1
|
Schwartz JN, Evans HA, O'Toole EA, Hansen CD. Pachyonychia Congenita Project: Advancing Research and Drug Development through Collaboration. Keio J Med 2025; 74:61-66. [PMID: 38072449 DOI: 10.2302/kjm.2023-0015-ir] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pachyonychia Congenita Project (PC Project) is an international patient advocacy organization dedicated to patients who suffer from pachyonychia congenita (PC). This condition is a painful and debilitating skin disorder caused by a mutation in one of five keratin genes: KRT6A, KRT6B, KRT6C, KRT16,or KRT17. Through two primary programs, namely the International Pachyonychia Congenita Consortium (IPCC) and the International Pachyonychia Congenita Research Registry (IPCRR), PC Project provides comprehensive patient support and diagnostics while uniting patients, researchers, physicians, and industry partners on a global level to advance research and drug development for meaningful treatments and, ultimately, a cure for PC.
Collapse
Affiliation(s)
| | - Holly A Evans
- Pachyonychia Congenita Project, Salt Lake City, Utah, USA
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, The Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - C David Hansen
- Pachyonychia Congenita Project, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
McCarthy RL, de Brito M, O'Toole EA. Pachyonychia congenita: pathogenesis of pain and approaches to treatment. Clin Exp Dermatol 2024; 49:1510-1517. [PMID: 38805703 DOI: 10.1093/ced/llae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Pachyonychia congenita (PC) is an autosomal dominant genodermatosis characterized by a triad of chronic severe plantar pain, focal palmoplantar keratoderma and hypertrophic nail dystrophy. Plantar pain can be debilitating and have a profound impact on quality of life. Current therapeutic options for pain in PC are limited to lifestyle adjustment and mechanical techniques, with a small subgroup of patients benefiting from oral retinoids. This review investigates the pathogenesis of pain in PC and provides a summary of the current and future therapeutic options.
Collapse
Affiliation(s)
- Rebecca L McCarthy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, The Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Marianne de Brito
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, The Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, The Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
3
|
Weinberg RL, Kim S, Pang Z, Awad S, Hanback T, Pan B, Bettin L, Chang D, Polydefkis MJ, Qu L, Caterina MJ. Pain Hypersensitivity in SLURP1 and SLURP2 Knock-out Mouse Models of Hereditary Palmoplantar Keratoderma. J Neurosci 2024; 44:e0260232024. [PMID: 38866482 PMCID: PMC11236581 DOI: 10.1523/jneurosci.0260-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
SLURP1 and SLURP2 are both small secreted members of the Ly6/u-PAR family of proteins and are highly expressed in keratinocytes. Loss-of-function mutations in SLURP1 lead to a rare autosomal recessive palmoplantar keratoderma (PPK), Mal de Meleda (MdM), which is characterized by diffuse, yellowish palmoplantar hyperkeratosis. Some individuals with MdM experience pain in conjunction with the hyperkeratosis that has been attributed to fissures or microbial superinfection within the affected skin. By comparison, other hereditary PPKs such as pachyonychia congenita and Olmsted syndrome show prevalent pain in PPK lesions. Two mouse models of MdM, Slurp1 knock-out and Slurp2X knock-out, exhibit robust PPK in all four paws. However, whether the sensory experience of these animals includes augmented pain sensitivity remains unexplored. In this study, we demonstrate that both models exhibit hypersensitivity to mechanical and thermal stimuli as well as spontaneous pain behaviors in males and females. Anatomical analysis revealed slightly reduced glabrous skin epidermal innervation and substantial alterations in palmoplantar skin immune composition in Slurp2X knock-out mice. Primary sensory neurons innervating hindpaw glabrous skin from Slurp2X knock-out mice exhibit increased incidence of spontaneous activity and mechanical hypersensitivity both in vitro and in vivo. Thus, Slurp knock-out mice exhibit polymodal PPK-associated pain that is associated with both immune alterations and neuronal hyperexcitability and might therefore be useful for the identification of therapeutic targets to treat PPK-associated pain.
