1
|
Brustovetsky T, Khanna R, Brustovetsky N. Collapsin Response Mediator Protein 2 (CRMP2) Modulates Mitochondrial Oxidative Metabolism in Knock-In AD Mouse Model. Cells 2025; 14:647. [PMID: 40358171 DOI: 10.3390/cells14090647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
We explored how the phosphorylation state of collapsin response mediator protein 2 (CRMP2) influences mitochondrial functions in cultured cortical neurons and cortical synaptic mitochondria isolated from APP-SAA KI mice, a knock-in APP mouse model of Alzheimer's disease (AD). CRMP2 phosphorylation was increased at Thr 509/514 and Ser 522 in brain cortical lysates and cultured neurons from AD mice. The basal and maximal respiration of AD neurons were decreased. Mitochondria were hyperpolarized and superoxide anion production was increased in neurons from AD mice. In isolated synaptic AD mitochondria, ADP-stimulated and DNP-stimulated respiration were decreased, whereas ADP-induced mitochondrial depolarization was reduced and prolonged. We found that CRMP2 binds to the adenine nucleotide translocase (ANT) in a phosphorylation-dependent manner. The increased CRMP2 phosphorylation in AD mice correlated with CRMP2 dissociation from the ANT and decreased ANT activity in AD mitochondria. On the other hand, recombinant CRMP2 (rCRMP2), added to the ANT-reconstituted proteoliposomes, increased ANT activity. A small molecule (S)-lacosamide ((S)-LCM), which binds to CRMP2 and suppresses CRMP2 phosphorylation by Cdk5 and GSK-3β, prevented CRMP2 hyperphosphorylation, rescued CRMP2 binding to the ANT, improved ANT activity, and restored the mitochondrial membrane potential and respiratory responses to ADP and 2,4-dinitrophenol. Thus, our study highlights an important role for CRMP2 in regulating the mitochondrial oxidative metabolism in AD by modulating the ANT activity in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Center for Advanced Pain Therapeutics and Research (CAPToR), University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Jiang YP, Wen JJ, Ma X, Yuan CR, Zhou F, Zheng MJ, Tang X, Yu XK, Lai WD, Zhou YH, Yu WH, You WT, Jin Y, Park KD, Khanna R, Wen CP, Yu J. CRMP2 phosphorylation regulates polarization and spinal infiltration of CD4+ T lymphocytes, inhibits spinal glial activation, and arthritic pain. Pain 2025:00006396-990000000-00879. [PMID: 40258133 DOI: 10.1097/j.pain.0000000000003599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/17/2025] [Indexed: 04/23/2025]
Abstract
ABSTRACT Chronic pain, a hallmark symptom of rheumatoid arthritis (RA), is strongly linked to central sensitization driven by spinal glial cell activation. Despite its clinical significance, the precise mechanisms remain unclear. Recent findings highlight the crucial role of interactions between circulating monocytes and central nervous system glial cells in chronic pain associated with autoimmune conditions. Our study focuses on CD4+ T-cell infiltration into the spinal dorsal horn (SDH) after collagen-induced arthritis (CIA) immunization. Immunohistochemistry results indicate that CD4+ T cells are critical in initiating arthritic pain. Intrathecal injection of CD4+ T cells in naïve mice induced glial activation and pain-like behaviors, while neutralizing antibodies suppressed these effects. Elevated phosphorylation of collapsin response mediator protein 2 (CRMP2) in CIA-derived CD4+ T lymphocytes was closely associated with pathological spinal infiltration. To modulate CRMP2 phosphorylation, we used naringenin (NAR), a known CRMP2 regulator, and (S)-Lacosamide ((S)-LCM), a specific inhibitor of phosphorylated CRMP2. Both compounds reduced CD4+ T-cell infiltration into the SDH and attenuated central sensitization in CIA rats. CRMP2 conditional knockout (cKO) in CD4+ T cells significantly alleviated arthritic pain. In addition, in vitro blood brain barrier models and Transwell assays showed impaired CD4+ T-cell migration and transendothelial invasion upon cKO or treatment with NAR and (S)-LCM. These interventions also decreased the proportion of polarized CD4+ T cells in CIA-induced mice. Our research highlights the role of CRMP2 phosphorylation in CD4+ T-cell behavior, spinal infiltration, and pain modulation, suggesting potential novel therapeutic strategies for RA-associated chronic pain.
Collapse
Affiliation(s)
- Yue-Peng Jiang
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Jun-Jun Wen
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Xiao Ma
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Cun-Rui Yuan
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Feng Zhou
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
- Department of Neurosurgery, Hangzhou First People's Hospital Affiliated to Westlake University School of Medicine, Hangzhou, China
| | - Meng-Jia Zheng
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Xin Tang
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Xi-Kang Yu
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Wei-Dong Lai
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Yi-Han Zhou
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Wen-Hua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital Affiliated to Westlake University School of Medicine, Hangzhou, China
| | - Wen-Ting You
- The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, PR China
| | - Yan Jin
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Ki Duk Park
- Korea Institute of Science and Technology, Seoul, South Korea
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics; Pain Research and Integrated Neuroscience Center (PRINC), University of Florida College of Medicine, Gainesville, FL, United States
| | - Cheng-Ping Wen
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Innovative Research Center for Basic Medicine on Autoimmune Diseases of Ministry of Education, Hangzhou, China
| |
Collapse
|
3
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons. Nat Commun 2024; 15:9898. [PMID: 39548079 PMCID: PMC11568329 DOI: 10.1038/s41467-024-54053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we find that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels is likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observe reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Natalie L Macchi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Nicolas L A Dumaire
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Erin N Lessie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
4
|
Müller P, Draguhn A, Egorov AV. Persistent sodium currents in neurons: potential mechanisms and pharmacological blockers. Pflugers Arch 2024; 476:1445-1473. [PMID: 38967655 PMCID: PMC11381486 DOI: 10.1007/s00424-024-02980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Persistent sodium current (INaP) is an important activity-dependent regulator of neuronal excitability. It is involved in a variety of physiological and pathological processes, including pacemaking, prolongation of sensory potentials, neuronal injury, chronic pain and diseases such as epilepsy and amyotrophic lateral sclerosis. Despite its importance, neither the molecular basis nor the regulation of INaP are sufficiently understood. Of particular significance is a solid knowledge and widely accepted consensus about pharmacological tools for analysing the function of INaP and for developing new therapeutic strategies. However, the literature on INaP is heterogeneous, with varying definitions and methodologies used across studies. To address these issues, we provide a systematic review of the current state of knowledge on INaP, with focus on mechanisms and effects of this current in the central nervous system. We provide an overview of the specificity and efficacy of the most widely used INaP blockers: amiodarone, cannabidiol, carbamazepine, cenobamate, eslicarbazepine, ethosuximide, gabapentin, GS967, lacosamide, lamotrigine, lidocaine, NBI-921352, oxcarbazepine, phenytoine, PRAX-562, propofol, ranolazine, riluzole, rufinamide, topiramate, valproaic acid and zonisamide. We conclude that there is strong variance in the pharmacological effects of these drugs, and in the available information. At present, GS967 and riluzole can be regarded bona fide INaP blockers, while phenytoin and lacosamide are blockers that only act on the slowly inactivating component of sodium currents.
Collapse
Affiliation(s)
- Peter Müller
- Department Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen , Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Alexei V Egorov
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane Lipid Nanodomains Modulate HCN Pacemaker Channels in Nociceptor DRG Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.02.556056. [PMID: 37732182 PMCID: PMC10508734 DOI: 10.1101/2023.09.02.556056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we found that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels was likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observed reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
|
6
|
Liedtke W. [Additional experience with medicinal treatment of trigeminal nerve pain]. Schmerz 2024:10.1007/s00482-024-00820-2. [PMID: 39141098 DOI: 10.1007/s00482-024-00820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Wolfgang Liedtke
- US Facial Pain Association, 7778 McGinnis Ferry Road, 30024, Suwanee, GA, USA.
- Department of Neurology, Anesthesiology and Neurobiology, Duke University, Durham, NC, USA.
- Department of Molecular Pathobiology - Dental Pain Research, New York University, College of Dentistry, New York, NY, USA.
- New York University, Pain Research Center, New York, NY, USA.
| |
Collapse
|
7
|
Nelson TS, Duran P, Calderon-Rivera A, Gomez K, Loya-Lopez S, Khanna R. Mouse models of non-dystrophic and dystrophic myotonia exhibit nociplastic pain-like behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599732. [PMID: 38948724 PMCID: PMC11212949 DOI: 10.1101/2024.06.19.599732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Pain is a prominent and debilitating symptom in myotonic disorders, yet its physiological mechanisms remain poorly understood. This study assessed preclinical pain-like behavior in murine models of pharmacologically induced myotonia and myotonic dystrophy type 1 (DM1). In both myotonia congenita and DM1, impairment of the CLCN1 gene, which encodes skeletal muscle voltage-gated CLC-1 chloride channels, reduces chloride ion conductance in skeletal muscle cells, leading to prolonged muscle excitability and delayed relaxation after contraction. We used the CLC-1 antagonist anthracene-9-carboxylic acid (9-AC) at intraperitoneal doses of 30 or 60 mg/kg and HSA LR20b DM1 mice to model CLC-1-induced myotonia. Our experimental approach included in vivo pain behavioral testing, ex vivo calcium imaging, and whole-cell current-clamp electrophysiology in mouse dorsal root ganglion (DRG) neurons. A single injection of 9-AC induced myotonia in mice, which persisted for several hours and resulted in long-lasting allodynic pain-like behavior. Similarly, HSA LR20b mice exhibited both allodynia and hyperalgesia. Despite these pain-like behaviors, DRG neurons did not show signs of hyperexcitability in either myotonic model. These findings suggest that myotonia induces nociplastic pain-like behavior in preclinical rodents, likely through central sensitization mechanisms rather than peripheral sensitization. This study provides insights into the pathophysiology of pain in myotonic disorders and highlights the potential of using myotonic mouse models to explore pain mechanisms and assess novel analgesics. Future research should focus on the central mechanisms involved in myotonia-induced pain and develop targeted therapies to alleviate this significant clinical burden.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department of Pharmacology and Therapeutics, McKnight Brain Institute, and Pain and Addiction Therapeutics (PATH) Collaboratory, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Aida Calderon-Rivera
- Department of Pharmacology and Therapeutics, McKnight Brain Institute, and Pain and Addiction Therapeutics (PATH) Collaboratory, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kimberly Gomez
- Department of Pharmacology and Therapeutics, McKnight Brain Institute, and Pain and Addiction Therapeutics (PATH) Collaboratory, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Santiago Loya-Lopez
- Department of Pharmacology and Therapeutics, McKnight Brain Institute, and Pain and Addiction Therapeutics (PATH) Collaboratory, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, McKnight Brain Institute, and Pain and Addiction Therapeutics (PATH) Collaboratory, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Martin L, Stratton HJ, Gomez K, Le Duy D, Loya-Lopez S, Tang C, Calderon-Rivera A, Ran D, Nunna V, Bellampalli SS, François-Moutal L, Dumaire N, Salih L, Luo S, Porreca F, Ibrahim M, Rogemond V, Honnorat J, Khanna R, Moutal A. Mechanism, and treatment of anti-CV2/CRMP5 autoimmune pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592533. [PMID: 38766071 PMCID: PMC11100598 DOI: 10.1101/2024.05.04.592533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Paraneoplastic neurological syndromes arise from autoimmune reactions against nervous system antigens due to a maladaptive immune response to a peripheral cancer. Patients with small cell lung carcinoma or malignant thymoma can develop an autoimmune response against the CV2/collapsin response mediator protein 5 (CRMP5) antigen. For reasons that are not understood, approximately 80% of patients experience painful neuropathies. Here, we investigated the mechanisms underlying anti-CV2/CRMP5 autoantibodies (CV2/CRMP5-Abs)-related pain. We found that patient-derived CV2/CRMP5-Abs can bind to their target in rodent dorsal root ganglia (DRG) and superficial laminae of the spinal cord. CV2/CRMP5-Abs induced DRG neuron hyperexcitability and mechanical hypersensitivity in rats that were abolished by preventing binding to their cognate autoantigen CRMP5. The effect of CV2/CRMP5-Abs on sensory neuron hyperexcitability and mechanical hypersensitivity observed in patients was recapitulated in rats using genetic immunization providing an approach to rapidly identify possible therapeutic choices for treating autoantibody-induced pain including the repurposing of a monoclonal anti-CD20 antibody that selectively deplete B-lymphocytes. These data reveal a previously unknown neuronal mechanism of neuropathic pain in patients with paraneoplastic neurological syndromes resulting directly from CV2/CRMP5-Abs-induced nociceptor excitability. CV2/CRMP5-Abs directly sensitize pain responses by increasing sensory neuron excitability and strategies aiming at either blocking or reducing CV2/CRMP5-Abs can treat pain as a comorbidity in patients with paraneoplastic neurological syndromes.
