant abnormal axonal sprouting in bundles of myelinated axons in the ipsilateral spinal laminae IV and V. The patterns of changes show consistency between rat models of cancer-induced pain and neuropathic pain. These findings add to the body of evidence that animal models of cancer-induced pain and neuropathic pain share features that may contribute to the peripheral and central sensitization and tactile hypersensitivity in both pain states.
Collapse
Affiliation(s)
- Yong Fang Zhu
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jacek M Kwiecien
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,3 Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Dabrowski
- 4 Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Robert Ungard
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kan Lun Zhu
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jan D Huizinga
- 5 Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - James L Henry
- 6 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
35
|
Li X, Dun MD, Faulkner S, Hondermarck H. Neuroproteins in Cancer: Assumed Bystanders Become Culprits. Proteomics 2018; 18:e1800049. [PMID: 29745056 DOI: 10.1002/pmic.201800049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Indexed: 12/30/2022]
Abstract
Recent breakthrough discoveries have highlighted the stimulatory role of nerves in cancer initiation and progression, through the release of neurotransmitters and growth factors by nerve terminals in the tumor microenvironment. Intriguingly, neuroproteins such as neuronal membrane proteins, synaptic proteins, neurotransmitters, and neurotrophic growth factors as well as their corresponding receptors, to name only a few, are frequently found in proteomic analyses of cancer tissues external to the brain and central nervous system. While the usual explanation was that neuroproteins were actually not specific to the nervous system and were therefore also expressed in cancer cells, it now appears that the presence of neuroproteins in cancer is largely due to the infiltration of nerves in the tumor microenvironment. Given the newly identified function of nerves as promoters of cancer growth and metastasis, neuroproteins should be considered with great attention because they may actually represent innovative biomarkers and therapeutic targets in oncology.
Collapse
Affiliation(s)
- Xiang Li
- School of Biomedical Sciences and Pharmacy & Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Matt D Dun
- School of Biomedical Sciences and Pharmacy & Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy & Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy & Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
36
|
Fang J, Du J, Fang J, Xiao T, Le X, Pan N, Yu J, Liu B. Parameter-specific analgesic effects of electroacupuncture mediated by degree of regulation TRPV1 and P2X3 in inflammatory pain in rats. Life Sci 2018; 200:69-80. [DOI: 10.1016/j.lfs.2018.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
|
37
|
Anti-nerve growth factor therapy attenuates cutaneous hypersensitivity and musculoskeletal discomfort in mice with osteoporosis. Pain Rep 2018; 3:e652. [PMID: 29922744 PMCID: PMC5999413 DOI: 10.1097/pr9.0000000000000652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/24/2018] [Accepted: 03/13/2018] [Indexed: 01/12/2023] Open
Abstract
Introduction The prevalence of osteoporosis is increasing with the aging population and is associated with increased risk of fracture and chronic pain. Osteoporosis is currently treated with bisphosphonate therapy to attenuate bone loss. We previously reported that improvement in bone mineral density is not sufficient to reduce osteoporosis-related pain in an ovariectomy (OVX)-induced mouse model of osteoporosis, highlighting the need for new treatments. Targeting of nerve growth factor (NGF) with sequestering antibodies is a promising new direction for the treatment of musculoskeletal pain including back pain and arthritis. Its efficacy is currently unknown for osteoporotic pain. Objective To investigate the efficacy of anti-NGF antibody therapy on osteoporotic pain in an OVX-induced mouse model. Methods Ovariectomy- and sham-operated mice were injected with an anti-NGF antibody (10 mg/kg, intraperitoneally, administered 2×, 14 days apart), and the effect on behavioural indices of osteoporosis-related pain and on sensory neuron plasticity was evaluated. Results Treatment with anti-NGF antibodies attenuated OVX-induced hypersensitivity to mechanical, cold, and heat stimuli on the plantar surface of the hind paw. The OVX-induced impairment in grip force strength, used here as a measure of axial discomfort, was partially reversed by anti-NGF therapy. No changes were observed in the rotarod or open-field tests for overall motor function and activity. Finally, anti-NGF treatment attenuated the increase in calcitonin gene-related peptide-immunoreactive dorsal root ganglia neurons observed in OVX mice. Conclusion Taken together, these data suggest that anti-NGF antibodies may be useful in the treatment of prefracture hypersensitivity that is reported in 10% of patients with osteoporosis.