Collapse
Affiliation(s)
- Rachel L Weinberg
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Suyeon Kim
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Zixuan Pang
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Sandy Awad
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Tyger Hanback
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205
| | - Baohan Pan
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Leonie Bettin
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dennis Chang
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Michael J Polydefkis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
4
|
O'Toole EA, Kelsell DP, Caterina MJ, de Brito M, Hansen D, Hickerson RP, Hovnanian A, Kaspar R, Lane EB, Paller AS, Schwartz J, Shroot B, Teng J, Titeux M, Coulombe PA, Sprecher E. Pachyonychia Congenita: A Research Agenda Leading to New Therapeutic Approaches. J Invest Dermatol 2024; 144:748-754. [PMID: 38099888 DOI: 10.1016/j.jid.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 03/24/2024]
Abstract
Pachyonychia congenita (PC) is a dominantly inherited genetic disorder of cornification. PC stands out among other genodermatoses because despite its rarity, it has been the focus of a very large number of pioneering translational research efforts over the past 2 decades, mostly driven by a patient support organization, the Pachyonychia Congenita Project. These efforts have laid the ground for innovative strategies that may broadly impact approaches to the management of other inherited cutaneous and noncutaneous diseases. This article outlines current avenues of research in PC, expected outcomes, and potential hurdles.
Collapse
Affiliation(s)
- Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - David P Kelsell
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Marianne de Brito
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David Hansen
- Department of Dermatology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Robyn P Hickerson
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of genetic skin diseases, Institut Imagine, Université Paris Cité, Paris, France; Department of Genomic Medicine of Rare Diseases, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | - E Birgitte Lane
- A∗STAR Skin Research Laboratories, Skin Research Institute of Singapore, Singapore, Singapore
| | - Amy S Paller
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Joyce Teng
- Pediatric Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Matthias Titeux
- INSERM UMR 1163, Laboratory of genetic skin diseases, Institut Imagine, Université Paris Cité, Paris, France
| | - Pierre A Coulombe
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Basset J, Marchal L, Hovnanian A. EGFR Signaling Is Overactive in Pachyonychia Congenita: Effective Treatment with Oral Erlotinib. J Invest Dermatol 2023; 143:294-304.e8. [PMID: 36116508 DOI: 10.1016/j.jid.2022.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Pachyonychia congenita (PC) is a rare keratinizing disorder characterized by painful palmoplantar keratoderma for which there is no standard current treatment. PC is caused by dominant mutations in keratin (K) K6A, K6B, K6C, K16, or K17 genes involved in stress, wound healing, and epidermal barrier formation. Mechanisms leading to pain and painful palmoplantar keratoderma in PC remain elusive. In this study, we show overexpression of EGFR ligands epiregulin and TGF-α as well as HER1‒EGFR and HER2 in the upper spinous layers of PC lesions. EGFR activation was confirmed by upregulated MAPK/ERK and mTOR signaling. Abnormal late terminal keratinization was associated with elevated TGM1 activity. In addition, the calcium ion permeable channel TRPV3 was significantly increased in PC-lesional skin, suggesting a predominant role of the TRPV3/EGFR signaling complex in PC. We hypothesized that this complex contributes to promoting TGM1 activity and induces the expression and shedding of EGFR ligands. To counteract this biological cascade, we treated three patients with PC with oral erlotinib for 6‒8 months. The treatment was well-tolerated and led to an early, drastic, and sustained reduction of neuropathic pain with a major improvement of QOL. Our study provides evidence that targeted pharmacological inhibition of EGFR is an effective strategy in PC.