Collapse
Affiliation(s)
- Laurent Martin
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Do Le Duy
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Santiago Loya-Lopez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Cheng Tang
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Aida Calderon-Rivera
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Venkatrao Nunna
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Shreya S. Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Nicolas Dumaire
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Mohab Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
| | - Véronique Rogemond
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Pharmacology & Therapeutics and Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, FL 32610-0267
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724 USA
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, 63104, USA
| |
Collapse
|
9
|
Gomez K, Allen HN, Duran P, Loya-Lopez S, Calderon-Rivera A, Moutal A, Tang C, Nelson TS, Perez-Miller S, Khanna R. Targeted transcriptional upregulation of SENP1 by CRISPR activation enhances deSUMOylation pathways to elicit antinociception in the spinal nerve ligation model of neuropathic pain. Pain 2024; 165:866-883. [PMID: 37862053 PMCID: PMC11389604 DOI: 10.1097/j.pain.0000000000003080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/04/2023] [Indexed: 10/21/2023]
Abstract
ABSTRACT The voltage-gated sodium channel Na V 1.7 is an essential component of human pain signaling. Changes in Na V 1.7 trafficking are considered critical in the development of neuropathic pain. SUMOylation of collapsin response mediator protein 2 (CRMP2) regulates the membrane trafficking and function of Na V 1.7. Enhanced CRMP2 SUMOylation in neuropathic pain correlates with increased Na V 1.7 activity. Pharmacological and genetic interventions that interfere with CRMP2 SUMOylation in rodents with neuropathic pain have been shown to reverse mechanical allodynia. Sentrin or SUMO-specific proteases (SENPs) are vital for balancing SUMOylation and deSUMOylation of substrates. Overexpression of SENP1 and/or SENP2 in CRMP2-expressing cells results in increased deSUMOylation and decreased membrane expression and currents of Na V 1.7. Although SENP1 is present in the spinal cord and dorsal root ganglia, its role in regulating Na V 1.7 function and pain is not known. We hypothesized that favoring SENP1 expression can enhance CRMP2 deSUMOylation to modulate Na V 1.7 channels. In this study, we used a clustered regularly interspaced short palindromic repeats activation (CRISPRa) SENP1 lentivirus to overexpress SENP1 in dorsal root ganglia neurons. We found that SENP1 lentivirus reduced CRMP2 SUMOylation, Na V 1.7-CRMP2 interaction, and Na V 1.7 membrane expression. SENP1 overexpression decreased Na V 1.7 currents through clathrin-mediated endocytosis, directly linked to CRMP2 deSUMOylation. Moreover, enhancing SENP1 expression did not affect the activity of TRPV1 channels or voltage-gated calcium and potassium channels. Intrathecal injection of CRISPRa SENP1 lentivirus reversed mechanical allodynia in male and female rats with spinal nerve injury. These results provide evidence that the pain-regulating effects of SENP1 overexpression involve, in part, the modulation of Na V 1.7 channels through the indirect mechanism of CRMP2 deSUMOylation.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Heather N. Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, MO, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Tyler S. Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
10
|
Levine AA, Liktor-Busa E, Balasubramanian S, Palomino SM, Burtman AM, Couture SA, Lipinski AA, Langlais PR, Largent-Milnes TM. Depletion of Endothelial-Derived 2-AG Reduces Blood-Endothelial Barrier Integrity via Alteration of VE-Cadherin and the Phospho-Proteome. Int J Mol Sci 2023; 25:531. [PMID: 38203706 PMCID: PMC10778805 DOI: 10.3390/ijms25010531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Mounting evidence supports the role of the endocannabinoid system in neurophysiology, including blood-brain barrier (BBB) function. Recent work has demonstrated that activation of endocannabinoid receptors can mitigate insults to the BBB during neurological disorders like traumatic brain injury, cortical spreading depression, and stroke. As alterations to the BBB are associated with worsening clinical outcomes in these conditions, studies herein sought to examine the impact of endocannabinoid depletion on BBB integrity. Barrier integrity was investigated in vitro via bEnd.3 cell monolayers to assess endocannabinoid synthesis, barrier function, calcium influx, junctional protein expression, and proteome-wide changes. Inhibition of 2-AG synthesis using DAGLα inhibition and siRNA inhibition of DAGLα led to loss of barrier integrity via altered expression of VE-cadherin, which could be partially rescued by exogenous application of 2-AG. Moreover, the deleterious effects of DAGLα inhibition on BBB integrity showed both calcium and PKC (protein kinase C)-dependency. These data indicate that disruption of 2-AG homeostasis in brain endothelial cells, in the absence of insult, is sufficient to disrupt BBB integrity thus supporting the role of the endocannabinoid system in neurovascular disorders.
Collapse
Affiliation(s)
- Aidan A. Levine
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Shreya Balasubramanian
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Seph M. Palomino
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Anya M. Burtman
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Sarah A. Couture
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Austin A. Lipinski
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (P.R.L.)
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (P.R.L.)
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| |
Collapse
|
11
|
Tulbah AS, Elkomy MH, Zaki RM, Eid HM, Eissa EM, Ali AA, Yassin HA, Aldosari BN, Naguib IA, Hassan AH. Novel nasal niosomes loaded with lacosamide and coated with chitosan: A possible pathway to target the brain to control partial-onset seizures. Int J Pharm X 2023; 6:100206. [PMID: 37637477 PMCID: PMC10458293 DOI: 10.1016/j.ijpx.2023.100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
This work aimed to develop and produce lacosamide-loaded niosomes coated with chitosan (LCA-CTS-NSM) using a thin-film hydration method and the Box-Behnken design. The effect of three independent factors (Span 60 amount, chitosan concentration, and cholesterol amount) on vesicle size, entrapment efficiency, zeta potential, and cumulative release (8 h) was studied. The optimal formulation of LCA-CTS-NSM was chosen from the design space and assessed for morphology, in vitro release, nasal diffusion, stability, tolerability, and in vivo biodistribution for brain targeting after intranasal delivery. The vesicle size, entrapment, surface charge, and in vitro release of the optimal formula were found to be 194.3 nm, 58.3%, +35.6 mV, and 81.3%, respectively. Besides, it exhibits sustained release behavior, enhanced nasal diffusion, and improved physical stability. Histopathological testing revealed no evidence of toxicity or structural damage to the nasal mucosa. It demonstrated significantly more brain distribution than the drug solution. Overall, the data is encouraging since it points to the potential for non-invasive intranasal administration of LCA as an alternative to oral or parenteral routes.
Collapse
Affiliation(s)
- Alaa S. Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Heba A. Yassin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University (Arish campus), Arish, Egypt
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amira H. Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
12
|
Brustovetsky T, Khanna R, Brustovetsky N. CRMP2 Participates in Regulating Mitochondrial Morphology and Motility in Alzheimer's Disease. Cells 2023; 12:cells12091287. [PMID: 37174687 PMCID: PMC10177167 DOI: 10.3390/cells12091287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondrial bioenergetics and dynamics (alterations in morphology and motility of mitochondria) play critical roles in neuronal reactions to varying energy requirements in health and disease. In Alzheimer's disease (AD), mitochondria undergo excessive fission and become less motile. The mechanisms leading to these alterations are not completely clear. Here, we show that collapsin response mediator protein 2 (CRMP2) is hyperphosphorylated in AD and that is accompanied by a decreased interaction of CRMP2 with Drp1, Miro 2, and Mitofusin 2, which are proteins involved in regulating mitochondrial morphology and motility. CRMP2 was hyperphosphorylated in postmortem brain tissues of AD patients, in brain lysates, and in cultured cortical neurons from the double transgenic APP/PS1 mice, an AD mouse model. CRMP2 hyperphosphorylation and dissociation from its binding partners correlated with increased Drp1 recruitment to mitochondria, augmented mitochondrial fragmentation, and reduced mitochondrial motility. (S)-lacosamide ((S)-LCM), a small molecule that binds to CRMP2, decreased its phosphorylation at Ser 522 and Thr 509/514, and restored CRMP2's interaction with Miro 2, Drp1, and Mitofusin 2. This was paralleled by decreased Drp1 recruitment to mitochondria, diminished mitochondrial fragmentation, and improved motility of the organelles. Additionally, (S)-LCM-protected cultured cortical AD neurons from cell death. Thus, our data suggest that CRMP2, in a phosphorylation-dependent manner, participates in the regulation of mitochondrial morphology and motility, and modulates neuronal survival in AD.
Collapse
Affiliation(s)
- Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Medical Science Building, Room 362, Indianapolis, IN 46202, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
- College of Dentistry, NYU Pain Research Center, New York University, New York, NY 10010, USA
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY 10010, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Medical Science Building, Room 362, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Duran P, Loya-López S, Ran D, Tang C, Calderon-Rivera A, Gomez K, Stratton HJ, Huang S, Xu YM, Wijeratne EMK, Perez-Miller S, Shan Z, Cai S, Gabrielsen AT, Dorame A, Masterson KA, Alsbiei O, Madura CL, Luo G, Moutal A, Streicher J, Zamponi GW, Gunatilaka AAL, Khanna R. The natural product argentatin C attenuates postoperative pain via inhibition of voltage-gated sodium and T-type voltage-gated calcium channels. Br J Pharmacol 2022; 180:1267-1285. [PMID: 36245395 DOI: 10.1111/bph.15974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Postoperative pain occurs in as many as 70% of surgeries performed worldwide. Postoperative pain management still relies on opioids despite their negative consequences, resulting in a public health crisis. Therefore, it is important to develop alternative therapies to treat chronic pain. Natural products derived from medicinal plants are potential sources of novel biologically active compounds for development of safe analgesics. In this study, we screened a library of natural products to identify small molecules that target the activity of voltage-gated sodium and calcium channels that have important roles in nociceptive sensory processing. EXPERIMENTAL APPROACH Fractions derived from the Native American medicinal plant, Parthenium incanum, were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion (DRG) neurons. Further separation of these fractions yielded a cycloartane-type triterpene identified as argentatin C, which was additionally evaluated using whole-cell voltage and current-clamp electrophysiology, and behavioural analysis in a mouse model of postsurgical pain. KEY RESULTS Argentatin C blocked the activity of both voltage-gated sodium and low-voltage-activated (LVA) calcium channels in calcium imaging assays. Docking analysis predicted that argentatin C may bind to NaV 1.7-1.9 and CaV 3.1-3.3 channels. Furthermore, argentatin C decreased Na+ and T-type Ca2+ currents as well as excitability in rat and macaque DRG neurons, and reversed mechanical allodynia in a mouse model of postsurgical pain. CONCLUSION AND IMPLICATIONS These results suggest that the dual effect of argentatin C on voltage-gated sodium and calcium channels supports its potential as a novel treatment for painful conditions.
