1
|
Sekiguchi F, Tsubota M, Kawabata A. Sulfide and polysulfide as pronociceptive mediators: Focus on Ca v3.2 function enhancement and TRPA1 activation. J Pharmacol Sci 2024; 155:113-120. [PMID: 38797535 DOI: 10.1016/j.jphs.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Reactive sulfur species including sulfides, polysulfides and cysteine hydropersulfide play extensive roles in health and disease, which involve modification of protein functions through the interaction with metals bound to the proteins, cleavage of cysteine disulfide (S-S) bonds and S-persulfidation of cysteine residues. Sulfides over a wide micromolar concentration range enhance the activity of Cav3.2 T-type Ca2+ channels by eliminating Zn2+ bound to the channels, thereby promoting somatic and visceral pain. Cav3.2 is under inhibition by Zn2+ in physiological conditions, so that sulfides function to reboot Cav3.2 from Zn2+ inhibition and increase the excitability of nociceptors. On the other hand, polysulfides generated from sulfides activate TRPA1 channels via cysteine S-persulfidation, thereby facilitating somatic, but not visceral, pain. Thus, Cav3.2 function enhancement by sulfides and TRPA1 activation by polysulfides, synergistically accelerate somatic pain signals. The increased activity of the sulfide/Cav3.2 system, in particular, appears to have a great impact on pathological pain, and may thus serve as a therapeutic target for treatment of neuropathic and inflammatory pain including visceral pain.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
Pozzi E, Terribile G, Cherchi L, Di Girolamo S, Sancini G, Alberti P. Ion Channel and Transporter Involvement in Chemotherapy-Induced Peripheral Neurotoxicity. Int J Mol Sci 2024; 25:6552. [PMID: 38928257 PMCID: PMC11203899 DOI: 10.3390/ijms25126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The peripheral nervous system can encounter alterations due to exposure to some of the most commonly used anticancer drugs (platinum drugs, taxanes, vinca alkaloids, proteasome inhibitors, thalidomide), the so-called chemotherapy-induced peripheral neurotoxicity (CIPN). CIPN can be long-lasting or even permanent, and it is detrimental for the quality of life of cancer survivors, being associated with persistent disturbances such as sensory loss and neuropathic pain at limb extremities due to a mostly sensory axonal polyneuropathy/neuronopathy. In the state of the art, there is no efficacious preventive/curative treatment for this condition. Among the reasons for this unmet clinical and scientific need, there is an uncomplete knowledge of the pathogenetic mechanisms. Ion channels and transporters are pivotal elements in both the central and peripheral nervous system, and there is a growing body of literature suggesting that they might play a role in CIPN development. In this review, we first describe the biophysical properties of these targets and then report existing data for the involvement of ion channels and transporters in CIPN, thus paving the way for new approaches/druggable targets to cure and/or prevent CIPN.
Collapse
Affiliation(s)
- Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Giulia Terribile
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.T.); (G.S.)
| | - Laura Cherchi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Sara Di Girolamo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Giulio Sancini
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.T.); (G.S.)
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
3
|
Ali MY, Gadotti VM, Huang S, Garcia-Caballero A, Antunes FTT, Jung HA, Choi JS, Zamponi GW. Icariside II, a Prenyl-Flavonol, Alleviates Inflammatory and Neuropathic Pain by Inhibiting T-Type Calcium Channels and USP5-Cav3.2 Interactions. ACS Chem Neurosci 2023; 14:1859-1869. [PMID: 37116219 DOI: 10.1021/acschemneuro.3c00083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Cav3.2 channels play an important role in the afferent nociceptive pathway, which is responsible for both physiological and pathological pain transmission. Cav3.2 channels are upregulated during neuropathic pain or peripheral inflammation in part due to an increased association with the deubiquitinase USP5. In this study, we investigated nine naturally occurring flavonoid derivatives which we tested for their abilities to inhibit transiently expressed Cav3.2 channels and their interactions with USP5. Icariside II (ICA-II), one of the flavonols studied, inhibited the biochemical interactions between USP5 and Cav3.2 and concomitantly and effectively blocked Cav3.2 channels. Molecular docking analysis predicts that ICA-II binds to the cUBP domain and the Cav3.2 interaction region. In addition, ICA-II was predicted to interact with residues in close proximity to the Cav3.2 channel's fenestrations, thus accounting for the observed blocking activity. In mice with inflammatory and neuropathic pain, ICA-II inhibited both phases of the formalin-induced nocifensive responses and abolished thermal hyperalgesia induced by injection of complete Freund's adjuvant (CFA) into the hind paw. Furthermore, ICA-II produced significant and long-lasting thermal anti-hyperalgesia in female mice, whereas Cav3.2 null mice were resistant to the action of ICA-II. Altogether, our data show that ICA-II has analgesic activity via an action on Cav3.2 channels.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1, Canada
- Zymedyne Therapeutics, Calgary, AB T2N4G4, Canada
| | - Vinicius M Gadotti
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1, Canada
- Zymedyne Therapeutics, Calgary, AB T2N4G4, Canada
| | - Sun Huang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Agustin Garcia-Caballero
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
- Zymedyne Therapeutics, Calgary, AB T2N4G4, Canada
| | - Flavia T T Antunes
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1, Canada
| |
Collapse
|
4
|
A Study on THE Mechanism of Electroacupuncture to Alleviate Visceral Pain and NGF Expression. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3755439. [PMID: 36275969 PMCID: PMC9586762 DOI: 10.1155/2022/3755439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
Visceral pain is unbearable, and natural methods are needed to relieve it. Electroacupuncture is a relatively new technique that helps relieve visceral pain by improving blood circulation and providing energy to clogged parts of the body. However, its analgesic effect and mechanism in colorectal pain are still unknown. In this study, the visceral pain models of electroacupuncture in rats were compared and discussed, using nanocomponents to stimulate the expression and mechanism of the nerve growth factor in colorectal pain and electroacupuncture and to observe the expression and mechanism of nerve growth factor in visceral pain relief rats induced by nanocomponents and electroacupuncture. The results show that nanocomponents can effectively relieve visceral pain under the action of electroacupuncture. NGF can activate endogenous proliferation, migration, differentiation, and integration. NSC can promote nerve regeneration and recovery after injury.