Collapse
Affiliation(s)
- Justine Basset
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Lucile Marchal
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France; University of Paris, Paris, France; Department of Genetics, Necker Hospital for Sick Children. Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
6
|
Differences between finger and toe Meissner corpuscles: Searching for the optimal place to analyze meissner corpuscles in cutaneous biopsy. TRANSLATIONAL RESEARCH IN ANATOMY 2023. [DOI: 10.1016/j.tria.2023.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
7
|
Steele L, Schwartz J, Hansen CD, O'Toole EA. Prevalence and Characterization of Itch in Pachyonychia Congenita. JAMA Dermatol 2021; 157:1378-1380. [PMID: 34468688 DOI: 10.1001/jamadermatol.2021.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Lloyd Steele
- Department of Dermatology, The Royal London Hospital, Barts Health National Health Service Trust and Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, England
| | | | - C David Hansen
- Pachyonychia Congenita Project, Holladay, Utah.,Department of Dermatology, University of Utah, Salt Lake City
| | - Edel A O'Toole
- Department of Dermatology, The Royal London Hospital, Barts Health National Health Service Trust and Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, England
| |
Collapse
|
8
|
Sex-Dependent Reduction in Mechanical Allodynia in the Sural-Sparing Nerve Injury Model in Mice Lacking Merkel Cells. J Neurosci 2021; 41:5595-5619. [PMID: 34031166 DOI: 10.1523/jneurosci.1668-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Innocuous touch sensation is mediated by cutaneous low-threshold mechanoreceptors (LTMRs). Aβ slowly adapting type I (SAI) neurons constitute one LTMR subtype that forms synapse-like complexes with associated Merkel cells in the basal skin epidermis. Under healthy conditions, these complexes transduce indentation and pressure stimuli into Aβ SAI LTMR action potentials that are transmitted to the CNS, thereby contributing to tactile sensation. However, it remains unknown whether this complex plays a role in the mechanical hypersensitivity caused by peripheral nerve injury. In this study, we characterized the distribution of Merkel cells and associated afferent neurons across four diverse domains of mouse hind paw skin, including a recently described patch of plantar hairy skin. We also showed that in the spared nerve injury (SNI) model of neuropathic pain, Merkel cells are lost from the denervated tibial nerve territory but are relatively preserved in nearby hairy skin innervated by the spared sural nerve. Using a genetic Merkel cell KO mouse model, we subsequently examined the importance of intact Merkel cell-Aβ complexes to SNI-associated mechanical hypersensitivity in skin innervated by the spared neurons. We found that, in the absence of Merkel cells, mechanical allodynia was partially reduced in male mice, but not female mice, under sural-sparing SNI conditions. Our results suggest that Merkel cell-Aβ afferent complexes partially contribute to mechanical allodynia produced by peripheral nerve injury, and that they do so in a sex-dependent manner.SIGNIFICANCE STATEMENT Merkel discs or Merkel cell-Aβ afferent complexes are mechanosensory end organs in mammalian skin. Yet, it remains unknown whether Merkel cells or their associated sensory neurons play a role in the mechanical hypersensitivity caused by peripheral nerve injury. We found that male mice genetically lacking Merkel cell-Aβ afferent complexes exhibited a reduction in mechanical allodynia after nerve injury. Interestingly, this behavioral phenotype was not observed in mutant female mice. Our study will facilitate understanding of mechanisms underlying neuropathic pain.
Collapse
|
9
|
Wu AG, Lipner SR. Distinctions in the Management, Patient Impact, and Clinical Profiles of Pachyonychia Congenita Subtypes. Skin Appendage Disord 2021; 7:194-202. [PMID: 34055907 DOI: 10.1159/000513340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022] Open
Abstract
Introduction Pachyonychia congenita (PC) is a rare dermatosis that confers lifelong physical and emotional morbidities in affected patients. However, the clinical findings, treatments, and psychosocial impact of this disease have not been adequately described. The International PC Research Registry (IPCRR), a multinational initiative to collect data on PC patients, has allowed an opportunity to distinguish the salient features of this disease. We aimed to characterize the breadth and extent of nail disease, treatments, and quality of life in PC patients, and to describe any significant differences in clinical presentation or treatment of PC subtypes. Methods The most recent IPCRR patient survey data consisting of an 857-response questionnaire and a 102-response addendum were analyzed in a retrospective analysis. The survey data were collected as part of a multinational, multicenter initiative and comprise the largest representative population of PC to date. Participants (survey respondents) were included in the study based on questionnaire responses and a genetic confirmation of having a PC subtype. Results A total of 857 survey responses were collected. Genetic variations among PC subtypes influence nail disease onset and severity of symptoms. Nail disease negatively impacts patients' emotional health, especially during the adolescent and young adult years. Nail treatment tools vary little in terms of effectiveness and acquired infection rates. Conclusion and Discussion Patients with different PC subtypes have distinct clinical nail presentations and psychosocial impact. Genetic testing should be used to confirm PC diagnoses. Further characterization of PC, especially the rarer subtypes, may allow for more individualized patient education.