Collapse
Affiliation(s)
- Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA.,NYU Pain Research Center, New York, New York, USA.,Department of Biochemistry and Molecular Biology, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
| | - Harrison J Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Sun Huang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, USA
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Anna T Gabrielsen
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Kyleigh A Masterson
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Omar Alsbiei
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Guoqin Luo
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - John Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA.,NYU Pain Research Center, New York, New York, USA
| |
Collapse
|
14
|
Martin L, Ibrahim M, Gomez K, Yu J, Cai S, Chew LA, Bellampalli SS, Moutal A, Largent-Milnes T, Porreca F, Khanna R, Olivera BM, Patwardhan A. Conotoxin contulakin-G engages a neurotensin receptor 2/R-type calcium channel (Cav2.3) pathway to mediate spinal antinociception. Pain 2022; 163:1751-1762. [PMID: 35050960 PMCID: PMC9198109 DOI: 10.1097/j.pain.0000000000002561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Intrathecal application of contulakin-G (CGX), a conotoxin peptide and a neurotensin analogue, has been demonstrated to be safe and potentially analgesic in humans. However, the mechanism of action for CGX analgesia is unknown. We hypothesized that spinal application of CGX produces antinociception through activation of the presynaptic neurotensin receptor (NTSR)2. In this study, we assessed the mechanisms of CGX antinociception in rodent models of inflammatory and neuropathic pain. Intrathecal administration of CGX, dose dependently, inhibited thermal and mechanical hypersensitivities in rodents of both sexes. Pharmacological and clustered regularly interspaced short palindromic repeats/Cas9 editing of NTSR2 reversed CGX-induced antinociception without affecting morphine analgesia. Electrophysiological and gene editing approaches demonstrated that CGX inhibition was dependent on the R-type voltage-gated calcium channel (Cav2.3) in sensory neurons. Anatomical studies demonstrated coexpression of NTSR2 and Cav2.3 in dorsal root ganglion neurons. Finally, synaptic fractionation and slice electrophysiology recordings confirmed a predominantly presynaptic effect. Together, these data reveal a nonopioid pathway engaged by a human-tested drug to produce antinociception.
Collapse
Affiliation(s)
- Laurent Martin
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Mohab Ibrahim
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ 85742, USA
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Jie Yu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Song Cai
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Lindsey A. Chew
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Shreya Sai Bellampalli
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Tally Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ 85742, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ 85742, USA
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, USA
| | | | - Amol Patwardhan
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
15
|
Goins AE, Gomez K, Ran D, Afaghpour-Becklund M, Khanna R, Alles SRA. Neuronal allodynic mechanisms of Slc7a5 (LAT1) in the spared nerve injury rodent model of neuropathic pain. Pflugers Arch 2022; 474:397-403. [PMID: 35048187 PMCID: PMC8930528 DOI: 10.1007/s00424-021-02653-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/28/2023]
Abstract
High-impact chronic pain is suffered by 1 in 5 patients in the USA and globally. Effective, non-addictive, non-opioid therapeutics are urgently needed for the treatment of chronic pain. Slc7a5 (Lat1), also known as system L-neutral amino acid transporter, is involved in a number of physiological processes related to inflammation. Transcriptomics studies have shown that Slc7a5 and its binding partner Slc3a2 are expressed in neurons of the dorsal root ganglia (DRG) and spinal dorsal horn, which are critical to the initiation and maintenance of nociception and pathophysiology of chronic pain. In addition, Slc7a5 is a transporter for the first-line anti-allodynic gabapentinoid drugs and binds to ion channels implicated in nociception and chronic pain including the voltage-gated sodium channel Nav1.7 and the voltage-gated potassium channels Kv1.1 and Kv1.2. We found that blocking Slc7a5 with intrathecal administration of the drug JPH203 alleviated allodynia in the spared nerve injury (SNI) rodent model of neuropathic pain. Western blot and immunohistochemistry studies revealed an increase in Slc7a5 protein levels in the spinal cord and DRGs of SNI mice compared to control mice. Using whole-cell current-clamp electrophysiology, we observed that JPH203 treatment reduced excitability of small-diameter (< 30 µm) DRG neurons from SNI mice, in agreement with its behavioral effects. Voltage-clamp recordings from JPH203-treated naïve rat DRGs identified an effect on tetrodotoxin-resistant (TTX-R) sodium currents. Altogether, these results demonstrate that Slc7a5 is dysregulated in chronic neuropathic pain and can be targeted to provide relief of hypersensitivity.
Collapse
Affiliation(s)
- Aleyah E Goins
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87106, USA
| | - Kimberly Gomez
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, 85724, USA
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724, USA
| | - Dongzhi Ran
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, 85724, USA
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724, USA
| | - Mitra Afaghpour-Becklund
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87106, USA
| | - Rajesh Khanna
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, 85724, USA.
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85724, USA.
- Department of Molecular Pathobiology, College of Dentistry, New York University, 133 First Avenue Rm 824, New York, NY, 10010, USA.
| | - Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87106, USA.
| |
Collapse
|
16
|
Boinon L, Yu J, Madura CL, Chefdeville A, Feinstein DL, Moutal A, Khanna R. Conditional knockout of CRMP2 in neurons, but not astrocytes, disrupts spinal nociceptive neurotransmission to control the initiation and maintenance of chronic neuropathic pain. Pain 2022; 163:e368-e381. [PMID: 35029600 PMCID: PMC8760468 DOI: 10.1097/j.pain.0000000000002344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023]
Abstract
ABSTRACT Mechanistic studies principally focusing on primary afferent nociceptive neurons uncovered the upregulation of collapsin response mediator protein 2 (CRMP2)-a dual trafficking regulator of N-type voltage-gated calcium (Cav2.2) as well as Nav1.7 voltage-gated sodium channels-as a potential determinant of neuropathic pain. Whether CRMP2 contributes to aberrant excitatory synaptic transmission underlying neuropathic pain processing after peripheral nerve injury is unknown. Here, we interrogated CRMP2's role in synaptic transmission and in the initiation or maintenance of chronic pain. In rats, short-interfering RNA-mediated knockdown of CRMP2 in the spinal cord reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents, but not spontaneous inhibitory postsynaptic currents, recorded from superficial dorsal horn neurons in acute spinal cord slices. No effect was observed on miniature excitatory postsynaptic currents and inhibitory postsynaptic currents. In a complementary targeted approach, conditional knockout of CRMP2 from mouse neurons using a calcium/calmodulin-dependent protein kinase II alpha promoter to drive Cre recombinase expression reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents, but not miniature excitatory SCss. Conditional knockout of CRMP2 from mouse astrocytes using a glial fibrillary acidic protein promoter had no effect on synaptic transmission. Conditional knockout of CRMP2 in neurons reversed established mechanical allodynia induced by a spared nerve injury in both male and female mice. In addition, the development of spared nerve injury-induced allodynia was also prevented in these mice. Our data strongly suggest that CRMP2 is a key regulator of glutamatergic neurotransmission driving pain signaling and that it contributes to the transition of physiological pain into pathological pain.
Collapse
Affiliation(s)
- Lisa Boinon
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Jie Yu
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Douglas L. Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, Chicago, Illinois 60612, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, 60612, United States of America
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724, United States of America
| |
Collapse
|
17
|
Li J, Stratton HJ, Lorca SA, Grace PM, Khanna R. Small molecule targeting NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in chronic constriction injury (CCI) rats. Channels (Austin) 2022; 16:1-8. [PMID: 34983286 PMCID: PMC8741281 DOI: 10.1080/19336950.2021.2023383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The voltage-gated sodium channel isoform NaV1.7 is a critical player in the transmission of nociceptive information. This channel has been heavily implicated in human genetic pain disorders and is a validated pain target. However, targeting this channel directly has failed, and an indirect approach – disruption of interactions with accessory protein partners – has emerged as a viable alternative strategy. We recently reported that a small-molecule inhibitor of CRMP2 SUMOylation, compound 194, selectively reduces NaV1.7 currents in DRG neurons across species from mouse to human. This compound also reversed mechanical allodynia in a spared nerve injury and chemotherapy-induced model of neuropathic pain. Here, we show that oral administration of 194 reverses mechanical allodynia in a chronic constriction injury (CCI) model of neuropathic pain. Furthermore, we show that orally administered 194 reverses the increased latency to cross an aversive barrier in a mechanical conflict-avoidance task following CCI. These two findings, in the context of our previous report, support the conclusion that 194 is a robust inhibitor of NaV1.7 function with the ultimate effect of profoundly ameliorating mechanical allodynia associated with nerve injury. The fact that this was observed using both traditional, evoked measures of pain behavior as well as the more recently developed operator-independent mechanical conflict-avoidance assay increases confidence in the efficacy of 194-induced anti-nociception.
Collapse
Affiliation(s)
- Jiahe Li
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas, Houston, Texas, USA
| | - Harrison J Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Sabina A Lorca
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas, Houston, Texas, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas, Houston, Texas, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA.,Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
18
|
Ion-Channel Antiepileptic Drugs: An Analytical Perspective on the Therapeutic Drug Monitoring (TDM) of Ezogabine, Lacosamide, and Zonisamide. ANALYTICA 2021. [DOI: 10.3390/analytica2040016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The term seizures includes a wide array of different disorders with variable etiology, which currently represent one of the most important classes of neurological illnesses. As a consequence, many different antiepileptic drugs (AEDs) are currently available, exploiting different activity mechanisms and providing different levels of performance in terms of selectivity, safety, and efficacy. AEDs are currently among the psychoactive drugs most frequently involved in therapeutic drug monitoring (TDM) practices. Thus, the plasma levels of AEDs and their metabolites are monitored and correlated to administered doses, therapeutic efficacy, side effects, and toxic effects. As for any analytical endeavour, the quality of plasma concentration data is only as good as the analytical method allows. In this review, the main techniques and methods are described, suitable for the TDM of three AEDs belonging to the class of ion channel agents: ezogabine (or retigabine), lacosamide, and zonisamide. In addition to this analytical overview, data are provided, pertaining to two of the most important use cases for the TDM of antiepileptics: drug–drug interactions and neuroprotection activity studies. This review contains 146 references.