Collapse
|
5
|
Discovery of pimozide derivatives as novel T-type calcium channel inhibitors with little binding affinity to dopamine D2 receptors for treatment of somatic and visceral pain. Eur J Med Chem 2022; 243:114716. [DOI: 10.1016/j.ejmech.2022.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
|
6
|
Zhi YR, Cao F, Su XJ, Gao SW, Zheng HN, Jiang JY, Su L, Liu J, Wang Y, Zhang Y, Zhang Y. The T-Type Calcium Channel Cav3.2 in Somatostatin Interneurons in Spinal Dorsal Horn Participates in Mechanosensation and Mechanical Allodynia in Mice. Front Cell Neurosci 2022; 16:875726. [PMID: 35465611 PMCID: PMC9024096 DOI: 10.3389/fncel.2022.875726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Somatostatin-positive (SOM+) neurons have been proposed as one of the key populations of excitatory interneurons in the spinal dorsal horn involved in mechanical pain. However, the molecular mechanism for their role in pain modulation remains unknown. Here, we showed that the T-type calcium channel Cav3.2 was highly expressed in spinal SOM+ interneurons. Colocalization of Cacna1h (which codes for Cav3.2) and SOMtdTomato was observed in the in situ hybridization studies. Fluorescence-activated cell sorting of SOMtdTomato cells in spinal dorsal horn also proved a high expression of Cacna1h in SOM+ neurons. Behaviorally, virus-mediated knockdown of Cacna1h in spinal SOM+ neurons reduced the sensitivity to light touch and responsiveness to noxious mechanical stimuli in naïve mice. Furthermore, knockdown of Cacna1h in spinal SOM+ neurons attenuated thermal hyperalgesia and dynamic allodynia in the complete Freund’s adjuvant-induced inflammatory pain model, and reduced both dynamic and static allodynia in a neuropathic pain model of spared nerve injury. Mechanistically, a decrease in the percentage of neurons with Aβ-eEPSCs and Aβ-eAPs in superficial dorsal horn was observed after Cacna1h knockdown in spinal SOM+ neurons. Altogether, our results proved a crucial role of Cav3.2 in spinal SOM+ neurons in mechanosensation under basal conditions and in mechanical allodynia under pathological pain conditions. This work reveals a molecular basis for SOM+ neurons in transmitting mechanical pain and shows a functional role of Cav3.2 in tactile and pain processing at the level of spinal cord in addition to its well-established peripheral role.
Collapse
Affiliation(s)
- Yu-Ru Zhi
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Feng Cao
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Xiao-Jing Su
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shu-Wen Gao
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Hao-Nan Zheng
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Jin-Yan Jiang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yan Zhang
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Ying Zhang,
| | - Ying Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
- Yan Zhang,
| |
Collapse
|
7
|
Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms22168733. [PMID: 34445439 PMCID: PMC8396047 DOI: 10.3390/ijms22168733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Paclitaxel is an essential drug in the chemotherapy of ovarian, non-small cell lung, breast, gastric, endometrial, and pancreatic cancers. However, it frequently causes peripheral neuropathy as a dose-limiting factor. Animal models of paclitaxel-induced peripheral neuropathy (PIPN) have been established. The mechanisms of PIPN development have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory PIPN effects. This review summarizes the basic and clinical evidence for therapeutic or prophylactic effects for PIPN. In pre-clinical research, many reports exist of neuropathy inhibitors that target oxidative stress, inflammatory response, ion channels, transient receptor potential (TRP) channels, cannabinoid receptors, and the monoamine nervous system. Alternatively, very few drugs have demonstrated PIPN efficacy in clinical trials. Thus, enhancing translational research to translate pre-clinical research into clinical research is important.
Collapse
|
8
|
A modulator of the low-voltage-activated T-type calcium channel that reverses HIV glycoprotein 120-, paclitaxel-, and spinal nerve ligation-induced peripheral neuropathies. Pain 2021; 161:2551-2570. [PMID: 32541387 DOI: 10.1097/j.pain.0000000000001955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The voltage-gated calcium channels CaV3.1-3.3 constitute the T-type subfamily, whose dysfunctions are associated with epilepsy, psychiatric disorders, and chronic pain. The unique properties of low-voltage-activation, faster inactivation, and slower deactivation of these channels support their role in modulation of cellular excitability and low-threshold firing. Thus, selective T-type calcium channel antagonists are highly sought after. Here, we explored Ugi-azide multicomponent reaction products to identify compounds targeting T-type calcium channel. Of the 46 compounds tested, an analog of benzimidazolonepiperidine-5bk (1-{1-[(R)-{1-[(1S)-1-phenylethyl]-1H-1,2,3,4-tetrazol-5-yl}(thiophen-3-yl)methyl]piperidin-4-yl}-2,3-dihydro-1H-1,3-benzodiazol-2-one) modulated depolarization-induced calcium influx in rat sensory neurons. Modulation of T-type calcium channels by 5bk was further confirmed in whole-cell patch clamp assays in dorsal root ganglion (DRG) neurons, where pharmacological isolation of T-type currents led to a time- and concentration-dependent regulation with a low micromolar IC50. Lack of an acute effect of 5bk argues against a direct action on T-type channels. Genetic knockdown revealed CaV3.2 to be the isoform preferentially modulated by 5bk. High voltage-gated calcium, as well as tetrodotoxin-sensitive and -resistant sodium, channels were unaffected by 5bk. 5bk inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, 5bk did not bind human mu, delta, or kappa opioid receptors. 5bk reversed mechanical allodynia in rat models of HIV-associated neuropathy, chemotherapy-induced peripheral neuropathy, and spinal nerve ligation-induced neuropathy, without effects on locomotion or anxiety. Thus, 5bk represents a novel T-type modulator that could be used to develop nonaddictive pain therapeutics.
Collapse
|
9
|
Karson A, Utkan T, Şahin TD, Balcı F, Arkan S, Ateş N. Etanercept rescues cognitive deficits, depression-like symptoms, and spike-wave discharge incidence in WAG/Rij rat model of absence epilepsy. Epilepsy Behav 2021; 115:107532. [PMID: 33444990 DOI: 10.1016/j.yebeh.2020.107532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 10/22/2022]
Abstract
Pro-inflammatory cytokines have been shown to be associated with the development of seizures in the WAG/Rij rat model of absence epilepsy. Importantly, WAG/Rij rats also exhibit cognitive deficits and depression-like behaviors. It is possible that pro-inflammatory cytokines mediate these comorbid conditions of absence epilepsy given their well-established effects on cognition and affective responses. The current study investigated the potential therapeutic effect of etanercept (tumor necrosis factor inhibitor) on cognitive impairment, depression-like behavior, and spike-wave discharges (SWDs) typically observed in the WAG/Rij rats. Eight-month-old male WAG/Rij rats and Wistar controls were tested in Morris water maze (MWM), passive avoidance (PA), forced swimming, sucrose preference, and locomotor activity tests, and electroencephalogram (EEG) recordings were taken from a separate group of WAG/Rij rats after 8 weeks of etanercept or vehicle treatment. Consistent with earlier work, WAG/Rij rats exhibited cognitive deficits and depression-like behavior. From these, the cognitive deficits and despair-like behavior were rescued by etanercept administration, which also reduced the frequency of SWDs without affecting their duration. Our results support the hypothesis that pro-inflammatory cytokines mediate the absence seizures and comorbid symptoms of absence epilepsy.