Collapse
Affiliation(s)
- Albert G Wu
- New York Medical College, New York, New York, USA
| | - Shari R Lipner
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
10
|
Abstract
Epidermolysis bullosa (EB) is an inherited, heterogeneous group of rare genetic dermatoses characterized by mucocutaneous fragility and blister formation, inducible by often minimal trauma. A broad phenotypic spectrum has been described, with potentially severe extracutaneous manifestations, morbidity and mortality. Over 30 subtypes are recognized, grouped into four major categories, based predominantly on the plane of cleavage within the skin and reflecting the underlying molecular abnormality: EB simplex, junctional EB, dystrophic EB and Kindler EB. The study of EB has led to seminal advances in our understanding of cutaneous biology. To date, pathogenetic mutations in 16 distinct genes have been implicated in EB, encoding proteins influencing cellular integrity and adhesion. Precise diagnosis is reliant on correlating clinical, electron microscopic and immunohistological features with mutational analyses. In the absence of curative treatment, multidisciplinary care is targeted towards minimizing the risk of blister formation, wound care, symptom relief and specific complications, the most feared of which - and also the leading cause of mortality - is squamous cell carcinoma. Preclinical advances in cell-based, protein replacement and gene therapies are paving the way for clinical successes with gene correction, raising hopes amongst patients and clinicians worldwide.
Collapse
|
11
|
Affiliation(s)
- Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy RWTH Aachen University Wendlingweg 2 52074 Aachen Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy RWTH Aachen University Wendlingweg 2 52074 Aachen Germany
| |
Collapse
|
12
|
Weinberg R, Coulombe P, Polydefkis M, Caterina M. Pain mechanisms in hereditary palmoplantar keratodermas. Br J Dermatol 2019; 182:543-551. [DOI: 10.1111/bjd.17880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Affiliation(s)
- R.L. Weinberg
- Department of Neurosurgery Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Department of Biological Chemistry Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Solomon H. Snyder Department of Neuroscience Neurosurgery Pain Research Institute Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| | - P.A. Coulombe
- Department of Cell and Developmental Biology University of Michigan Medical School Ann Arbor MI 48109 U.S.A
- Department of Dermatology University of Michigan Medical School Ann Arbor MI 48109 U.S.A
| | - M. Polydefkis
- Department of Neurology Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| | - M.J. Caterina
- Department of Neurosurgery Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Department of Biological Chemistry Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Solomon H. Snyder Department of Neuroscience Neurosurgery Pain Research Institute Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| |
Collapse
|
13
|
Affiliation(s)
- M A Krupiczojc
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, U.K
| | - E A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, U.K
| |
Collapse
|
14
|
Pan B, Schröder W, Jostock R, Schwartz M, Rosson G, Polydefkis M. Nociceptin/orphanin FQ opioid peptide-receptor expression in pachyonychia congenita. J Peripher Nerv Syst 2018; 23:241-248. [PMID: 30255608 DOI: 10.1111/jns.12288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022]
Abstract
Nociceptin/orphanin FQ opioid peptide (NOP)-receptor (NOP-R) is a member of the opioid receptor family. NOP-R activation has demonstrated analgesic effects in preclinical pain models without the addiction risks associated with other opiate targets. Pachyonychia congenita (PC) is a palmoplantar keratoderma characterized by neuropathic pain in affected skin. A cohort of KRT6A gene mutation PC patients with no other explanation for their neuropathic pain offered a unique opportunity to assess potential of NOP-R as a therapeutic target. Plantar biopsies from 10 PC patients and 10 age/gender matched controls were performed at the ball (PC-affected) and the arch (PC-unaffected) of the foot. NOP-R expression was assessed by immunohistochemistry. Localization of NOP-R in subsets of epidermal nerve fibers was investigated using the pan-neuronal marker PGP9.5, markers for unmyelinated peptidergic fibers (calcitonin gene-related peptide [CGRP] and substance P [SP]), as well as for myelinated Aδ and Aβ fibers (neurofilament H [NFH]). Robust NOP-R expression was detected in epidermal keratinocytes and in a subset of PGP9.5+ fibers in both epidermis and dermis, confirmed by western blot and absorption experiments with NOP-R peptide. NOP-R expression in keratinocytes was significantly reduced in PC-affected plantar skin compared with PC-unaffected skin. In addition, NOP-R expression occurred in dermal NFH+ myelinated fibers in all groups, although few CGRP+ fibers co-expressed NOP-R. Furthermore, most SP+ fibers also co-expressed NOP-R. These findings indicate that NOP-R is expressed on epidermal keratinocytes, as well as on epidermal and dermal nerve fibers and has potential as a promising target to treat neuropathic pain in PC.