Collapse
|
38
|
Majuta LA, Guedon JMG, Mitchell SA, Kuskowski MA, Mantyh PW. Mice with cancer-induced bone pain show a marked decline in day/night activity. Pain Rep 2017; 2:e614. [PMID: 29392229 PMCID: PMC5777677 DOI: 10.1097/pr9.0000000000000614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/15/2017] [Accepted: 06/17/2017] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Cancer-induced bone pain (CIBP) is the most common type of pain with cancer. In humans, this pain can be difficult to control and highly disabling. A major problem with CIBP in humans is that it increases on weight-bearing and/or movement of a tumor-bearing bone limiting the activity and functional status of the patient. Currently, there is less data concerning whether similar negative changes in activity occur in rodent models of CIBP. OBJECTIVES To determine whether there are marked changes in activity in a rodent model of CIBP and compare this to changes in skin hypersensitivity. METHODS Osteosarcoma cells were injected and confined to 1 femur of the adult male mouse. Every 7 days, spontaneous horizontal and vertical activities were assessed over a 20-hour day and night period using automated activity boxes. Mechanical hypersensitivity of the hind paw skin was assessed using von Frey testing. RESULTS As the tumor cells grew within the femur, there was a significant decline in horizontal and vertical activity during the times of the day/night when the mice are normally most active. Mice also developed significant hypersensitivity in the skin of the hind paw in the tumor-bearing limb. CONCLUSION Even when the tumor is confined to a single load-bearing bone, CIBP drives a significant loss of activity, which increases with disease progression. Understanding the mechanisms that drive this reduction in activity may allow the development of therapies that allow CIBP patients to better maintain their activity and functional status.
Collapse
Affiliation(s)
- Lisa A. Majuta
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | | | | | | | - Patrick W. Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
- Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
39
|
Bechakra M, Schüttenhelm BN, Pederzani T, van Doorn PA, de Zeeuw CI, Jongen JLM. The reduction of intraepidermal P2X 3 nerve fiber density correlates with behavioral hyperalgesia in a rat model of nerve injury-induced pain. J Comp Neurol 2017; 525:3757-3768. [PMID: 28815599 DOI: 10.1002/cne.24302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 01/18/2023]
Abstract
Skin biopsies from patients with neuropathic pain often show changes in epidermal innervation, although it remains to be elucidated to what extent such changes can be linked to a particular subgroup of nerve fibers and how these changes are correlated with pain intensity. Here, we investigated to what extent behavioral signs of hyperalgesia are correlated with immunohistochemical changes of peptidergic and non-peptidergic epidermal nerve fibers in a rat model of nerve injury-induced pain. Rats subjected to unilateral partial ligation of the sciatic nerve developed significant mechanical and thermal hyperalgesia as tested by the withdrawal responses of the ipsilateral footpad to von Frey hairs and hotplate stimulation. At day 14, epidermal nerve fiber density and total epidermal nerve fiber length/mm2 were significantly and consistently reduced compared to the contralateral side, following testing and re-testing by two blinded observers. The expression of calcitonin gene-related peptide, a marker for peptidergic nerve fibers, was not significantly changed on the ipsilateral side. In contrast, the expression of the P2X3 receptor, a marker for non-peptidergic nerve fibers, was not only significantly reduced but could also be correlated with behavioral hyperalgesia. When labeling both peptidergic and non-peptidergic nerve fibers with the pan-neuronal marker PGP9.5, the expression was significantly reduced, albeit without a significant correlation with behavioral hyperalgesia. In conjunction, our data suggest that the pathology of the P2X3 epidermal nerve fibers can be selectively linked to neuropathy, highlighting the possibility that it is the degeneration of these fibers that drives hyperalgesia.
Collapse
Affiliation(s)
- Malik Bechakra
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | - Chris I de Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts & Sciences, Amsterdam, The Netherlands
| | | |
Collapse
|
40
|
Fazzari J, Balenko MD, Zacal N, Singh G. Identification of capsazepine as a novel inhibitor of system x c- and cancer-induced bone pain. J Pain Res 2017; 10:915-925. [PMID: 28458574 PMCID: PMC5402992 DOI: 10.2147/jpr.s125045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cystine/glutamate antiporter has been implicated in a variety of cancers as a major mediator of redox homeostasis. The excess glutamate secreted by this transporter in aggressive cancer cells has been associated with cancer-induced bone pain (CIBP) from distal breast cancer metastases. High-throughput screening of small molecule inhibitors of glutamate release from breast cancer cells identified several potential compounds. One such compound, capsazepine (CPZ), was confirmed to inhibit the functional unit of system xc- (xCT) through its ability to block uptake of its radiolabeled substrate, cystine. Blockade of this antiporter induced production of reactive oxygen species (ROS) within 4 hours and induced cell death within 48 hours at concentrations exceeding 25 μM. Furthermore, cell death and ROS production were significantly reduced by co-treatment with N-acetylcysteine, suggesting that CPZ toxicity is associated with ROS-induced cell death. These data suggest that CPZ can modulate system xc- activity in vitro and this translates into antinociception in an in vivo model of CIBP where systemic administration of CPZ successfully delayed the onset and reversed CIBP-induced nociceptive behaviors resulting from intrafemoral MDA-MB-231 tumors.