Collapse
|
19
|
A modulator of the low-voltage-activated T-type calcium channel that reverses HIV glycoprotein 120-, paclitaxel-, and spinal nerve ligation-induced peripheral neuropathies. Pain 2021; 161:2551-2570. [PMID: 32541387 DOI: 10.1097/j.pain.0000000000001955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The voltage-gated calcium channels CaV3.1-3.3 constitute the T-type subfamily, whose dysfunctions are associated with epilepsy, psychiatric disorders, and chronic pain. The unique properties of low-voltage-activation, faster inactivation, and slower deactivation of these channels support their role in modulation of cellular excitability and low-threshold firing. Thus, selective T-type calcium channel antagonists are highly sought after. Here, we explored Ugi-azide multicomponent reaction products to identify compounds targeting T-type calcium channel. Of the 46 compounds tested, an analog of benzimidazolonepiperidine-5bk (1-{1-[(R)-{1-[(1S)-1-phenylethyl]-1H-1,2,3,4-tetrazol-5-yl}(thiophen-3-yl)methyl]piperidin-4-yl}-2,3-dihydro-1H-1,3-benzodiazol-2-one) modulated depolarization-induced calcium influx in rat sensory neurons. Modulation of T-type calcium channels by 5bk was further confirmed in whole-cell patch clamp assays in dorsal root ganglion (DRG) neurons, where pharmacological isolation of T-type currents led to a time- and concentration-dependent regulation with a low micromolar IC50. Lack of an acute effect of 5bk argues against a direct action on T-type channels. Genetic knockdown revealed CaV3.2 to be the isoform preferentially modulated by 5bk. High voltage-gated calcium, as well as tetrodotoxin-sensitive and -resistant sodium, channels were unaffected by 5bk. 5bk inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, 5bk did not bind human mu, delta, or kappa opioid receptors. 5bk reversed mechanical allodynia in rat models of HIV-associated neuropathy, chemotherapy-induced peripheral neuropathy, and spinal nerve ligation-induced neuropathy, without effects on locomotion or anxiety. Thus, 5bk represents a novel T-type modulator that could be used to develop nonaddictive pain therapeutics.
Collapse
|
20
|
Studies on CRMP2 SUMOylation-deficient transgenic mice identify sex-specific Nav1.7 regulation in the pathogenesis of chronic neuropathic pain. Pain 2021; 161:2629-2651. [PMID: 32569093 DOI: 10.1097/j.pain.0000000000001951] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sodium channel Nav1.7 is a master regulator of nociceptive input into the central nervous system. Mutations in this channel can result in painful conditions and produce insensitivity to pain. Despite being recognized as a "poster child" for nociceptive signaling and human pain, targeting Nav1.7 has not yet produced a clinical drug. Recent work has illuminated the Nav1.7 interactome, offering insights into the regulation of these channels and identifying potentially new druggable targets. Among the regulators of Nav1.7 is the cytosolic collapsin response mediator protein 2 (CRMP2). CRMP2, modified at lysine 374 (K374) by addition of a small ubiquitin-like modifier (SUMO), bound Nav1.7 to regulate its membrane localization and function. Corollary to this, preventing CRMP2 SUMOylation was sufficient to reverse mechanical allodynia in rats with neuropathic pain. Notably, loss of CRMP2 SUMOylation did not compromise other innate functions of CRMP2. To further elucidate the in vivo role of CRMP2 SUMOylation in pain, we generated CRMP2 K374A knock-in (CRMP2) mice in which Lys374 was replaced with Ala. CRMP2 mice had reduced Nav1.7 membrane localization and function in female, but not male, sensory neurons. Behavioral appraisal of CRMP2 mice demonstrated no changes in depressive or repetitive, compulsive-like behaviors and a decrease in noxious thermal sensitivity. No changes were observed in CRMP2 mice to inflammatory, acute, or visceral pain. By contrast, in a neuropathic model, CRMP2 mice failed to develop persistent mechanical allodynia. Our study suggests that CRMP2 SUMOylation-dependent control of peripheral Nav1.7 is a hallmark of chronic, but not physiological, neuropathic pain.
Collapse
|
21
|
Moutal A, Martin LF, Boinon L, Gomez K, Ran D, Zhou Y, Stratton HJ, Cai S, Luo S, Gonzalez KB, Perez-Miller S, Patwardhan A, Ibrahim MM, Khanna R. SARS-CoV-2 spike protein co-opts VEGF-A/neuropilin-1 receptor signaling to induce analgesia. Pain 2021; 162:243-252. [PMID: 33009246 PMCID: PMC7737878 DOI: 10.1097/j.pain.0000000000002097] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
Global spread of severe acute respiratory syndrome coronavirus 2 continues unabated. Binding of severe acute respiratory syndrome coronavirus 2's spike protein to host angiotensin-converting enzyme 2 triggers viral entry, but other proteins may participate, including the neuropilin-1 receptor (NRP-1). Because both spike protein and vascular endothelial growth factor-A (VEGF-A)-a pronociceptive and angiogenic factor, bind NRP-1, we tested whether spike could block VEGF-A/NRP-1 signaling. VEGF-A-triggered sensory neuron firing was blocked by spike protein and NRP-1 inhibitor EG00229. Pronociceptive behaviors of VEGF-A were similarly blocked through suppression of spontaneous spinal synaptic activity and reduction of electrogenic currents in sensory neurons. Remarkably, preventing VEGF-A/NRP-1 signaling was antiallodynic in a neuropathic pain model. A "silencing" of pain through subversion of VEGF-A/NRP-1 signaling may underlie increased disease transmission in asymptomatic individuals.
Collapse
Affiliation(s)
| | - Laurent F. Martin
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | | | | | | | | | | | - Song Cai
- Departments of Pharmacology, and
| | | | | | - Samantha Perez-Miller
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Amol Patwardhan
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, United States
| | - Mohab M. Ibrahim
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, United States
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
22
|
Gonçalves J, Alves G, Fonseca C, Carona A, Bicker J, Falcão A, Fortuna A. Is intranasal administration an opportunity for direct brain delivery of lacosamide? Eur J Pharm Sci 2020; 157:105632. [PMID: 33152466 DOI: 10.1016/j.ejps.2020.105632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Lacosamide is well-known as an effective and safe anticonvulsant drug. Nevertheless, there is also evidence of anti-epileptogenic, neuroprotective and antinociceptive properties of lacosamide. It is currently available as oral and intravenous (IV) formulations, and its brain concentrations and therapeutic effects depend on its passage across the blood-brain barrier (BBB). Therefore, to circumvent the restrictive BBB, we herein evaluated the intranasal (IN) administration of lacosamide. Nasal thermoreversible gels were screened in vitro for their influence on the viability of human nasal septum (RPMI 2650) and lung adenocarcinoma (Calu-3) cells. According to the Alamar Blue test, the in situ gel composed of Pluronic F-127 (22.5%, w/v) and Carbopol 974P (0.2%, w/v) did not affect cell viability, which remained higher than 85%, within the concentration range of lacosamide. The in situ gel was intranasally administered to healthy male CD-1 mice (8.33 mg/kg) to describe the pharmacokinetic profiles of lacosamide in plasma, brain, lung and kidney and compare them with those obtained after IV administration of the same dose. Accordingly, IN administration allowed a fast (tmax in plasma: 5 min) and complete systemic absorption of lacosamide (absolute bioavailability: 120.46%). Interestingly, IN lacosamide demonstrated higher exposure (given by the AUCt) in the brain (425.44 µg.min/mL versus 274.49 µg.min/mL), but lower exposure in kidneys (357.56 µg.min/mL versus 762.61 µg.min/mL), in comparison to IV administration. These findings, together with the tmax in brain of 15 min, a drug targeting efficiency (DTE) of 128.67% and a direct transport percentage of 22.28%, evidence that part of lacosamide reaches the brain directly after nasal administration, even though penetration into the brain from the systemic circulation seems to be the major determinant of brain exposure. Importantly, lacosamide concentrations found in lungs following IN administration were considerably higher than those observed after IV injection, until 30 min post-dosing (p < 0.05). Nevertheless, attained drug concentrations were lower than those tested in vitro in the Calu-3 cell line (1-100 µM), indicating that adverse effects are unlikely to occur in vivo. Hence, it seems that the proposed IN route has potential to be a suitable and valuable strategy for the brain delivery of lacosamide in emergency conditions and for the chronic treatment of epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Joana Gonçalves
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Andreia Carona
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
23
|
Moutal A, Martin LF, Boinon L, Gomez K, Ran D, Zhou Y, Stratton HJ, Cai S, Luo S, Gonzalez KB, Perez-Miller S, Patwardhan A, Ibrahim MM, Khanna R. SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to induce analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.17.209288. [PMID: 32869019 PMCID: PMC7457601 DOI: 10.1101/2020.07.17.209288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues unabated. Binding of SARS-CoV-2's Spike protein to host angiotensin converting enzyme 2 triggers viral entry, but other proteins may participate, including neuropilin-1 receptor (NRP-1). As both Spike protein and vascular endothelial growth factor-A (VEGF-A) - a pro-nociceptive and angiogenic factor, bind NRP-1, we tested if Spike could block VEGF-A/NRP-1 signaling. VEGF-A-triggered sensory neuronal firing was blocked by Spike protein and NRP-1 inhibitor EG00229. Pro-nociceptive behaviors of VEGF-A were similarly blocked via suppression of spontaneous spinal synaptic activity and reduction of electrogenic currents in sensory neurons. Remarkably, preventing VEGF-A/NRP-1 signaling was antiallodynic in a neuropathic pain model. A 'silencing' of pain via subversion of VEGF-A/NRP-1 signaling may underlie increased disease transmission in asymptomatic individuals.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Laurent F. Martin
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Yuan Zhou
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Kerry Beth Gonzalez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Amol Patwardhan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Mohab M. Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, Arizona 85721, United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724 United States of America
| |
Collapse
|
24
|
Assessment of nociception and related quality-of-life measures in a porcine model of neurofibromatosis type 1. Pain 2020; 160:2473-2486. [PMID: 31246731 DOI: 10.1097/j.pain.0000000000001648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder resulting from germline mutations in the NF1 gene, which encodes neurofibromin. Patients experience a variety of symptoms, but pain in the context of NF1 remains largely underrecognized. Here, we characterize nociceptive signaling and pain behaviors in a miniswine harboring a disruptive NF1 mutation (exon 42 deletion). We present the first characterization of pain-related behaviors in a pig model of NF1, identifying unchanged agitation scores, lower tactile thresholds (allodynia), and decreased response latencies to thermal laser stimulation (hyperalgesia) in NF1 (females only) pigs. Male NF1 pigs with tumors showed reduced sleep quality and increased resting, 2 health-related quality-of-life symptoms found to be comorbid in people with NF1 pain. We explore these phenotypes in relationship to suppression of the increased activity of the N-type voltage-gated calcium (CaV2.2) channel by pharmacological antagonism of phosphorylation of a regulatory protein-the collapsin response mediator protein 2 (CRMP2), a known interactor of neurofibromin, and by targeting the interface between the α subunit of CaV2.2 and the accessory β-subunits with small molecules. Our data support the use of NF1 pigs as a large animal model for studying NF1-associated pain and for understanding the pathophysiology of NF1. Our findings demonstrate the translational potential of 2 small molecules in reversing ion channel remodeling seen in NF1. Interfering with CaV2.2, a clinically validated target for pain management, might also be a promising therapeutic strategy for NF1-related pain management.
Collapse
|
25
|
Khanna R, Moutal A, Perez-Miller S, Chefdeville A, Boinon L, Patek M. Druggability of CRMP2 for Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:2492-2505. [PMID: 32693579 DOI: 10.1021/acschemneuro.0c00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are ubiquitously expressed phosphoproteins that coordinate cytoskeletal formation and regulate cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. Accumulating evidence has also demonstrated a key role for CRMP2 in trafficking of voltage- and ligand-gated ion channels. These functions are tightly regulated by post-translational modifications including phosphorylation and SUMOylation (addition of a small ubiquitin like modifier). Over the past decade, it has become increasingly clear that dysregulated post-translational modifications of CRMP2 contribute to the pathomechanisms of diverse diseases, including cancer, neurodegenerative diseases, chronic pain, and bipolar disorder. Here, we review the discovery, functions, and current putative preclinical and clinical therapeutics targeting CRMP2. These potential therapeutics include CRMP2-based peptides that inhibit protein-protein interactions and small-molecule compounds. Capitalizing on the availability of structural information, we identify druggable pockets on CRMP2 and predict binding modes for five known CRMP2-targeting compounds, setting the stage for optimization and de novo drug discovery targeting this multifunctional protein.