Collapse
Affiliation(s)
- Baohan Pan
- Neurology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Wolfgang Schröder
- Translational Science & Intelligence, Grünenthal GmbH, Aachen, Germany
| | - Ruth Jostock
- In-Vitro Biology & Biomarker Research Unit, Grünenthal GmbH, Aachen, Germany
| | - Mary Schwartz
- Pachyonychia Congenita Project, Salt Lake City, Utah
| | - Gedge Rosson
- Department of Plastic & Reconstructive Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
15
|
Brill S, Sprecher E, Smith FJD, Geva N, Gruener H, Nahman-Averbuch H, Defrin R. Chronic pain in pachyonychia congenita: evidence for neuropathic origin. Br J Dermatol 2018; 179:154-162. [PMID: 29210461 DOI: 10.1111/bjd.16217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Pachyonychia congenita (PC) is a rare autosomal dominant skin disease, with chronic pain being the most prominent complaint. Histological studies showing alterations in sensory innervation, along with reports on alterations in mechanical sensitivity, suggest that PC may be a form of neuropathy. OBJECTIVES Here, for the first time, we aim to evaluate systematically the sensory function of patients with PC vs. controls, in order to investigate the pathophysiology of PC. METHODS Patients (n = 62) and controls (n = 45) completed the McGill and Douleur Neuropathique-4 (DN4) questionnaires. Sensory testing included detection and pain thresholds, pathological sensations, conditioned pain modulation (CPM) and temporal summation of pain. RESULTS A moderate-to-severe chronic pain in the feet, throbbing and stabbing in quality, was highly prevalent among patients with PC (86%) and was especially debilitating during weight bearing. In addition, the majority of patients had a DN4 score ≥ 4 (62%), static allodynia (55%) and tingling (53%) in the feet. Compared with controls, patients with PC exhibited thermal and mechanical hypoaesthesia and mechanical hyperalgesia in the feet. CPM was reduced among the patients, and was associated with more enhanced mechanical hyperalgesia in the feet. The specific gene and nature of the causative mutation did not affect any of these features. CONCLUSIONS Although thermal and mechanical hypoaesthesia may result from thicker skin, its presentation in painful regions, along with mechanical hyperalgesia and allodynia, point towards the possibility of neuropathic changes occurring in PC. The clinical features and DN4 scores support this possibility and therefore neuropathic pain medications may be beneficial for patients with PC.
Collapse
Affiliation(s)
- S Brill
- Center for Pain Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - E Sprecher
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Department of Dermatology, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - F J D Smith
- Pachyonychia Congenita Project, School of Life Sciences, University of Dundee, Dundee, U.K
| | - N Geva
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - H Gruener
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - H Nahman-Averbuch
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, U.S.A
| | - R Defrin
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
16
|
Terkelsen AJ, Karlsson P, Lauria G, Freeman R, Finnerup NB, Jensen TS. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol 2017; 16:934-944. [DOI: 10.1016/s1474-4422(17)30329-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022]
|
17
|
|
18
|
Smith SM, Dworkin RH, Turk DC, Baron R, Polydefkis M, Tracey I, Borsook D, Edwards RR, Harris RE, Wager TD, Arendt-Nielsen L, Burke LB, Carr DB, Chappell A, Farrar JT, Freeman R, Gilron I, Goli V, Haeussler J, Jensen T, Katz NP, Kent J, Kopecky EA, Lee DA, Maixner W, Markman JD, McArthur JC, McDermott MP, Parvathenani L, Raja SN, Rappaport BA, Rice ASC, Rowbotham MC, Tobias JK, Wasan AD, Witter J. The Potential Role of Sensory Testing, Skin Biopsy, and Functional Brain Imaging as Biomarkers in Chronic Pain Clinical Trials: IMMPACT Considerations. THE JOURNAL OF PAIN 2017; 18:757-777. [PMID: 28254585 PMCID: PMC5484729 DOI: 10.1016/j.jpain.2017.02.429] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/19/2017] [Accepted: 02/16/2017] [Indexed: 02/08/2023]
Abstract