Collapse
Affiliation(s)
- Ayşe Karson
- Kocaeli University, School of Medicine, Department of Physiology, Turkey.
| | - Tijen Utkan
- Kocaeli University, School of Medicine, Department of Pharmacology, Turkey.
| | | | - Fuat Balcı
- Koç University, Department of Psychology & Research Center for Translational Medicine, Turkey
| | - Sertan Arkan
- Kocaeli University, School of Medicine, Department of Physiology, Turkey
| | - Nurbay Ateş
- Kocaeli University, School of Medicine, Department of Physiology, Turkey
| |
Collapse
|
10
|
Essential role of Ca v3.2 T-type calcium channels in butyrate-induced colonic pain and nociceptor hypersensitivity in mice. Eur J Pharmacol 2020; 887:173576. [PMID: 32949597 DOI: 10.1016/j.ejphar.2020.173576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 02/01/2023]
Abstract
Given the role of Cav3.2 isoform among T-type Ca2+ channels (T-channels) in somatic and visceral nociceptive processing, we analyzed the contribution of Cav3.2 to butyrate-induced colonic pain and nociceptor hypersensitivity in mice, to evaluate whether Cav3.2 could serve as a target for treatment of visceral pain in irritable bowel syndrome (IBS) patients. Mice of ddY strain, and wild-type and Cav3.2-knockout mice of a C57BL/6J background received intracolonic administration of butyrate twice a day for 3 days. Referred hyperalgesia in the lower abdomen was assessed by von Frey test, and colonic hypersensitivity to distension by a volume load or chemicals was evaluated by counting nociceptive behaviors. Spinal phosphorylated ERK was detected by immunohistochemistry. Cav3.2 knockdown was accomplished by intrathecal injection of antisense oligodeoxynucleotides. Butyrate treatment caused referred hyperalgesia and colonic hypersensitivity to distension in ddY mice, which was abolished by T-channel blockers and/or Cav3.2 knockdown. Butyrate also increased the number of spinal phosphorylated ERK-positive neurons following colonic distension in the anesthetized ddY mice. The butyrate-treated ddY mice also exhibited T-channel-dependent colonic hypersensitivity to intracolonic Na2S, known to enhance Cav3.2 activity, and TRPV1, TRPA1 or proteinase-activated receptor 2 (PAR2) agonists. Wild-type, but not Cav3.2-knockout, mice of a C57BL/6J background, after treated with butyrate, mimicked the T-channel-dependent referred hyperalgesia and colonic hypersensitivity in butyrate-treated ddY mice. Our study provides definitive evidence for an essential role of Cav3.2 in the butyrate-induced colonic pain and nociceptor hypersensitivity, which might serve as a target for treatment of visceral pain in IBS patients.
Collapse
|
11
|
Tomita S, Sekiguchi F, Kasanami Y, Naoe K, Tsubota M, Wake H, Nishibori M, Kawabata A. Ca v3.2 overexpression in L4 dorsal root ganglion neurons after L5 spinal nerve cutting involves Egr-1, USP5 and HMGB1 in rats: An emerging signaling pathway for neuropathic pain. Eur J Pharmacol 2020; 888:173587. [PMID: 32971090 DOI: 10.1016/j.ejphar.2020.173587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Overexpression of Cav3.2 T-type Ca2+ channels in L4 dorsal root ganglion (DRG) participates in neuropathic pain after L5 spinal nerve cutting (L5SNC) in rats. The L5SNC-induced neuropathic pain also involves high mobility group box 1 (HMGB1), a damage-associated molecular pattern protein, and its target, the receptor for advanced glycation end-products (RAGE). We thus studied the molecular mechanisms for the L5SNC-induced Cav3.2 overexpression as well as neuropathic pain in rats by focusing on; 1) possible involvement of early growth response 1 (Egr-1), known to regulate transcriptional expression of Cav3.2, and ubiquitin-specific protease 5 (USP5) that protects Cav3.2 from proteasomal degradation, and 2) possible role of HMGB1/RAGE as an upstream signal. Protein levels of Cav3.2 as well as Egr-1 in L4 DRG significantly increased in the early (day 6) and persistent (day 14) phases of neuropathy after L5SNC, while USP5 protein in L4 DRG did not increase on day 6, but day 14. An anti-HMGB1-neutralizing antibody or a low molecular weight heparin, a RAGE antagonist, prevented the development of neuropathic pain and upregulation of Egr-1 and Cav3.2 in L4 DRG after L5SNC. L5SNC increased macrophages accumulating in the sciatic nerves, and the cytoplasm/nuclear ratio of immunoreactive HMGB1 in those macrophages. Our findings suggest that L5SNC-induced Cav3.2 overexpression in L4 DRG and neuropathic pain involves Egr-1 upregulation downstream of the macrophage-derived HMGB1/RAGE pathway, and that the delayed upregulation of USP5 might contribute to the persistent Cav3.2 overexpression and neuropathy.
Collapse
Affiliation(s)
- Shiori Tomita
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Yoshihito Kasanami
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Katsuki Naoe
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Known As Kinki University), 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
12
|
Tsubota M, Fukuda R, Hayashi Y, Miyazaki T, Ueda S, Yamashita R, Koike N, Sekiguchi F, Wake H, Wakatsuki S, Ujiie Y, Araki T, Nishibori M, Kawabata A. Role of non-macrophage cell-derived HMGB1 in oxaliplatin-induced peripheral neuropathy and its prevention by the thrombin/thrombomodulin system in rodents: negative impact of anticoagulants. J Neuroinflammation 2019; 16:199. [PMID: 31666085 PMCID: PMC6822350 DOI: 10.1186/s12974-019-1581-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Background Macrophage-derived high mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) protein, plays a key role in the development of chemotherapy-induced peripheral neuropathy (CIPN) caused by paclitaxel in rodents. Endothelial thrombomodulin (TM) promotes thrombin-induced degradation of HMGB1, and TMα, a recombinant human soluble TM, abolishes peripheral HMGB1-induced allodynia in mice. We thus examined whether HMGB1, particularly derived from macrophages, contributes to oxaliplatin-induced neuropathy in mice and analyzed the anti-neuropathic activity of the TM/thrombin system. Methods CIPN models were created by the administration of oxaliplatin in mice and rats, and the nociceptive threshold was assessed by von Frey test or paw pressure test. Macrophage-like RAW264.7 cells were stimulated with oxaliplatin in vitro. Proteins were detected and/or quantified by Western blotting, immunostaining, or enzyme-linked immunosorbent assay. Results Intraperitoneal administration of an anti-HMGB1-neutralizing antibody (AB) at 1 mg/kg prevented the oxaliplatin-induced allodynia in mice and rats. Antagonists of Toll-like receptor (TLR) 4, receptor for advanced glycation end products (RAGE) and CXCR4 among the HMGB1-targeted pro-nociceptive receptors, also mimicked the anti-neuropathic activity of AB in mice. Macrophage accumulation in the sciatic nerve was observed in mice treated with paclitaxel, but not oxaliplatin, and neither macrophage depletion nor inhibitors of macrophage activation affected oxaliplatin-induced allodynia. Oxaliplatin was 10- to 100-fold less potent than paclitaxel in releasing HMGB1 from macrophage-like RAW264.7 cells. Like AB, TMα at 10 mg/kg prevented the oxaliplatin-induced allodynia in mice as well as rats, an effect abolished by argatroban at 10 mg/kg, a thrombin inhibitor. The anti-neuropathic activity of TMα in oxaliplatin-treated mice was suppressed by oral anticoagulants such as warfarin at 1 mg/kg, dabigatran at 75 mg/kg, and rivaroxaban at 10 mg/kg, but not antiplatelet agents such as aspirin at 50 mg/kg and clopidogrel at 10 mg/kg. Repeated administration of the anticoagulants gradually developed neuropathic allodynia and elevated plasma HMGB1 levels in mice treated with a subeffective dose of oxaliplatin. Conclusions Our data thus suggests a causative role of HMGB1 derived from non-macrophage cells in oxaliplatin-induced peripheral neuropathy and a thrombin-dependent anti-neuropathic activity of exogenous TMα and, most probably, endogenous TM.