Collapse
Affiliation(s)
- Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Graduate Interdisciplinary Program in Neuroscience, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
- Regulonix LLC, Tucson, Arizona 85718, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Marcel Patek
- BrightRock Path, LLC, Tucson, Arizona 85704, United States
| |
Collapse
|
26
|
Adamo D, Coppola N, Pecoraro G, Nicolò M, Mignogna MD. Lacosamide in trigeminal neuralgia: report of a case refractory to first- and second-generation anticonvulsants. Cranio 2020; 41:126-130. [PMID: 32776864 DOI: 10.1080/08869634.2020.1804233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The treatment of trigeminal neuralgia (TN) involves first- and second-generation anticonvulsants. However, side effects (SEs) impair compliance with treatment, especially in elderly patients. Lacosamide (LCM) is a third-generation anticonvulsant with a mechanism of action that is not completely clear. It has few SEs and has been considered in the treatment of neuropathic pain. CLINICAL PRESENTATION LCM was prescribed as a monotherapy for a 60-year-old female with TN who had proven refractory to previous treatments in terms of both the absence of any pain relief and the appearance of severe leukopenia. The treatment dosage was 100 mg twice daily. Pain relief was obtained after three weeks of treatment without any SEs. Currently, the patient takes a maintenance dosage of 100 mg/daily, remaining in a state of complete well-being. CONCLUSION LCM has shown evidence of a potential efficacy and a good safety profile in the treatment of this patient with TN.
Collapse
Affiliation(s)
- Daniela Adamo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Noemi Coppola
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Giuseppe Pecoraro
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Michele Nicolò
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Michele Davide Mignogna
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| |
Collapse
|
27
|
Moutal A, Shan Z, Miranda VG, François-Moutal L, Madura CL, Khanna M, Khanna R. Evaluation of edonerpic maleate as a CRMP2 inhibitor for pain relief. Channels (Austin) 2020; 13:498-504. [PMID: 31680630 PMCID: PMC6833970 DOI: 10.1080/19336950.2019.1684608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that the microtubule-associated collapsin response mediator protein 2 (CRMP2) is necessary for the expression of chronic pain. CRMP2 achieves this control of nociceptive signaling by virtue of its ability to regulate voltage-gated calcium and sodium channels. To date, however, no drugs exist that target CRMP2. Recently, the small molecule edonerpic maleate (1 -{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl}azetidin-3-ol maleate), a candidate therapeutic for Alzheimer’s disease was reported to be a novel CRMP2 binding compound with the potential to decrease its phosphorylation level in cortical tissues in vivo. Here we sought to determine the mechanism of action of edonerpic maleate and test its possible effect in a rodent model of chronic pain. We observed: (i) no binding between human CRMP2 and edonerpic maleate; (ii) edonerpic maleate had no effect on CRMP2 expression and phosphorylation in dorsal root ganglion (DRG) neurons; (iii) edonerpic maleate-decreased calcium but increased sodium current density in DRG neurons; and (iv) edonerpic maleate was ineffective in reversing post-surgical allodynia in male and female mice. Thus, while CRMP2 inhibiting compounds remain a viable strategy for developing new mechanism-based pain inhibitors, edonerpic maleate is an unlikely candidate.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Anesthesiology, Shenzhen People's Hospital & Second Clinical Medical College of Jinan University, Shenzhen, P.R. China.,Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Victor G Miranda
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
28
|
Moutal A, Ji Y, Bellampalli SS, Khanna R. Differential expression of Cdk5-phosphorylated CRMP2 following a spared nerve injury. Mol Brain 2020; 13:97. [PMID: 32571373 PMCID: PMC7310452 DOI: 10.1186/s13041-020-00633-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 11/10/2022] Open
Abstract
Effective treatment of high-impact pain patients is one of the major stated goals of the National Pain Strategy in the United States. Identification of new targets and mechanisms underlying neuropathic pain will be critical in developing new target-specific medications for better neuropathic pain management. We recently discovered that peripheral nerve injury-induced upregulation of an axonal guidance phosphoprotein collapsin response mediator protein 2 (CRMP2) and the N-type voltage-gated calcium (CaV2.2) as well as the NaV1.7 voltage-gated sodium channel, correlates with the development of neuropathic pain. In our previous studies, we found that interfering with the phosphorylation status of CRMP2 is sufficient to confer protection from chronic pain. Here we examined the expression of CRMP2 and CRMP2 phosphorylated by cyclin-dependent kinase 5 (Cdk5, on serine residue 522 (S522)) in sciatic nerve, nerve terminals of the glabrous skin, and in select subpopulations of DRG neurons in the SNI model of neuropathic pain. By enhancing our understanding of the phosphoregulatory status of CRMP2 within DRG subpopulations, we may be in a better position to design novel pharmacological interventions for chronic pain.
Collapse
Affiliation(s)
- Aubin Moutal
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Yingshi Ji
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA.,Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shreya Sai Bellampalli
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA.,Mayo Clinic School of Medicine, 26 Mayo Park Dr SE, Rochester, MN, 55904, USA
| | - Rajesh Khanna
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA. .,Departments of Anesthesiology, University of Arizona, Tucson, AZ, 85724, USA. .,Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA. .,BIO5 Institute, 657 East Helen Street, P.O. Box 210240, Tucson, AZ, 85724, USA. .,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
29
|
Targeting the CaVα-CaVβ interaction yields an antagonist of the N-type CaV2.2 channel with broad antinociceptive efficacy. Pain 2020; 160:1644-1661. [PMID: 30933958 DOI: 10.1097/j.pain.0000000000001524] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inhibition of voltage-gated calcium (CaV) channels is a potential therapy for many neurological diseases including chronic pain. Neuronal CaV1/CaV2 channels are composed of α, β, γ and α2δ subunits. The β subunits of CaV channels are cytoplasmic proteins that increase the surface expression of the pore-forming α subunit of CaV. We targeted the high-affinity protein-protein interface of CaVβ's pocket within the CaVα subunit. Structure-based virtual screening of 50,000 small molecule library docked to the β subunit led to the identification of 2-(3,5-dimethylisoxazol-4-yl)-N-((4-((3-phenylpropyl)amino)quinazolin-2-yl)methyl)acetamide (IPPQ). This small molecule bound to CaVβ and inhibited its coupling with N-type voltage-gated calcium (CaV2.2) channels, leading to a reduction in CaV2.2 currents in rat dorsal root ganglion sensory neurons, decreased presynaptic localization of CaV2.2 in vivo, decreased frequency of spontaneous excitatory postsynaptic potentials and miniature excitatory postsynaptic potentials, and inhibited release of the nociceptive neurotransmitter calcitonin gene-related peptide from spinal cord. IPPQ did not target opioid receptors nor did it engage inhibitory G protein-coupled receptor signaling. IPPQ was antinociceptive in naive animals and reversed allodynia and hyperalgesia in models of acute (postsurgical) and neuropathic (spinal nerve ligation, chemotherapy- and gp120-induced peripheral neuropathy, and genome-edited neuropathy) pain. IPPQ did not cause akinesia or motor impairment, a common adverse effect of CaV2.2 targeting drugs, when injected into the brain. IPPQ, a quinazoline analog, represents a novel class of CaV2.2-targeting compounds that may serve as probes to interrogate CaVα-CaVβ function and ultimately be developed as a nonopioid therapeutic for chronic pain.
Collapse
|
30
|
Stratton H, Boinon L, Moutal A, Khanna R. Coordinating Synaptic Signaling with CRMP2. Int J Biochem Cell Biol 2020; 124:105759. [PMID: 32437854 DOI: 10.1016/j.biocel.2020.105759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Synaptic transmission is a complex process, dysregulation of which underlies several neurological conditions. Collapsin response mediator protein 2 (CRMP2) is a microtubule associated protein expressed ubiquitously in the central nervous system. Identified initially in the context of Semaphorin 3A (Collapsin) induced growth cone collapse, more recent findings revealed the involvement of CRMP2 in ion channel trafficking, kinesin-dependent axonal transport and maintenance of intracellular calcium homeostasis. CRMP2 is a synaptic protein, expressed at pre- and post-synaptic sites. Interactions with proteins such as N-methyl-D-aspartate receptors, syntaxin1A as well as voltage-gated calcium and sodium channels, suggest that CRMP2 may control both the electrical and chemical components of synaptic transmission. This short review will outline the known synaptic interactions of CRMP2 and illustrate its role in synaptic transmission, thereby introducing CRMP2 as a prospective target for the pathophysiological modulation of aberrant synaptic activity.
Collapse
Affiliation(s)
- Harrison Stratton
- Department of Pharmacology, College of Medicine, University of Arizona, United States
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, University of Arizona, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, United States; BIO5 Institute, University of Arizona, United States; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, United States.
| |
Collapse
|
31
|
|
32
|
Cai S, Shan Z, Zhang Z, Moutal A, Khanna R. Activity of T-type calcium channels is independent of CRMP2 in sensory neurons. Channels (Austin) 2020; 13:147-152. [PMID: 31025580 PMCID: PMC6527066 DOI: 10.1080/19336950.2019.1608129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amongst the regulators of voltage-gated ion channels is the collapsin response mediator protein 2 (CRMP2). CRMP2 regulation of the activity and trafficking of NaV1.7 voltage-gated sodium channels as well as the N-type (CaV2.2) voltage-gated calcium channel (VGCC) has been reported. On the other hand, CRMP2 does not appear to regulate L- (CaV1.x), P/Q- (CaV2.1), and R- (CaV2.3) type high VGCCs. Whether CRMP2 regulates low VGCCs remains an open question. Here, we asked if CRMP2 could regulate the low voltage-gated (T-type/CaV3.x) channels in sensory neurons. Reducing CRMP2 protein levels with short interfering RNAs yielded no change in macroscopic currents carried by T-type channels. No change in biophysical properties of the T-type currents was noted. Future studies pursuing CRMP2 druggability in neuropathic pain will benefit from the findings that CRMP2 regulates only the N-type (CaV2.2) calcium channels.