Collapse
Affiliation(s)
- Jennifer Fazzari
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew D Balenko
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Natalie Zacal
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
41
|
Majuta LA, Guedon JMG, Mitchell SAT, Ossipov MH, Mantyh PW. Anti-nerve growth factor therapy increases spontaneous day/night activity in mice with orthopedic surgery-induced pain. Pain 2017; 158:605-617. [PMID: 28301858 PMCID: PMC5370196 DOI: 10.1097/j.pain.0000000000000799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Total knee arthroplasty (TKA) and total hip arthroplasty (THA) are 2 of the most common and successful surgical interventions to relieve osteoarthritis pain. Control of postoperative pain is critical for patients to fully participate in the required physical therapy which is the most influential factor in effective postoperative knee rehabilitation. Currently, opiates are a mainstay for managing postoperative orthopedic surgery pain including TKA or THA pain. Recently, issues including efficacy, dependence, overdose, and death from opiates have made clinicians and researchers more critical of use of opioids for treating nonmalignant skeletal pain. In the present report, a nonopiate therapy using a monoclonal antibody raised against nerve growth factor (anti-NGF) was assessed for its ability to increase the spontaneous activity of the operated knee joint in a mouse model of orthopedic surgery pain-induced by drilling and coring the trochlear groove of the mouse femur. Horizontal activity and velocity and vertical rearing were continually assessed over a 20 hours day/night period using automated activity boxes in an effort to reduce observer bias and capture night activity when the mice are most active. At days 1 and 3, after orthopedic surgery, there was a marked reduction in spontaneous activity and vertical rearing; anti-NGF significantly attenuated this decline. The present data suggest that anti-NGF improves limb use in a rodent model of joint/orthopedic surgery and as such anti-NGF may be useful in controlling pain after orthopedic surgeries such as TKA or THA.
Collapse
Affiliation(s)
- Lisa A. Majuta
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | | | | | - Patrick W. Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
- Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
42
|
Tariba Knežević P, Vukman R, Antonić R, Kovač Z, Uhač I, Simonić-Kocijan S. The role of P2X3 receptors in bilateral masseter muscle allodynia in rats. Croat Med J 2017; 57:530-539. [PMID: 28051277 PMCID: PMC5209933 DOI: 10.3325/cmj.2016.57.530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM To determine the relationship between bilateral allodynia induced by masseter inflammation and P2X3 receptor expression changes in trigeminal ganglia (TRG) and the influence of intramasseteric P2X3 antagonist administration on bilateral masseter allodynia. METHODS To induce bilateral allodynia, rats received a unilateral injection of complete Freund's adjuvant (CFA) into the masseter muscle. Bilateral head withdrawal threshold (HWT) was measured 4 days later. Behavioral measurements were followed by bilateral masseter muscle and TRG dissection. Masseter tissue was evaluated histopathologically and TRG tissue was analyzed for P2X3 receptor mRNA expression by using quantitative real-time polymerase chain reaction (PCR) analysis. To assess the P2X3 receptor involvement in nocifensive behavior, two doses (6 and 60 μg/50 μL) of selective P2X3 antagonist A-317491 were administrated into the inflamed masseter muscle 4 days after the CFA injection. Bilateral HWT was measured at 15-, 30-, 60-, and 120-minute time points. RESULTS HWT was bilaterally reduced after the CFA injection (P<0.001). Intramasseteric inflammation was confirmed ipsilaterally to the CFA injection. Quantitative real-time PCR analysis demonstrated enhanced P2X3 expression in TRG ipsilaterally to CFA administration (P<0.01). In comparison with controls, the dose of 6 μg of A-317491 significantly increased bilateral HWT at 15-, 30-, and 60-minute time points after the A-317491 administration (P<0.001), whereas the dose of 60 μg of A-317491 was efficient at all time points ipsilaterally (P=0.004) and at 15-, 30-, and 60-minute time points contralaterally (P<0.001). CONCLUSION Unilateral masseter inflammation can induce bilateral allodynia in rats. The study provided evidence that P2X3 receptors can functionally influence masseter muscle allodynia and suggested that P2X3 receptors expressed in TRG neurons are involved in masseter inflammatory pain conditions.
Collapse
Affiliation(s)
- Petra Tariba Knežević
- Petra Tariba Knežević, Department of Prosthodontics, University of Rijeka School of Dental Medicine and School of Medicine, Kreąimirova 40, 51000 Rijeka, Croatia,
| | | | | | | | | | | |
Collapse
|
43
|
Zhou YQ, Liu Z, Liu HQ, Liu DQ, Chen SP, Ye DW, Tian YK. Targeting glia for bone cancer pain. Expert Opin Ther Targets 2016; 20:1365-1374. [PMID: 27428617 DOI: 10.1080/14728222.2016.1214716] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Bone cancer pain (BCP) remains to be a clinical challenge with limited pharmaceutical interventions. Therefore, novel therapeutic targets for the management of BCP are in desperate need. Recently, a growing body of evidence has suggested that glial cells may play a pivotal role in the pathogenesis of BCP. Areas covered: This review summarizes the recent progress in the understanding of glia in BCP and reveals the potential therapeutic targets in glia for BCP treatment. Expert opinion: Pharmacological interventions inhibiting the activation of glial cells, suppressing glia-derived proinflammatory cytokines, cell surface receptors, and the intracellular signaling pathways may be beneficial for the pain management of advanced cancer patients. However, these pharmacological interventions should not disrupt the normal function of glia cells since they play a vital supportive and protective role in the central nervous system.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Zheng Liu
- c Department of Urology , Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Hui-Quan Liu
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Dai-Qiang Liu
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Shu-Ping Chen
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Da-Wei Ye
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Yu-Ke Tian
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|