Valid and reliable biomarkers can play an important role in clinical trials as indicators of biological or pathogenic processes or as a signal of treatment response. Currently, there are no biomarkers for pain qualified by the U.S. Food and Drug Administration or the European Medicines Agency for use in clinical trials. This article summarizes an Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials meeting in which 3 potential biomarkers were discussed for use in the development of analgesic treatments: 1) sensory testing, 2) skin punch biopsy, and 3) brain imaging. The empirical evidence supporting the use of these tests is described within the context of the 4 categories of biomarkers: 1) diagnostic, 2) prognostic, 3) predictive, and 4) pharmacodynamic. Although sensory testing, skin punch biopsy, and brain imaging are promising tools for pain in clinical trials, additional evidence is needed to further support and standardize these tests for use as biomarkers in pain clinical trials. PERSPECTIVE The applicability of sensory testing, skin biopsy, and brain imaging as diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for use in analgesic treatment trials is considered. Evidence in support of their use and outlining problems is presented, as well as a call for further standardization and demonstrations of validity and reliability.
Collapse
|
19
|
Rice RH, Durbin-Johnson BP, Salemi M, Schwartz ME, Rocke DM, Phinney BS. Proteomic profiling of Pachyonychia congenita plantar callus. J Proteomics 2017. [PMID: 28648685 DOI: 10.1016/j.jprot.2017.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Callus samples from the ball and the arch of the foot, collected on tape circles, were compared by shotgun proteomic profiling. Pachyonychia congenita subjects were sampled who exhibited a mutation in KRT6A, KRT6B, KRT6C, KRT16 or KRT17, and the proteins were digested and analyzed by tandem mass spectrometry. In comparison with samples from unaffected control subjects, those from subjects with KRT6A or KRT16 mutations displayed the most differences in profile from normal, while those from subjects with KRT6C or KRT17 mutations showed few differences from normal. The profiles from subjects with KRT6B mutations were intermediate in protein profile differences. Degree of departure from the normal profile could be estimated by expression of numerous proteins in callus from the ball of the foot that were consistently different. By contrast, the protein profile from the arch of the foot was hardly affected. The results provide a foundation for noninvasive monitoring of the efficacy of treatments with quantitative assessment of departure from the normal phenotype. SIGNIFICANCE Pachyonychia congenita is an orphan disease in which the connection between the basic defect (keratin mutation) and debilitating symptoms (severe plantar pain) is poorly understood. Present work addresses the degree to which the protein profile is altered in the epidermis where the severe pain originates. The results indicate that the mutated keratins differ greatly in the degree to which they elicit perturbations in protein profile. In those cases with markedly altered protein levels, monitoring the callus profile may provide an objective measure of treatment efficacy.
Collapse
Affiliation(s)
- Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, CA.
| | - Blythe P Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, CA
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, CA
| | | | - David M Rocke
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, CA
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, CA
| |
Collapse
|
20
|
Rittié L, Kaspar RL, Sprecher E, Smith FJD. Report of the 13th Annual International Pachyonychia Congenita Consortium Symposium. Br J Dermatol 2017; 176:1144-1147. [PMID: 28345191 DOI: 10.1111/bjd.15417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2016] [Indexed: 11/29/2022]
Abstract
The International Pachyonychia Congenita Consortium (IPCC) is a group of physicians and scientists from around the world dedicated to developing therapies for pachyonychia congenita, a rare autosomal dominant skin disorder. The research presented at the 13th Annual Research Symposium of the IPCC, held on 10-11 May 2016, in Scottsdale, AZ, U.S.A., is reported here.
Collapse
Affiliation(s)
- L Rittié
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - R L Kaspar
- TransDerm Inc., 2161 Delaware Ave, Santa Cruz, CA, 95060, U.S.A
| | - E Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - F J D Smith
- Pachyonychia Congenita Project, Salt Lake City, UT, U.S.A
| |
Collapse
|