Collapse
Affiliation(s)
- Song Cai
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA
| | - Zhiming Shan
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA.,b Department of Anesthesiology , Shenzhen People's Hospital & Second Clinical Medical College of Jinan University , Shenzhen , P.R. China
| | - Zhongjun Zhang
- b Department of Anesthesiology , Shenzhen People's Hospital & Second Clinical Medical College of Jinan University , Shenzhen , P.R. China
| | - Aubin Moutal
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA
| | - Rajesh Khanna
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA.,c The Center for Innovation in Brain Sciences , The University of Arizona Health Sciences , Tucson , AZ , USA
| |
Collapse
|
33
|
Buchta WC, Moutal A, Hines B, Garcia-Keller C, Smith ACW, Kalivas P, Khanna R, Riegel AC. Dynamic CRMP2 Regulation of CaV2.2 in the Prefrontal Cortex Contributes to the Reinstatement of Cocaine Seeking. Mol Neurobiol 2020; 57:346-357. [PMID: 31359322 PMCID: PMC6980501 DOI: 10.1007/s12035-019-01711-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Cocaine addiction remains a major health concern with limited effective treatment options. A better understanding of mechanisms underlying relapse may help inform the development of new pharmacotherapies. Emerging evidence suggests that collapsin response mediator protein 2 (CRMP2) regulates presynaptic excitatory neurotransmission and contributes to pathological changes during diseases, such as neuropathic pain and substance use disorders. We examined the role of CRMP2 and its interactions with a known binding partner, CaV2.2, in cocaine-seeking behavior. We employed the rodent self-administration model of relapse to drug seeking and focused on the prefrontal cortex (PFC) for its well-established role in reinstatement behaviors. Our results indicated that repeated cocaine self-administration resulted in a dynamic and persistent alteration in the PFC expression of CRMP2 and its binding partner, the CaV2.2 (N-type) voltage-gated calcium channel. Following cocaine self-administration and extinction training, the expression of both CRMP2 and CaV2.2 was reduced relative to yoked saline controls. By contrast, cued reinstatement potentiated CRMP2 expression and increased CaV2.2 expression above extinction levels. Lastly, we utilized the recently developed peptide myr-TAT-CBD3 to disrupt the interaction between CRMP2 and CaV2.2 in vivo. We assessed the reinstatement behavior after infusing this peptide directly into the medial PFC and found that it decreased cue-induced reinstatement of cocaine seeking. Taken together, these data suggest that neuroadaptations in the CRMP2/CaV2.2 signaling cascade in the PFC can facilitate drug-seeking behavior. Targeting such interactions has implications for the treatment of cocaine relapse behavior.
Collapse
Affiliation(s)
- William C Buchta
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Bethany Hines
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alexander C W Smith
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peter Kalivas
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
- Department of Anesthesiology, University of Arizona, Tucson, AZ, 85724, USA
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Arthur C Riegel
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
34
|
Zhou Y, Cai S, Moutal A, Yu J, Gómez K, Madura CL, Shan Z, Pham NYN, Serafini MJ, Dorame A, Scott DD, François-Moutal L, Perez-Miller S, Patek M, Khanna M, Khanna R. The Natural Flavonoid Naringenin Elicits Analgesia through Inhibition of NaV1.8 Voltage-Gated Sodium Channels. ACS Chem Neurosci 2019; 10:4834-4846. [PMID: 31697467 DOI: 10.1021/acschemneuro.9b00547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Naringenin (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural flavonoid found in fruits from the citrus family. Because (2S)-naringenin is known to racemize, its bioactivity might be related to one or both enantiomers. Computational studies predicted that (2R)-naringenin may act on voltage-gated ion channels, particularly the N-type calcium channel (CaV2.2) and the NaV1.7 sodium channel-both of which are key for pain signaling. Here we set out to identify the possible mechanism of action of naringenin. Naringenin inhibited depolarization-evoked Ca2+ influx in acetylcholine-, ATP-, and capsaicin-responding rat dorsal root ganglion (DRG) neurons. This was corroborated in electrophysiological recordings from DRG neurons. Pharmacological dissection of each of the voltage-gated Ca2+ channels subtypes could not pinpoint any selectivity of naringenin. Instead, naringenin inhibited NaV1.8-dependent and tetrodotoxin (TTX)-resistant while sparing tetrodotoxin sensitive (TTX-S) voltage-gated Na+ channels as evidenced by the lack of further inhibition by the NaV1.8 blocker A-803467. The effects of the natural flavonoid were validated ex vivo in spinal cord slices where naringenin decreased both the frequency and amplitude of sEPSC recorded in neurons within the substantia gelatinosa. The antinociceptive potential of naringenin was evaluated in male and female mice. Naringenin had no effect on the nociceptive thresholds evoked by heat. Naringenin's reversed allodynia was in mouse models of postsurgical and neuropathic pain. Here, driven by a call by the National Center for Complementary and Integrative Health's strategic plan to advance fundamental research into basic biological mechanisms of the action of natural products, we advance the antinociceptive potential of the flavonoid naringenin.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Clinical Laboratory, the First Hospital of Jilin University, Changchun 130021, China
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Kimberly Gómez
- Department of Physiology, Biophysics and Neuroscience, Centre for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Nancy Y. N. Pham
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Maria J. Serafini
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - David D. Scott
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Marcel Patek
- BrightRock Path Consulting, LLC, Tucson, Arizona 85721, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
35
|
Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56:6736-6755. [PMID: 30915713 PMCID: PMC6728212 DOI: 10.1007/s12035-019-1568-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rachel N Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Peter F Vitiello
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Douglas Feinstein
- Department of Veterans Affairs, Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jill M Weimer
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA.
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
36
|
Bellampalli SS, Ji Y, Moutal A, Cai S, Wijeratne EMK, Gandini MA, Yu J, Chefdeville A, Dorame A, Chew LA, Madura CL, Luo S, Molnar G, Khanna M, Streicher JM, Zamponi GW, Gunatilaka AAL, Khanna R. Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury-associated peripheral sensory neuropathy via block of N- and T-type calcium channels. Pain 2019; 160:117-135. [PMID: 30169422 DOI: 10.1097/j.pain.0000000000001385] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Federal Pain Research Strategy recommended development of nonopioid analgesics as a top priority in its strategic plan to address the significant public health crisis and individual burden of chronic pain faced by >100 million Americans. Motivated by this challenge, a natural product extracts library was screened and identified a plant extract that targets activity of voltage-gated calcium channels. This profile is of interest as a potential treatment for neuropathic pain. The active extract derived from the desert lavender plant native to southwestern United States, when subjected to bioassay-guided fractionation, afforded 3 compounds identified as pentacyclic triterpenoids, betulinic acid (BA), oleanolic acid, and ursolic acid. Betulinic acid inhibited depolarization-evoked calcium influx in dorsal root ganglion (DRG) neurons predominantly through targeting low-voltage-gated (Cav3 or T-type) and CaV2.2 (N-type) calcium channels. Voltage-clamp electrophysiology experiments revealed a reduction of Ca, but not Na, currents in sensory neurons after BA exposure. Betulinic acid inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, BA did not engage human mu, delta, or kappa opioid receptors. Intrathecal administration of BA reversed mechanical allodynia in rat models of chemotherapy-induced peripheral neuropathy and HIV-associated peripheral sensory neuropathy as well as a mouse model of partial sciatic nerve ligation without effects on locomotion. The broad-spectrum biological and medicinal properties reported, including anti-HIV and anticancer activities of BA and its derivatives, position this plant-derived small molecule natural product as a potential nonopioid therapy for management of chronic pain.
Collapse
Affiliation(s)
- Shreya S Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Yingshi Ji
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Maria A Gandini
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lindsey A Chew
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States.,Department of Neuroscience Graduate Interdisciplinary Program, College of Medicine, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
37
|
Shan Z, Cai S, Yu J, Zhang Z, Vallecillo TGM, Serafini MJ, Thomas AM, Pham NYN, Bellampalli SS, Moutal A, Zhou Y, Xu GB, Xu YM, Luo S, Patek M, Streicher JM, Gunatilaka AAL, Khanna R. Reversal of Peripheral Neuropathic Pain by the Small-Molecule Natural Product Physalin F via Block of CaV2.3 (R-Type) and CaV2.2 (N-Type) Voltage-Gated Calcium Channels. ACS Chem Neurosci 2019; 10:2939-2955. [PMID: 30946560 DOI: 10.1021/acschemneuro.9b00166] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
No universally efficacious therapy exists for chronic pain, a disease affecting one-fifth of the global population. An overreliance on the prescription of opioids for chronic pain despite their poor ability to improve function has led to a national opioid crisis. In 2018, the NIH launched a Helping to End Addiction Long-term plan to spur discovery and validation of novel targets and mechanisms to develop alternative nonaddictive treatment options. Phytochemicals with medicinal properties have long been used for various treatments worldwide. The natural product physalin F, isolated from the Physalis acutifolia (family: Solanaceae) herb, demonstrated antinociceptive effects in models of inflammatory pain, consistent with earlier reports of its anti-inflammatory and immunomodulatory activities. However, the target of action of physalin F remained unknown. Here, using whole-cell and slice electrophysiology, competition binding assays, and experimental models of neuropathic pain, we uncovered a molecular target for physalin F's antinociceptive actions. We found that physalin F (i) blocks CaV2.3 (R-type) and CaV2.2 (N-type) voltage-gated calcium channels in dorsal root ganglion (DRG) neurons, (ii) does not affect CaV3 (T-type) voltage-gated calcium channels or voltage-gated sodium or potassium channels, (iii) does not bind G-protein coupled opioid receptors, (iv) inhibits the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in spinal cord slices, and (v) reverses tactile hypersensitivity in models of paclitaxel-induced peripheral neuropathy and spinal nerve ligation. Identifying CaV2.2 as a molecular target of physalin F may spur its use as a tool for mechanistic studies and position it as a structural template for future synthetic compounds.
Collapse
Affiliation(s)
- Zhiming Shan
- Department of Anesthesiology, Shenzhen People’s Hospital & Second Clinical Medical College of Jinan University, Shenzhen 518020, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | | | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, P.R. China
| | - Zhongjun Zhang
- Department of Anesthesiology, Shenzhen People’s Hospital & Second Clinical Medical College of Jinan University, Shenzhen 518020, P.R. China
| | | | | | | | | | | | | | - Yuan Zhou
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, P. R. China
- BrightRock Path Consulting, LLC, Tucson 85721, Arizona, United States
| | | | | | | | - Marcel Patek
- BrightRock Path Consulting, LLC, Tucson 85721, Arizona, United States
| | | | | | - Rajesh Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
38
|
Cai S, Bellampalli SS, Yu J, Li W, Ji Y, Wijeratne EMK, Dorame A, Luo S, Shan Z, Khanna M, Moutal A, Streicher JM, Gunatilaka AAL, Khanna R. (-)-Hardwickiic Acid and Hautriwaic Acid Induce Antinociception via Blockade of Tetrodotoxin-Sensitive Voltage-Dependent Sodium Channels. ACS Chem Neurosci 2019; 10:1716-1728. [PMID: 30525440 DOI: 10.1021/acschemneuro.8b00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For an affliction that debilitates an estimated 50 million adults in the United States, the current chronic pain management approaches are inadequate. The Centers for Disease Control and Prevention have called for a minimization in opioid prescription and use for chronic pain conditions, and thus, it is imperative to discover alternative non-opioid based strategies. For the realization of this call, a library of natural products was screened in search of pharmacological inhibitors of both voltage-gated calcium channels and voltage-gated sodium channels, which are excellent targets due to their well-established roles in nociceptive pathways. We discovered (-)-hardwickiic acid ((-)-HDA) and hautriwaic acid (HTA) isolated from plants, Croton californicus and Eremocarpus setigerus, respectively, inhibited tetrodotoxin-sensitive sodium, but not calcium or potassium, channels in small diameter, presumptively nociceptive, dorsal root ganglion (DRG) neurons. Failure to inhibit spontaneous postsynaptic excitatory currents indicated a preferential targeting of voltage-gated sodium channels over voltage-gated calcium channels by these extracts. Neither compound was a ligand at opioid receptors. Finally, we identified the potential of both (-)-HDA and HTA to reverse chronic pain behavior in preclinical rat models of HIV-sensory neuropathy, and for (-)-HDA specifically, in chemotherapy-induced peripheral neuropathy. Our results illustrate the therapeutic potential for (-)-HDA and HTA for chronic pain management and could represent a scaffold, that, if optimized by structure-activity relationship studies, may yield novel specific sodium channel antagonists for pain relief.