Collapse
Affiliation(s)
- Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), 3-4-1 Kowakae, Higashi-osaka, 577-8502, Japan
| | - Ryotaro Fukuda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), 3-4-1 Kowakae, Higashi-osaka, 577-8502, Japan
| | - Yusuke Hayashi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), 3-4-1 Kowakae, Higashi-osaka, 577-8502, Japan
| | - Takaya Miyazaki
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), 3-4-1 Kowakae, Higashi-osaka, 577-8502, Japan
| | - Shin Ueda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), 3-4-1 Kowakae, Higashi-osaka, 577-8502, Japan
| | - Rika Yamashita
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), 3-4-1 Kowakae, Higashi-osaka, 577-8502, Japan
| | - Nene Koike
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), 3-4-1 Kowakae, Higashi-osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), 3-4-1 Kowakae, Higashi-osaka, 577-8502, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Yuka Ujiie
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), 3-4-1 Kowakae, Higashi-osaka, 577-8502, Japan.
| |
Collapse
|
13
|
Nguyen HD, Okada T, Sekiguchi F, Tsubota M, Nishikawa H, Kawabata A, Toyooka N. Prenylflavanones as Novel T-Type Calcium Channel Blockers Useful for Pain Therapy. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19873441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Prenylated flavonoids have attracted much attention due to their promising and diverse bioactivities on multitarget tissues. To the best of our knowledge, our recent studies demonstrated first that (2 S)-6-prenylnaringenin (6-PNG), a hop component, blocks Cav3.2 T-type calcium channels (T-channels) and alleviates neuropathic and visceral pain with little side effects; it also indicated first that other natural prenylflavanones (PFVNs), such as sophoraflavanone G and (2 S)-8-PNG, or synthetic 6-PFVNs including (2 R/S)-6-PNG and its derivatives are capable of blocking T-channels and useful for pain therapy. Through the structure-activity relationship studies on the synthetic 6-PFVNs, we identified 6-(3-ethylpent-2-enyl)-5,7-dihydroxy-2-(2-hydroxyphenyl)chroman-4-one (8j or KTt-45) as the most potent blocker of Cav3.2 T-channels. It is interesting to recognize a prenylated flavonoid, belonging to other sub-classes, as a novel T-channel blocker. Therefore, this article will review some of our recent studies to introduce a new branch to researchers studying on prenylated flavonoids.
Collapse
Affiliation(s)
- Huy Du Nguyen
- Graduate School of Innovative Life Science, University of Toyama, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Hiroyuki Nishikawa
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Japan
- Graduate School of Science and Engineering, University of Toyama, Japan
| |
Collapse
|
14
|
Matsui K, Tsubota M, Fukushi S, Koike N, Masuda H, Kasanami Y, Miyazaki T, Sekiguchi F, Ohkubo T, Yoshida S, Mukai Y, Oita A, Takada M, Kawabata A. Genetic deletion of Ca v3.2 T-type calcium channels abolishes H 2S-dependent somatic and visceral pain signaling in C57BL/6 mice. J Pharmacol Sci 2019; 140:310-312. [PMID: 31492577 DOI: 10.1016/j.jphs.2019.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022] Open
Abstract
We tested whether genetic deletion of Cav3.2 T-type Ca2+ channels abolishes hydrogen sulfide (H2S)-mediated pain signals in mice. In Cav3.2-expressing HEK293 cells, Na2S, an H2S donor, at 100 μM clearly increased Ba2+ currents, as assessed by whole-cell patch-clamp recordings. In wild-type C57BL/6 mice, intraplantar and intracolonic administration of Na2S evoked mechanical allodynia and visceral nociceptive behavior, respectively, which were abolished by TTA-A2, a T-type Ca2+ channel blocker. In Cav3.2-knockout mice of a C57BL/6 background, Na2S caused neither somatic allodynia nor colonic nociception. Our study thus provides definitive evidence for an essential role of Cav3.2 in H2S-dependent somatic and colonic pain.
Collapse
Affiliation(s)
- Kazuki Matsui
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan; Department of Pharmacy, National Cerebral and Cardiovascular Center, Suita, 565-8565, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Saaya Fukushi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Nene Koike
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Hiroshi Masuda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Yoshihito Kasanami
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Takaya Miyazaki
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Tsuyako Ohkubo
- Division of Basic Medical Sciences and Fundamental Nursing, Faculty of Nursing, Fukuoka Nursing College, Fukuoka, 814-0193, Japan
| | - Shigeru Yoshida
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Yutaro Mukai
- Department of Pharmacy, National Cerebral and Cardiovascular Center, Suita, 565-8565, Japan
| | - Akira Oita
- Department of Pharmacy, National Cerebral and Cardiovascular Center, Suita, 565-8565, Japan
| | - Mitsutaka Takada
- Division of Clinical Drug Informatics, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
15
|
Matsuda S, Nishikawa H, Fukatsu A, Kurokawa Y, Tsubota M, Sekiguchi F, Tokuyama S, Kawabata A. NNC 55-0396, a T-type calcium channel blocker, protects against the brain injury induced by middle cerebral artery occlusion and reperfusion in mice. J Pharmacol Sci 2019; 140:193-196. [PMID: 31235271 DOI: 10.1016/j.jphs.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 12/01/2022] Open
Abstract
We tested whether NNC 55-0396 (NNC), a T-type calcium channel (T-channel) blocker, reduces the brain injury caused by middle cerebral artery occlusion and reperfusion (MCAO/R) in mice. NNC, administered i.c.v. before the occlusion, greatly reduced the MCAO/R-induced brain infarct and neurological dysfunctions, although it, given toward the end of occlusion, was less effective. Systemic administration of NNC before the occlusion also attenuated the infarct and neurological dysfunctions. Our data imply that blood-brain-barrier-permeable T-channel blockers such as NNC are capable of reducing MCAO/R-induced brain damage, and that T-channels are involved in neuronal damage induced by ischemia rather than reperfusion.