Collapse
Affiliation(s)
| | | | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, P.R. China
| | | | - Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | | | | | | | - Zhiming Shan
- Department of Anesthesiology, Shenzhen People’s Hospital & Second Clinical Medical College of Jinan University, Shenzhen 518020, P.R. China
| | - May Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| | | | | | | | - Rajesh Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
39
|
Moutal A, Kalinin S, Kowal K, Marangoni N, Dupree J, Lin SX, Lis K, Lisi L, Hensley K, Khanna R, Feinstein DL. Neuronal Conditional Knockout of Collapsin Response Mediator Protein 2 Ameliorates Disease Severity in a Mouse Model of Multiple Sclerosis. ASN Neuro 2019; 11:1759091419892090. [PMID: 31795726 PMCID: PMC6893573 DOI: 10.1177/1759091419892090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 01/17/2023] Open
Abstract
We previously showed that treatment with lanthionine ketimine ethyl ester (LKE) reduced disease severity and axonal damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis and increased neuronal maturation and survival in vitro . A major target of LKE is collapsin response mediator protein 2 (CRMP2), suggesting this protein may mediate LKE actions. We now show that conditional knockout of CRMP2 from neurons using a CamK2a promoter to drive Cre recombinase expression reduces disease severity in the myelin oligodendrocyte glycoprotein (MOG)35–55 EAE model, associated with decreased spinal cord axonal damage, and less glial activation in the cerebellum, but not the spinal cord. Immunohistochemical staining and quantitative polymerase chain reaction show CRMP2 depletion from descending motor neurons in the motor cortex, but not from spinal cord neurons, suggesting that the benefits of CRMP2 depletion on EAE may stem from effects on upper motor neurons. In addition, mice in which CRMP2 S522 phosphorylation was prevented by substitution for an alanine residue also showed reduced EAE severity. These results show that modification of CRMP2 expression and phosphorylation can influence the course of EAE and suggests that treatment with CRMP2 modulators such as LKE act in part by reducing CRMP2 S522 phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kinga Lis
- University of Illinois, Chicago, IL, USA
| | - Lucia Lisi
- Universita Cattolica del Sacro Cuore, Rome,
Italy
| | - Kenneth Hensley
- Arkansas College of Osteopathic Medicine, Fort Smith,
AR, USA
| | | | - Douglas L. Feinstein
- University of Illinois, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
40
|
Phosphorylated CRMP2 Regulates Spinal Nociceptive Neurotransmission. Mol Neurobiol 2018; 56:5241-5255. [PMID: 30565051 DOI: 10.1007/s12035-018-1445-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
The collapsin response mediator protein 2 (CRMP2) has emerged as a central node in assembling nociceptive signaling complexes involving voltage-gated ion channels. Concerted actions of post-translational modifications, phosphorylation and SUMOylation, of CRMP2 contribute to regulation of pathological pain states. In the present study, we demonstrate a novel role for CRMP2 in spinal nociceptive transmission. We found that, of six possible post-translational modifications, three phosphorylation sites on CRMP2 were critical for regulating calcium influx in dorsal root ganglion sensory neurons. Of these, only CRMP2 phosphorylated at serine 522 by cyclin-dependent kinase 5 (Cdk5) contributed to spinal neurotransmission in a bidirectional manner. Accordingly, expression of a non-phosphorylatable CRMP2 (S522A) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), whereas expression of a constitutively phosphorylated CRMP2 (S522D) increased the frequency of sEPSCs. The presynaptic nature of CRMP2's actions was further confirmed by pharmacological antagonism of Cdk5-mediated CRMP2 phosphorylation with S-N-benzy-2-acetamido-3-methoxypropionamide ((S)-lacosamide; (S)-LCM) which (i) decreased sEPSC frequency, (ii) increased paired-pulse ratio, and (iii) reduced the presynaptic distribution of CaV2.2 and NaV1.7, two voltage-gated ion channels implicated in nociceptive signaling. (S)-LCM also inhibited depolarization-evoked release of the pro-nociceptive neurotransmitter calcitonin gene-related peptide (CGRP) in the spinal cord. Increased CRMP2 phosphorylation in rats with spared nerve injury (SNI) was decreased by intrathecal administration of (S)-LCM resulting in a loss of presynaptic localization of CaV2.2 and NaV1.7. Together, these findings indicate that CRMP2 regulates presynaptic excitatory neurotransmission in spinal cord and may play an important role in regulating pathological pain. Novel targeting strategies to inhibit CRMP2 phosphorylation by Cdk5 may have great potential for the treatment of chronic pain.
Collapse
|
41
|
Cuomo I, Piacentino D, Kotzalidis GD, Lionetto L, De Filippis S. Lacosamide in bipolar disorder: A 30-day comparison to a retrospective control group treated with other antiepileptics. Psychiatry Clin Neurosci 2018; 72:864-875. [PMID: 30251375 DOI: 10.1111/pcn.12784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
Abstract
AIM Bipolar disorder (BD) is often treated with anticonvulsants. Lacosamide has not been tested in BD. We assessed its effects in a hospital setting in patients with BD without epilepsy. METHODS We treated 102 consecutive hospitalized patients with acute BD with lacosamide 50-300 mg/day. We compared this sample with a retrospective sample treated with other antiepileptics (OAE). We rated patients after 3, 7, 15, and 30 days of treatment with the Brief Psychiatric Rating Scale, Young Mania Rating Scale, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, Clinical Global Impressions - Severity, and Global Assessment of Functioning. RESULTS Patients receiving lacosamide were significantly younger and had fewer mixed episodes at intake, and less substance use disorder comorbidity than those receiving OAE. Both groups showed positive effects on all measures. The two groups did not differ on any clinical measure at baseline, but from the 3rd day on, lacosamide patients fared better than OAE patients on the Young Mania Rating Scale and Clinical Global Impressions - Severity and worse on the Hamilton Anxiety Rating Scale. From the 15th day, OAE patients scored better on the Brief Psychiatric Rating Scale. Global Assessment of Functioning scores were significantly more improved in the lacosamide patients. Age, substance use disorder comorbidity, episode type, and educational level significantly affected results. No interactions were found amongst these parameters. CONCLUSION Lacosamide was effective in reducing psychopathology, mania, depression, and anxiety and in improving global functioning in patients with BD-I/II disorder in the short term, with few side-effects. Lacosamide improved mania, clinical severity, and global functioning better than OAE at doses lower than those used in epilepsy.
Collapse
Affiliation(s)
- Ilaria Cuomo
- Department of Neuropsychiatry, Clinica Von Siebenthal Neuropsychiatric Hospital, Rome, Italy.,NESMOS Department, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Daria Piacentino
- NESMOS Department, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Georgios D Kotzalidis
- NESMOS Department, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Luana Lionetto
- Department of Advanced Molecular Analysis, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Sergio De Filippis
- NESMOS Department, School of Medicine and Psychology, Sapienza University, Rome, Italy
| |
Collapse
|
42
|
|
43
|
François-Moutal L, Dustrude ET, Wang Y, Brustovetsky T, Dorame A, Ju W, Moutal A, Perez-Miller S, Brustovetsky N, Gokhale V, Khanna M, Khanna R. Inhibition of the Ubc9 E2 SUMO-conjugating enzyme-CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain. Pain 2018; 159:2115-2127. [PMID: 29847471 PMCID: PMC6150792 DOI: 10.1097/j.pain.0000000000001294] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously reported that destruction of the small ubiquitin-like modifier (SUMO) modification site in the axonal collapsin response mediator protein 2 (CRMP2) was sufficient to selectively decrease trafficking of the voltage-gated sodium channel NaV1.7 and reverse neuropathic pain. Here, we further interrogate the biophysical nature of the interaction between CRMP2 and the SUMOylation machinery, and test the hypothesis that a rationally designed CRMP2 SUMOylation motif (CSM) peptide can interrupt E2 SUMO-conjugating enzyme Ubc9-dependent modification of CRMP2 leading to a similar suppression of NaV1.7 currents. Microscale thermophoresis and amplified luminescent proximity homogeneous alpha assay revealed a low micromolar binding affinity between CRMP2 and Ubc9. A heptamer peptide harboring CRMP2's SUMO motif, also bound with similar affinity to Ubc9, disrupted the CRMP2-Ubc9 interaction in a concentration-dependent manner. Importantly, incubation of a tat-conjugated cell-penetrating peptide (t-CSM) decreased sodium currents, predominantly NaV1.7, in a model neuronal cell line. Dialysis of t-CSM peptide reduced CRMP2 SUMOylation and blocked surface trafficking of NaV1.7 in rat sensory neurons. Fluorescence dye-based imaging in rat sensory neurons demonstrated inhibition of sodium influx in the presence of t-CSM peptide; by contrast, calcium influx was unaffected. Finally, t-CSM effectively reversed persistent mechanical and thermal hypersensitivity induced by a spinal nerve injury, a model of neuropathic pain. Structural modeling has now identified a pocket-harboring CRMP2's SUMOylation motif that, when targeted through computational screening of ligands/molecules, is expected to identify small molecules that will biochemically and functionally target CRMP2's SUMOylation to reduce NaV1.7 currents and reverse neuropathic pain.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Erik T. Dustrude
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Yue Wang
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Angie Dorame
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Weina Ju
- Department of Neurology, First Hospital of Jilin University, Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
- Department of Pharmacology, First Hospital of Jilin University, Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Aubin Moutal
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Samantha Perez-Miller
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vijay Gokhale
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - May Khanna
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Rajesh Khanna
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, The University of Arizona Health Sciences, Tucson, Arizona 85724
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724
| |
Collapse
|
44
|
CRISPR/Cas9 editing of Nf1 gene identifies CRMP2 as a therapeutic target in neurofibromatosis type 1-related pain that is reversed by (S)-Lacosamide. Pain 2018; 158:2301-2319. [PMID: 28809766 DOI: 10.1097/j.pain.0000000000001002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a rare autosomal dominant disease linked to mutations of the Nf1 gene. Patients with NF1 commonly experience severe pain. Studies on mice with Nf1 haploinsufficiency have been instructive in identifying sensitization of ion channels as a possible cause underlying the heightened pain suffered by patients with NF1. However, behavioral assessments of Nf1 mice have led to uncertain conclusions about the potential causal role of Nf1 in pain. We used the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (CRISPR/Cas9) genome editing system to create and mechanistically characterize a novel rat model of NF1-related pain. Targeted intrathecal delivery of guide RNA/Cas9 nuclease plasmid in combination with a cationic polymer was used to generate allele-specific C-terminal truncation of neurofibromin, the protein encoded by the Nf1 gene. Rats with truncation of neurofibromin, showed increases in voltage-gated calcium (specifically N-type or CaV2.2) and voltage-gated sodium (particularly tetrodotoxin-sensitive) currents in dorsal root ganglion neurons. These gains-of-function resulted in increased nociceptor excitability and behavioral hyperalgesia. The cytosolic regulatory protein collapsin response mediator protein 2 (CRMP2) regulates activity of these channels, and also binds to the targeted C-terminus of neurofibromin in a tripartite complex, suggesting a possible mechanism underlying NF1 pain. Prevention of CRMP2 phosphorylation with (S)-lacosamide resulted in normalization of channel current densities, excitability, as well as of hyperalgesia following CRISPR/Cas9 truncation of neurofibromin. These studies reveal the protein partners that drive NF1 pain and suggest that CRMP2 is a key target for therapeutic intervention.