Collapse
Affiliation(s)
- Sachi Matsuda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Hiroyuki Nishikawa
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Anna Fukatsu
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Yuko Kurokawa
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly Kinki University), Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
16
|
Bellampalli SS, Ji Y, Moutal A, Cai S, Wijeratne EMK, Gandini MA, Yu J, Chefdeville A, Dorame A, Chew LA, Madura CL, Luo S, Molnar G, Khanna M, Streicher JM, Zamponi GW, Gunatilaka AAL, Khanna R. Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury-associated peripheral sensory neuropathy via block of N- and T-type calcium channels. Pain 2019; 160:117-135. [PMID: 30169422 DOI: 10.1097/j.pain.0000000000001385] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Federal Pain Research Strategy recommended development of nonopioid analgesics as a top priority in its strategic plan to address the significant public health crisis and individual burden of chronic pain faced by >100 million Americans. Motivated by this challenge, a natural product extracts library was screened and identified a plant extract that targets activity of voltage-gated calcium channels. This profile is of interest as a potential treatment for neuropathic pain. The active extract derived from the desert lavender plant native to southwestern United States, when subjected to bioassay-guided fractionation, afforded 3 compounds identified as pentacyclic triterpenoids, betulinic acid (BA), oleanolic acid, and ursolic acid. Betulinic acid inhibited depolarization-evoked calcium influx in dorsal root ganglion (DRG) neurons predominantly through targeting low-voltage-gated (Cav3 or T-type) and CaV2.2 (N-type) calcium channels. Voltage-clamp electrophysiology experiments revealed a reduction of Ca, but not Na, currents in sensory neurons after BA exposure. Betulinic acid inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, BA did not engage human mu, delta, or kappa opioid receptors. Intrathecal administration of BA reversed mechanical allodynia in rat models of chemotherapy-induced peripheral neuropathy and HIV-associated peripheral sensory neuropathy as well as a mouse model of partial sciatic nerve ligation without effects on locomotion. The broad-spectrum biological and medicinal properties reported, including anti-HIV and anticancer activities of BA and its derivatives, position this plant-derived small molecule natural product as a potential nonopioid therapy for management of chronic pain.
Collapse
Affiliation(s)
- Shreya S Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Yingshi Ji
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Maria A Gandini
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lindsey A Chew
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States.,Department of Neuroscience Graduate Interdisciplinary Program, College of Medicine, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
17
|
Visa A, Shaikh S, Alza L, Herreros J, Cantí C. The Hard-To-Close Window of T-Type Calcium Channels. Trends Mol Med 2019; 25:571-584. [PMID: 31031178 DOI: 10.1016/j.molmed.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 01/03/2023]
Abstract
T-Type calcium channels (TTCCs) are key regulators of membrane excitability, which is the reason why TTCC pharmacology is subject to intensive research in the neurological and cardiovascular fields. TTCCs also play a role in cancer physiology, and pharmacological blockers such as tetralols and dihydroquinazolines (DHQs) reduce the viability of cancer cells in vitro and slow tumor growth in murine xenografts. However, the available compounds are better suited to blocking TTCCs in excitable membranes rather than TTCCs contributing window currents at steady potentials. Consistently, tetralols and dihydroquinazolines exhibit cytostatic/cytotoxic activities at higher concentrations than those required for TTCC blockade, which may involve off-target effects. Gene silencing experiments highlight the targetability of TTCCs, but further pharmacological research is required for TTCC blockade to become a chemotherapeutic option.
Collapse
Affiliation(s)
- Anna Visa
- Laboratory of Calcium Cell Signaling, IRBLleida-Universitat de Lleida, Rovira Roure, 80, 25198-Lleida, Spain
| | - Soni Shaikh
- Laboratory of Calcium Cell Signaling, IRBLleida-Universitat de Lleida, Rovira Roure, 80, 25198-Lleida, Spain
| | - Lía Alza
- Laboratory of Calcium Cell Signaling, IRBLleida-Universitat de Lleida, Rovira Roure, 80, 25198-Lleida, Spain
| | - Judit Herreros
- Laboratory of Calcium Cell Signaling, IRBLleida-Universitat de Lleida, Rovira Roure, 80, 25198-Lleida, Spain
| | - Carles Cantí
- Laboratory of Calcium Cell Signaling, IRBLleida-Universitat de Lleida, Rovira Roure, 80, 25198-Lleida, Spain.
| |
Collapse
|
18
|
Tsubota M, Uebo K, Miki K, Sekiguchi F, Ishigami A, Kawabata A. Dietary ascorbic acid restriction in GNL/SMP30-knockout mice unveils the role of ascorbic acid in regulation of somatic and visceral pain sensitivity. Biochem Biophys Res Commun 2019; 511:705-710. [PMID: 30827506 DOI: 10.1016/j.bbrc.2019.02.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Cav3.2 T-type Ca2+ channels are expressed in the primary afferents and play a pronociceptive role. The activity of Cav3.2 is enhanced by H2S, a gasotransmitter, and suppressed by ascorbic acid (vitamin C) through metal-catalyzed oxidation of the Zn2+-binding His191 in Cav3.2. Since rodents, but not humans, are capable of synthesizing ascorbic acid, the present study examined the role of ascorbic acid in nociceptive processing, using the mice lacking GNL/SMP30, an enzyme essential for ascorbic acid biosynthesis. Intraplantar and intracolonic administration of NaHS, an H2S donor, caused somatic allodynia and referred hyperalgesia, respectively, and repeated treatment with paclitaxel produced neuropathic allodynia in wild-type mice, all of which were suppressed by ascorbic acid or T-type Ca2+ channel blockers. Dietary ascorbic acid restriction caused dramatic decreases in plasma and tissue ascorbic acid levels in GNL/SMP30-knockout, but not wild-type, mice. The ascorbic acid restriction enhanced the somatic and visceral hypersensitivity following intraplantar and intracolonic NaHS, respectively, and paclitaxel-induced neuropathy in GNL/SMP30-knockout mice, while it had no such effect in wild-type mice. Together, our data unveil the critical role of ascorbic acid in regulating somatic and visceral pain sensitivity and support accumulating clinical evidence for the usefulness of ascorbic acid in pain management.
Collapse
Affiliation(s)
- Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan
| | - Kenta Uebo
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan
| | - Koki Miki
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan
| | - Akihiko Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
19
|
Tsubota M, Kawabata A. [Regulation of Ca v3.2-mediated pain signals by hydrogen sulfide]. Nihon Yakurigaku Zasshi 2019; 154:128-132. [PMID: 31527362 DOI: 10.1254/fpj.154.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, is generated from L-cysteine by 3 distinct enzymes including cystathionine-γ-lyase (CSE), and targets multiple molecules, thereby playing various roles in health and disease. H2S triggers or accelerates somatic pain and visceral nociceptive signals in the pancreas, colon and bladder by enhancing the activity of Cav3.2 T-type calcium channels. H2S also activates TRPA1, which participates in H2S-induced somatic pain signaling. However, Cav3.2 predominantly mediates colonic nociception by H2S, because genetic deletion of TRPA1 does not reduce H2S-induced colonic pain. The functional upregulation of the CSE/H2S/Cav3.2 system is involved in neuropathic pain and visceral pain accompanying pancreatitis and cystitis. Cav3.2 also appears to participate in irritable bowel syndrome (IBS), although the role of endogenous H2S generation by CSE in IBS is still open to question. In this review, we describe how H2S regulates pain signals, particularly by interacting with Cav3.2.
Collapse
Affiliation(s)
- Maho Tsubota
- Division of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University
| | - Atsufumi Kawabata
- Division of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University
| |
Collapse
|
20
|
Tomita S, Sekiguchi F, Deguchi T, Miyazaki T, Ikeda Y, Tsubota M, Yoshida S, Nguyen HD, Okada T, Toyooka N, Kawabata A. Critical role of Ca v3.2 T-type calcium channels in the peripheral neuropathy induced by bortezomib, a proteasome-inhibiting chemotherapeutic agent, in mice. Toxicology 2018; 413:33-39. [PMID: 30552955 DOI: 10.1016/j.tox.2018.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023]
Abstract
Bortezomib, a first-line agent for treatment of multiple myeloma, exhibits anticancer activity through proteasome inhibition. However, bortezomib-induced peripheral neuropathy (BIPN) is one of the most serious side effects. Since decreased proteasomal degradation of Cav3.2 T-type calcium channels in the primary afferents is involved in persistent pain, we investigated whether BIPN involves increased protein levels of Cav3.2 in mice. Six repeated i.p. administrations of bortezomib for 12 days developed persistent mechanical allodynia. Systemic administration of novel T-type calcium channel blockers, (2R/S)-6-prenylnaringenin and KTt-45, and of TTA-A2, the well-known blocker, reversed the BIPN. Ascorbic acid, known to block Cav3.2, but not Cav3.1 or 3.3, and silencing of Cav3.2 gene also suppressed BIPN. Protein levels of Cav3.2 in the dorsal root ganglion (DRG) at L4-L6 levels increased throughout days 1-21 after the onset of bortezomib treatment. Protein levels of USP5, a deubiquitinating enzyme that specifically inhibits proteasomal degradation of Cav3.2, increased in DRG on days 3-21, but not day 1, in bortezomib-treated mice. In DRG-derived ND7/23 cells, bortezomib increased protein levels of Cav3.2 and T-channel-dependent currents, as assessed by a patch-clamp method, but did not upregulate expression of Cav3.2 mRNA or USP5 protein. MG-132, another proteasome inhibitor, also increased Cav3.2 protein levels in the cultured cells. Given the previous evidence for USP5 induction following nociceptor excitation, our data suggest that BIPN involves the increased protein levels of Cav3.2 in nociceptors through inhibition of proteasomal degradation of Cav3.2 by bortezomib itself and then by USP5 that is upregulated probably in an activity-dependent manner.
Collapse
Affiliation(s)
- Shiori Tomita
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8802, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8802, Japan
| | - Tomoyo Deguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8802, Japan
| | - Takaya Miyazaki
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8802, Japan
| | - Yuya Ikeda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8802, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8802, Japan
| | - Shigeru Yoshida
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Huy Du Nguyen
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-855, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-855, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-855, Japan; Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formerly known as Kinki University), Higashi-Osaka, 577-8802, Japan.
| |
Collapse
|
21
|
Joksimovic SL, Joksimovic SM, Tesic V, García-Caballero A, Feseha S, Zamponi GW, Jevtovic-Todorovic V, Todorovic SM. Selective inhibition of Ca V3.2 channels reverses hyperexcitability of peripheral nociceptors and alleviates postsurgical pain. Sci Signal 2018; 11:eaao4425. [PMID: 30154101 PMCID: PMC6193449 DOI: 10.1126/scisignal.aao4425] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pain-sensing sensory neurons of the dorsal root ganglion (DRG) can become sensitized or hyperexcitable in response to surgically induced peripheral tissue injury. We investigated the potential role and molecular mechanisms of nociceptive ion channel dysregulation in acute pain conditions such as those resulting from skin and soft tissue incision. We used selective pharmacology, electrophysiology, and mouse genetics to link increased current densities arising from the CaV3.2 isoform of T-type calcium channels (T-channels) to nociceptive sensitization using a clinically relevant rodent model of skin and deep tissue incision. Furthermore, knockdown of the CaV3.2-targeting deubiquitinating enzyme USP5 or disruption of USP5 binding to CaV3.2 channels in peripheral nociceptors resulted in a robust antihyperalgesic effect in vivo and substantial T-current reduction in vitro. Our study provides mechanistic insight into the role of plasticity in CaV3.2 channel activity after surgical incision and identifies potential targets for perioperative pain that may greatly decrease the need for narcotics and potential for drug abuse.
Collapse
Affiliation(s)
- Sonja L Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
- Pharmacology Graduate Program, School of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vesna Tesic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Agustin García-Caballero
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1 Canada
| | - Simon Feseha
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1 Canada
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
- Neuroscience Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Sekiguchi F, Tsubota M, Kawabata A. Involvement of Voltage-Gated Calcium Channels in Inflammation and Inflammatory Pain. Biol Pharm Bull 2018; 41:1127-1134. [PMID: 30068860 DOI: 10.1248/bpb.b18-00054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Voltage-gated calcium channels (VGCCs) are classified into high-voltage-activated (HVA) channels and low-voltage-activated channels consisting of Cav3.1-3.3, known as T ("transient")-type VGCC. There is evidence that certain types of HVA channels are involved in neurogenic inflammation and inflammatory pain, in agreement with reports indicating the therapeutic effectiveness of gabapentinoids, ligands for the α2δ subunit of HVA, in treating not only neuropathic, but also inflammatory, pain. Among the Cav3 family members, Cav3.2 is abundantly expressed in the primary afferents, regulating both neuronal excitability at the peripheral terminals and spontaneous neurotransmitter release at the spinal terminals. The function and expression of Cav3.2 are modulated by a variety of inflammatory mediators including prostanoids and hydrogen sulfide (H2S), a gasotransmitter. The increased activity of Cav3.2 by H2S participates in colonic, bladder and pancreatic pain, and regulates visceral inflammation. Together, VGCCs are involved in inflammation and inflammatory pain, and Cav3.2 T-type VGCC is especially a promising therapeutic target for the treatment of visceral inflammatory pain in patients with irritable bowel syndrome, interstitial cystitis/bladder pain syndrome, pancreatitis, etc., in addition to neuropathic pain.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University
| |
Collapse
|
23
|
Du Nguyen H, Okada T, Kitamura S, Yamaoka S, Horaguchi Y, Kasanami Y, Sekiguchi F, Tsubota M, Yoshida S, Nishikawa H, Kawabata A, Toyooka N. Design and synthesis of novel anti-hyperalgesic agents based on 6-prenylnaringenin as the T-type calcium channel blockers. Bioorg Med Chem 2018; 26:4410-4427. [PMID: 30031654 DOI: 10.1016/j.bmc.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/31/2022]
Abstract
Since 6-prenylnaringenin (6-PNG) was recently identified as a novel T-type calcium channel blocker with the IC50 value around 1 µM, a series of flavanone derivatives were designed, synthesized and subsequently evaluated for T-channel-blocking activity in HEK293 cells transfected with Cav3.2 T-type channels using a patch-clamp technique. As a result, several new flavanones blocked Cav3.2-dependent T-currents more potently than 6-PNG. In the synthesized compounds, 6-(3-ethylpent-2-enyl)-5,7-dihydroxy-2-(2-hydroxyphenyl)chroman-4-one 8j, 6-(3-ethylpent-2-enyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one 11b, 6-(2-cyclopentylideneethyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one 11d, and 6-(2-Cyclopentylethyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one 12c were more potent blocker than 6-PNG with the IC50 value of 0.39, 0.26, 0.46, and 0.50 µM, respectively. Among the above four derivatives, the compound 8j provided the best result in the in vivo experiments; i.e. systemic administration of 8j at the minimum dose completely restored neuropathic pain induced by partial sciatic nerve ligation in mice.