Collapse
|
45
|
Moutal A, Luo S, Largent-Milnes TM, Vanderah TW, Khanna R. Cdk5-mediated CRMP2 phosphorylation is necessary and sufficient for peripheral neuropathic pain. NEUROBIOLOGY OF PAIN 2018; 5. [PMID: 31080913 PMCID: PMC6505708 DOI: 10.1016/j.ynpai.2018.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CRMP2 phosphorylation levels are dysregulated in the SNI model of experimental neuropathy. CRMP2 phosphorylation by Cdk5 is increased at the pre-synaptic sites of the dorsal horn of the spinal cord. CRMP2 expression is necessary for neuropathic pain. Genetic targeting of CRMP2 phosphorylation by Cdk5 reverses neuropathic pain. CRMP2 phosphorylation by Cdk5 is sufficient to elicit allodynia.
Neuropathic pain results from nerve injuries that cause ectopic firing and increased nociceptive signal transmission due to activation of key membrane receptors and channels. The dysregulation of trafficking of voltage-gated ion channels is an emerging mechanism in the etiology of neuropathic pain. We identify increased phosphorylation of collapsin response mediator protein 2 (CRMP2), a protein reported to regulate presynaptic voltage-gated calcium and sodium channels. A spared nerve injury (SNI) increased expression of a cyclin dependent kinase 5 (Cdk5)-phosphorylated form of CRMP2 in the dorsal horn of the spinal cord and the dorsal root ganglia (DRG) in the ipsilateral (injured) versus the contralateral (non-injured) sites. Biochemical fractionation of spinal cord from SNI rats revealed the increase in Cdk5-mediated CRMP2 phosphorylation to be enriched to pre-synaptic sites. CRMP2 has emerged as a central node in assembling nociceptive signaling complexes. Knockdown of CRMP2 using a small interfering RNA (siRNA) reversed SNI-induced mechanical allodynia implicating CRMP2 expression as necessary for neuropathic pain. Intrathecal expression of a CRMP2 resistant to phosphorylation by Cdk5 normalized SNI-induced mechanical allodynia, whereas mimicking constitutive phosphorylation of CRMP2 resulted in induction of mechanical allodynia in naïve rats. Collectively, these results demonstrate that Cdk5-mediated CRMP2 phosphorylation is both necessary and sufficient for peripheral neuropathic pain.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Todd W Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.,Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.,Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.,The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
46
|
Abstract
Neurofibromatosis type 1 (NF1), a genetic disorder linked to inactivating mutations or a homozygous deletion of the Nf1 gene, is characterized by tumorigenesis, cognitive dysfunction, seizures, migraine, and pain. Omic studies on human NF1 tissues identified an increase in the expression of collapsin response mediator protein 2 (CRMP2), a cytosolic protein reported to regulate the trafficking and activity of presynaptic N-type voltage-gated calcium (Cav2.2) channels. Because neurofibromin, the protein product of the Nf1 gene, binds to and inhibits CRMP2, the neurofibromin-CRMP2 signaling cascade will likely affect Ca channel activity and regulate nociceptive neurotransmission and in vivo responses to noxious stimulation. Here, we investigated the function of neurofibromin-CRMP2 interaction on Cav2.2. Mapping of >275 peptides between neurofibromin and CRMP2 identified a 15-amino acid CRMP2-derived peptide that, when fused to the tat transduction domain of HIV-1, inhibited Ca influx in dorsal root ganglion neurons. This peptide mimics the negative regulation of CRMP2 activity by neurofibromin. Neurons treated with tat-CRMP2/neurofibromin regulating peptide 1 (t-CNRP1) exhibited a decreased Cav2.2 membrane localization, and uncoupling of neurofibromin-CRMP2 and CRMP2-Cav2.2 interactions. Proteomic analysis of a nanodisc-solubilized membrane protein library identified syntaxin 1A as a novel CRMP2-binding protein whose interaction with CRMP2 was strengthened in neurofibromin-depleted cells and reduced by t-CNRP1. Stimulus-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices was inhibited by t-CNRP1. Intrathecal administration of t-CNRP1 was antinociceptive in experimental models of inflammatory, postsurgical, and neuropathic pain. Our results demonstrate the utility of t-CNRP1 to inhibit CRMP2 protein-protein interactions for the potential treatment of pain.
Collapse
|
47
|
Wang Y, Huo F. Inhibition of sympathetic sprouting in CCD rats by lacosamide. Eur J Pain 2018; 22:1641-1650. [PMID: 29758584 DOI: 10.1002/ejp.1246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Early hyperexcitability activity of injured nerve/neuron is critical for developing sympathetic nerve sprouting within dorsal root ganglia (DRG) since lacosamide (LCM), an anticonvulsant, inhibits Na+ channel. The present study tried to test the potential effect of LCM on inhibiting sympathetic sprouting in vivo. METHODS Lacosamide (50 mg/kg) was daily injected intraperitoneally into rats subjected to chronic compression DRG (CCD), an animal model of neuropathic pain that exhibits sympathetic nerve sprouting, for the 1st 7 days after injury. Mechanical sensitivity was tested from day 3 to day 18 after injury, and then DRGs were removed off. Immunohistochemical staining for tyrosine hydroxylase (TH) was examined to observe sympathetic sprouting, and patch-clamp recording was performed to test the excitability and Na+ current of DRG neurons. RESULTS Early systemic LCM treatment significantly reduced TH immunoreactivity density in injured DRG, lowered the excitability level of injured DRG neurons and increased paw withdrawal threshold. These effects on reducing sympathetic sprouting, inhibiting excitability and suppressing pain behaviour were observed 10 days after the end of early LCM injection. In vitro 100 μmol/L LCM instantly reduced the excitability of CCD neurons via inhibiting Na+ current and reducing the amplitude of AP. CONCLUSIONS All the findings suggest, for the first time, that early administration of LCM inhibited sympathetic sprouting and then alleviated neuropathic pain. SIGNIFICANCE Early LCM administration inhibited sympathetic sprouting within DRG in CCD rats via reducing hyperexcitability of neurons. Early LCM administration suppressed neuropathic pain in CCD rats.
Collapse
Affiliation(s)
- Y Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| | - F Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
48
|
Moutal A, Sun L, Yang X, Li W, Cai S, Luo S, Khanna R. CRMP2-Neurofibromin Interface Drives NF1-related Pain. Neuroscience 2018; 381:79-90. [PMID: 29655575 DOI: 10.1016/j.neuroscience.2018.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022]
Abstract
An understudied symptom of the genetic disorder Neurofibromatosis type 1 (NF1) is chronic idiopathic pain. We used targeted editing of Nf1 in rats to provide direct evidence of a causal relationship between neurofibromin, the protein product of the Nf1 gene, and pain responses. Our study data identified a protein-interaction network with collapsin response meditator protein 2 (CRMP2) as a node and neurofibromin, syntaxin 1A, and the N-type voltage-gated calcium (CaV2.2) channel as interaction edges. Neurofibromin uncouples CRMP2 from syntaxin 1A. Upon loss/mutation of neurofibromin, as seen in patients with NF1, the CRMP2/Neurofibromin interaction is uncoupled, which frees CRMP2 to interact with both syntaxin 1A and CaV2.2, culminating in increased release of the pro-nociceptive neurotransmitter calcitonin gene-related peptide (CGRP). Our work also identified the CRMP2-derived peptide CNRP1, which uncoupled CRMP2's interactions with neurofibromin, syntaxin 1A, as well as CaV2.2. Here, we tested if CRISPR/Cas9-mediated editing of the Nf1 gene, which leads to functional remodeling of peripheral nociceptors through effects on the tetrodotoxin-sensitive (TTX-S) Na+ voltage-gated sodium channel (NaV1.7) and CaV2.2, could be affected using CNRP1, a peptide designed to target the CRMP2-neurofibromin interface. The data presented here shows that disrupting the CRMP2-neurofibromin interface is sufficient to reverse the dysregulations of voltage-gated ion channels and neurotransmitter release elicited by Nf1 gene editing. As a consequence of these effects, the CNRP1 peptide reversed hyperalgesia to thermal stimulation of the hindpaw observed in Nf1-edited rats. Our findings support future pharmacological targeting of the CRMP2/neurofibromin interface for NF1-related pain relief.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun 130021, China
| | - Xiaofang Yang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Wennan Li
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Song Cai
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA; Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA; Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
49
|
Abstract
Neuropathic pain represents a significant and mounting burden on patients and society at large. Management of neuropathic pain, however, is both intricate and challenging, exacerbated by the limited quantity and quality of clinically available treatments. On this stage, dysfunctional voltage-gated ion channels, especially the presynaptic N-type voltage-gated calcium channel (VGCC) (Cav2.2) and the tetrodotoxin-sensitive voltage-gated sodium channel (VGSC) (Nav1.7), underlie the pathophysiology of neuropathic pain and serve as high profile therapeutic targets. Indirect regulation of these channels holds promise for the treatment of neuropathic pain. In this review, we focus on collapsin response mediator protein 2 (CRMP2), a protein with emergent roles in voltage-gated ion channel trafficking and discuss the therapeutic potential of targetting this protein.
Collapse
|
50
|
Ibrahim MM, Patwardhan A, Gilbraith KB, Moutal A, Yang X, Chew LA, Largent-Milnes T, Malan TP, Vanderah TW, Porreca F, Khanna R. Long-lasting antinociceptive effects of green light in acute and chronic pain in rats. Pain 2017; 158:347-360. [PMID: 28092651 DOI: 10.1097/j.pain.0000000000000767] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Treatments for chronic pain are inadequate, and new options are needed. Nonpharmaceutical approaches are especially attractive with many potential advantages including safety. Light therapy has been suggested to be beneficial in certain medical conditions such as depression, but this approach remains to be explored for modulation of pain. We investigated the effects of light-emitting diodes (LEDs), in the visible spectrum, on acute sensory thresholds in naive rats as well as in experimental neuropathic pain. Rats receiving green LED light (wavelength 525 nm, 8 h/d) showed significantly increased paw withdrawal latency to a noxious thermal stimulus; this antinociceptive effect persisted for 4 days after termination of last exposure without development of tolerance. No apparent side effects were noted and motor performance was not impaired. Despite LED exposure, opaque contact lenses prevented antinociception. Rats fitted with green contact lenses exposed to room light exhibited antinociception arguing for a role of the visual system. Antinociception was not due to stress/anxiety but likely due to increased enkephalins expression in the spinal cord. Naloxone reversed the antinociception, suggesting involvement of central opioid circuits. Rostral ventromedial medulla inactivation prevented expression of light-induced antinociception suggesting engagement of descending inhibition. Green LED exposure also reversed thermal and mechanical hyperalgesia in rats with spinal nerve ligation. Pharmacological and proteomic profiling of dorsal root ganglion neurons from green LED-exposed rats identified changes in calcium channel activity, including a decrease in the N-type (CaV2.2) channel, a primary analgesic target. Thus, green LED therapy may represent a novel, nonpharmacological approach for managing pain.
Collapse
Affiliation(s)
- Mohab M Ibrahim
- Departments of Anesthesiology and.,Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Amol Patwardhan
- Departments of Anesthesiology and.,Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Aubin Moutal
- Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Xiaofang Yang
- Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Lindsey A Chew
- Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - T Philip Malan
- Departments of Anesthesiology and.,Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Todd W Vanderah
- Departments of Anesthesiology and.,Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Departments of Anesthesiology and.,Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rajesh Khanna
- Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|