Collapse
Affiliation(s)
- Huy Du Nguyen
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Shun Kitamura
- Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Sakura Yamaoka
- Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Yamato Horaguchi
- Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | | | - Fumiko Sekiguchi
- Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Maho Tsubota
- Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Shigeru Yoshida
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Japan
| | | | - Atsufumi Kawabata
- Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan; Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan.
| |
Collapse
|
24
|
Sekiguchi F, Fujita T, Deguchi T, Yamaoka S, Tomochika K, Tsubota M, Ono S, Horaguchi Y, Ichii M, Ichikawa M, Ueno Y, Koike N, Tanino T, Nguyen HD, Okada T, Nishikawa H, Yoshida S, Ohkubo T, Toyooka N, Murata K, Matsuda H, Kawabata A. Blockade of T-type calcium channels by 6-prenylnaringenin, a hop component, alleviates neuropathic and visceral pain in mice. Neuropharmacology 2018; 138:232-244. [PMID: 29913186 DOI: 10.1016/j.neuropharm.2018.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/30/2018] [Accepted: 06/14/2018] [Indexed: 10/14/2022]
Abstract
Since Cav3.2 T-type Ca2+ channels (T-channels) expressed in the primary afferents and CNS contribute to intractable pain, we explored T-channel-blocking components in distinct herbal extracts using a whole-cell patch-clamp technique in HEK293 cells stably expressing Cav3.2 or Cav3.1, and purified and identified sophoraflavanone G (SG) as an active compound from SOPHORAE RADIX (SR). Interestingly, hop-derived SG analogues, (2S)-6-prenylnaringenin (6-PNG) and (2S)-8-PNG, but not naringenin, also blocked T-channels; IC50 (μM) of SG, (2S)-6-PNG and (2S)-8-PNG was 0.68-0.75 for Cav3.2 and 0.99-1.41 for Cav3.1. (2S)-6-PNG and (2S)-8-PNG, but not SG, exhibited reversible inhibition. The racemic (2R/S)-6-PNG as well as (2S)-6-PNG potently blocked Cav3.2, but exhibited minor effect on high-voltage-activated Ca2+ channels and voltage-gated Na+ channels in differentiated NG108-15 cells. In mice, the mechanical allodynia following intraplantar (i.pl.) administration of an H2S donor was abolished by oral or i.p. SR extract and by i.pl. SG, (2S)-6-PNG or (2S)-8-PNG, but not naringenin. Intraperitoneal (2R/S)-6-PNG strongly suppressed visceral pain and spinal ERK phosphorylation following intracolonic administration of an H2S donor in mice. (2R/S)-6-PNG, administered i.pl. or i.p., suppressed the neuropathic allodynia induced by partial sciatic nerve ligation or oxaliplatin, an anti-cancer agent, in mice. (2R/S)-6-PNG had little or no effect on open-field behavior, motor performance or cardiovascular function in mice, and on the contractility of isolated rat aorta. (2R/S)-6-PNG, but not SG, was detectable in the brain after their i.p. administration in mice. Our data suggest that 6-PNG, a hop component, blocks T-channels, and alleviates neuropathic and visceral pain with little side effects.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Tomoyo Fujita
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Takahiro Deguchi
- Division of Natural Drug Resources, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Sakura Yamaoka
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Ken Tomochika
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Sumire Ono
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Yamato Horaguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Maki Ichii
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Mio Ichikawa
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Yumiko Ueno
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Nene Koike
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Tadatoshi Tanino
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Huy Du Nguyen
- Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-8555, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-8555, Japan
| | - Hiroyuki Nishikawa
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Shigeru Yoshida
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Tsuyako Ohkubo
- Division of Basic Medical Sciences and Fundamental Nursing, Faculty of Nursing, Fukuoka Nursing College, Fukuoka, 814-0193, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-8555, Japan; Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Kazuya Murata
- Division of Natural Drug Resources, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Hideaki Matsuda
- Division of Natural Drug Resources, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
25
|
Tsubota M, Okawa Y, Irie Y, Maeda M, Ozaki T, Sekiguchi F, Ishikura H, Kawabata A. Involvement of the cystathionine-γ-lyase/Ca v3.2 pathway in substance P-induced bladder pain in the mouse, a model for nonulcerative bladder pain syndrome. Neuropharmacology 2018; 133:254-263. [PMID: 29407215 DOI: 10.1016/j.neuropharm.2018.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/29/2017] [Accepted: 01/25/2018] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2S) formed by cystathionine-γ-lyase (CSE) enhances the activity of Cav3.2 T-type Ca2+ channels, contributing to the bladder pain accompanying hemorrhagic cystitis caused by systemic administration of cyclophosphamide (CPA) in mice. Given clinical and fundamental evidence for the involvement of the substance P/NK1 receptor systems in bladder pain syndrome (BPS)/interstitial cystitis (IC), we created an intravesical substance P-induced bladder pain model in mice and analyzed the possible involvement of the CSE/Cav3.2 pathway. Bladder pain/cystitis was induced by i.p. CPA or intravesical substance P in female mice. Bladder pain was evaluated by counting nociceptive behavior and by detecting referred hyperalgesia in the lower abdomen and hindpaw. The isolated bladder tissue was weighed to estimate bladder swelling and subjected to histological observation and Western blotting. Intravesical substance P caused profound referred hyperalgesia accompanied by little bladder swelling or edema 6-24 h after the administration, in contrast to i.p. CPA-induced nociceptive behavior/referred hyperalgesia with remarkable bladder swelling/edema and urothelial damage. The bladder pain and/or cystitis symptoms caused by substance P or CPA were prevented by the NK1 receptor antagonist. CSE in the bladder was upregulated by substance P or CPA, and the NK1 antagonist prevented the CPA-induced CSE upregulation. A CSE inhibitor, a T-type Ca2+ channel blocker and gene silencing of Cav3.2 abolished the intravesical substance P-induced referred hyperalgesia. The intravesical substance P-induced pain in mice is useful as a model for nonulcerative BPS, and involves the activation of the NK1 receptor/CSE/H2S/Cav3.2 cascade.
Collapse
Affiliation(s)
- Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Yasumasa Okawa
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Yuhei Irie
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan; Division of Emergency and Critical Care Medicine, Fukuoka University, Hospital, Fukuoka 814-0180, Japan
| | - Mariko Maeda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Tomoka Ozaki
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Hiroyasu Ishikura
- Division of Emergency and Critical Care Medicine, Fukuoka University, Hospital, Fukuoka 814-0180, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
26
|
Nazıroğlu M, Braidy N. Thermo-Sensitive TRP Channels: Novel Targets for Treating Chemotherapy-Induced Peripheral Pain. Front Physiol 2017; 8:1040. [PMID: 29326595 PMCID: PMC5733463 DOI: 10.3389/fphys.2017.01040] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Abnormal Ca2+ channel physiology, expression levels, and hypersensitivity to heat have been implicated in several pain states following treatment with chemotherapeutic agents. As members of the Ca2+ permeable transient receptor potential (TRP), five of the channels (TRPV1-4 and TRPM2) are activated by different heat temperatures, and two of the channels (TRPA1 and TRPM8) are activated by cold temperature. Accumulating evidences indicates that antagonists of TRPA1 and TRPM8 may protect against cisplatin, oxaliplatin, and paclitaxel-induced mitochondrial oxidative stress, inflammation, cold allodynia, and hyperalgesia. TRPV1 was responsible from the cisplatin-induced heat hyperalgesia and mechanical allodynia in the sensory neurons. TRPA1, TRPM8, and TRPV2 protein expression levels were mostly increased in the dorsal root (DRG) and trigeminal ganglia by these treatments. There is a debate on direct or oxaliplatin-induced oxidative cold stress dependent TRPA1 and TRPV4 activation in the DRG. Involvement of molecular pathways such as cysteine groups, glutathione metabolism, anandamide, cAMP, lipopolysaccharide, proteinase-activated receptor 2, and mitogen-activated protein kinase were also indicated in the oxaliplatin and paclitaxel-induced cold allodynia. In this review, we summarized results of five temperature-regulated TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, and TRPV4) as novel targets for treating chemotherapy-induced peripheral pain
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
27
|
Zinc deficiency promotes cystitis-related bladder pain by enhancing function and expression of Ca v3.2 in mice. Toxicology 2017; 393:102-112. [PMID: 29129814 DOI: 10.1016/j.tox.2017.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/15/2023]
Abstract
Cav3.2 T-type Ca2+ channel activity is suppressed by zinc that binds to the extracellular histidine-191 of Cav3.2, and enhanced by H2S that interacts with zinc. Cav3.2 in nociceptors is upregulated in an activity-dependent manner. The enhanced Cav3.2 activity by H2S formed by the upregulated cystathionine-γ-lyase (CSE) is involved in the cyclophosphamide (CPA)-induced cystitis-related bladder pain in mice. We thus asked if zinc deficiency affects the cystitis-related bladder pain in mice by altering Cav3.2 function and/or expression. Dietary zinc deficiency for 2 weeks greatly decreased zinc concentrations in the plasma but not bladder tissue, and enhanced the bladder pain/referred hyperalgesia (BP/RH) following CPA at 200mg/kg, a subeffective dose, but not 400mg/kg, a maximal dose, an effect abolished by pharmacological blockade or gene silencing of Cav3.2. Acute zinc deficiency caused by systemic N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylendiamine (TPEN), a zinc chelator, mimicked the dietary zinc deficiency-induced Cav3.2-dependent promotion of BP/RH following CPA at 200mg/kg. CPA at 400mg/kg alone or TPEN plus CPA at 200mg/kg caused Cav3.2 overexpression accompanied by upregulation of Egr-1 and USP5, known to promote transcriptional expression and reduce proteasomal degradation of Cav3.2, respectively, in the dorsal root ganglia (DRG). The CSE inhibitor, β-cyano-l-alanine, prevented the BP/RH and upregulation of Cav3.2, Egr-1 and USP5 in DRG following TPEN plus CPA at 200mg/kg. Together, zinc deficiency promotes bladder pain accompanying CPA-induced cystitis by enhancing function and expression of Cav3.2 in nociceptors, suggesting a novel therapeutic avenue for treatment of bladder pain, such as zinc supplementation.
Collapse
|
28
|
Yan YY, Li CY, Zhou L, Ao LY, Fang WR, Li YM. Research progress of mechanisms and drug therapy for neuropathic pain. Life Sci 2017; 190:68-77. [PMID: 28964813 DOI: 10.1016/j.lfs.2017.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/09/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is maladaptive pain caused by injury or dysfunction in peripheral and central nervous system, and remains a worldwide thorny problem leading to decreases in physical and mental quality of people's life. Currently, drug therapy is the main treatment regimen for resolving pain, while effective drugs are still unmet in medical need, and commonly used drugs such as anticonvulsants and antidepressants often make patients experience adverse drug reactions like dizziness, somnolence, severe headache, and high blood pressure. Thus, in this review we overview the anatomical physiology, underlying mechanisms of neuropathic pain to provide a better understanding in the initiation, development, maintenance, and modulation of this pervasive disease, and inspire research in the unclear mechanisms as well as potential targets. Furthermore, we summarized the existing drug therapies and new compounds that have shown antalgic effects in laboratory studies to be helpful for rational regimens in clinical treatment and promotion in novel drug discovery.
Collapse
Affiliation(s)
- Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
29
|
Lin SF, Wang B, Zhang FM, Fei YH, Gu JH, Li J, Bi LB, Liu XJ. T-type calcium channels, but not Cav3.2, in the peripheral sensory afferents are involved in acute itch in mice. Biochem Biophys Res Commun 2017; 487:801-806. [DOI: 10.1016/j.bbrc.2017.04.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
|
30
|
Terada Y, Tsubota M, Sugo H, Wakitani K, Sekiguchi F, Wada K, Takada M, Oita A, Kawabata A. Tacrolimus Triggers Transient Receptor Potential Vanilloid-1-Dependent Relapse of Pancreatitis-Related Pain in Mice. Pharmacology 2017; 99:281-285. [PMID: 28253495 DOI: 10.1159/000454816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/29/2016] [Indexed: 02/02/2023]
Abstract
Transient receptor potential vanilloid-1 (TRPV1) expressed in nociceptors is directly phosphorylated and activated by protein kinase C, and involved in the signaling of pancreatic pain. On the other hand, Cav3.2 T-type Ca2+ channels expressed in nociceptors are functionally upregulated by phosphorylation with protein kinase A and also play a role in pancreatitis-related pain. Calcineurin, a phosphatase, negatively regulates various channel functions including TRPV1, and calcineurin inhibitor-induced pain syndrome by tacrolimus, a calcineurin inhibitor, used as an immunosuppressant, has been a clinical problem. We thus examined the effect of tacrolimus on pancreatitis-related pain in mice. Repeated treatment with cerulein caused referred hyperalgesia accompanying acute pancreatitis, which was unaffected by tacrolimus. Pancreatitis-related symptoms disappeared in 24 h, whereas the referred hyperalgesia recurred following the administration of tacrolimus, which was abolished by the blockers of TRPV1 but not T-type Ca2+ channels. Thus, tacrolimus appears to cause the TRPV1-dependent relapse of pancreatitis-related pain, suggesting the involvement of calcineurin in the termination of pancreatic pain.
Collapse
Affiliation(s)
- Yuka Terada
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|